首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The problem of vibrational wave packet dynamics in the system of two electronic states of a diatomic molecule, where the states are coupled by infinitely short light pulses, is solved. The electronic states were modeled by shifted harmonic oscillators with different frequencies. Exact expressions for the probability densities of the wave packets in the ground and excited states were derived. The spatial, spectral, and temporal characteristics of the wave packets, namely, the range of motion, spatial width, mean energy, spectral width (the mean number of vibrational states in a wave packet), and the autocorrelation function, were calculated as functions of the molecular parameters (the frequency ratio and the distance between the potential minima) and of the delay time between the light pulses. The possibility of controlling the mean energy and spectral width of the wave packets in the ground electronic state by varying the delay time is considered. It was shown that "squeezed" wave packets can be prepared in the ground electronic state if the upper electronic state is shallow.  相似文献   

2.
Spectral and phase shaping of femtosecond laser pulses is used to selectively excite vibrational wave packets on the ground (S0) and excited (S1) electronic states in the laser dye LD690. The transient absorption signals observed following excitation near the peak of the ground-state absorption spectrum are characterized by a dominant 586 cm(-1) vibrational mode. This vibration is assigned to a wave packet on the S0 potential energy surface. When the excitation pulse is tuned to the blue wing of the absorption spectrum, a lower frequency 568 cm(-1) vibration dominates the response. This lower frequency mode is assigned to a vibrational wave packet on the S1 electronic state. The spectrum and phase of the excitation pulse also influence both the dephasing of the vibrational wave packet and the amplitude profiles of the oscillations as a function of probe wavelength. Excitation by blue-tuned, positively chirped pulses slows the apparent dephasing of the vibrational coherences compared with a transform-limited pulse having the same spectrum. Blue-tuned negatively chirped excitation pulses suppress the observation of coherent oscillations in the ground state.  相似文献   

3.
Employing femtosecond pulse-shaping techniques we investigate ultrafast, coherent and incoherent dynamics in single molecules at room temperature. In first experiments single molecules are excited into their purely electronic 0-0 transition by phase-locked double-pulse sequences with pulse durations of 75 fs and 20 nm spectral band width. Their femtosecond kinetics can then be understood in terms of a 2-level system and modelled with the optical Bloch equations. We find that we observe the coherence decay in single molecules, and the purely electronic dephasing times can be retrieved directly in the time domain. In addition, the Rabi-frequencies and thus the transition dipole moments of single molecules are determined from these data. Upon excitation of single molecules into a vibrational level of the electronically excited state also incoherent intra-molecular vibrational relaxation is recorded. Increasing the spectral band width of the excitation pulses to up to 120 nm (resulting in a transform-limited pulse width of 15 fs) coherent superpositions of excited state vibrational modes, i.e. vibrational wave packets, are excited. The wave-packet oscillations in the excited state potential energy surface are followed in time by a phase-controlled pump-probe scheme, which permits to record wave packet interference, and to determine the energies of vibrational modes and their coupling strengths to the electronic transition.  相似文献   

4.
We report on vibrational coherence dynamics in excited and ground electronic states of all-trans retinal protonated Schiff-bases (RPSB), investigated by time-resolved Degenerate Four-Wave-Mixing (DFWM). The results show that wave packet dynamics in the excited state of RPSB consist of only low-frequency (<800 cm(-1)) modes. Such low-frequency wave packet motion is observed over a broad range of detection wavelengths ranging from excited state absorption (~500 nm) to stimulated emission (>600 nm). Our results indicate that low-frequency coherences in the excited state are not activated directly by laser excitation but rather by internal vibrational energy redistribution. This is supported by the observation that similar coherence dynamics are not observed in the electronic ground state. Challenging previous experimental results, we show that the formation of low-frequency coherence dynamics in RPSB does not require significant excess vibrational energy deposition in the excited state vibrational manifolds. Concerning ground state wave packet dynamics, we observe a set of high-frequency (>800 cm(-1)) modes, reflecting mainly single and double bond stretching motion in the retinal polyene-chain. Dephasing of these high-frequency coherences is mode-dependent and partially differs from analogous vibrational dephasing of the all-trans retinal chromophore in a protein environment (bacteriorhodopsin).  相似文献   

5.
Ultrafast vibrational dynamics of cyclic hydrogen bonded dimers and the underlying microscopic interactions are studied in temporally and spectrally resolved pump-probe experiments with 100 fs time resolution. Femtosecond excitation of the O-H and/or O-D stretching mode gives rise to pronounced changes of the O-H/O-D stretching absorption displaying both rate-like kinetic and oscillatory components. A lifetime of 200 fs is measured for the v=1 state of the O-H stretching oscillator. The strong oscillatory absorption changes are due to impulsively driven coherent wave packet motions along several low-frequency modes of the dimer between 50 and 170 cm(-1). Such wave packets generated via coherent excitation of the high-frequency O-H/O-D stretching oscillators represent a clear manifestation of the anharmonic coupling of low- and high-frequency modes. The underdamped low-frequency motions dephase on a time scale of 1-2 ps. Calculations of the vibrational potential energy surface based on density functional theory give the frequencies, anharmonic couplings, and microscopic elongations of the low-frequency modes, among them intermolecular hydrogen bond vibrations. Oscillations due to the excitonic coupling between the two O-H or O-D stretching oscillators are absent as is independently confirmed by experiments on mixed dimers with uncoupled O-H and O-D stretching oscillators.  相似文献   

6.
Broadband two-dimensional electronic spectroscopy (2DES) can assist in understanding complex electronic and vibrational signatures. In this paper, we use 2DES to examine the electronic structure and dynamics of a long chain cyanine dye (1,1-diethyl-4,4-dicarbocyanine iodide, or DDCI-4), a system with a vibrational progression. Using broadband pulses that span the resonant electronic transition, we measure two-dimensional spectra that show a characteristic six peak pattern from coherently excited ground and excited state vibrational modes. We model these features using a spectral density formalism and the vibronic features are assigned to Feynman pathways. We also examine the dynamics of a particular set of peaks demonstrating anticorrelated peak motion, a signature of oscillatory wavepacket dynamics on the ground and excited states. These dynamics, in concert with the general structure of vibronic two-dimensional spectra, can be used to distinguish between pure electronic and vibrational quantum coherences.  相似文献   

7.
We report on a novel ultrafast two-dimensional infrared laser experiment that correlates vibrational bands of reactant and product of a photoreaction. The possibilities of this technique are demonstrated for the metal-to-ligand charge transfer (MLCT) in [Re(CO)3Cl(dmbpy)] (dmbpy = 4,4'-dimethyl-2,2'bipyridine) where we correlated the CO vibrational modes of the ground state and the MLCT state. A distinct vibrational mode is excited in the electronic ground state by an infrared laser pulse. This vibrational label survives the subsequent electronic excitation and can be followed in the excited electronic state. It is shown that the order of the vibrational energy levels is not preserved when exciting the molecule as was commonly assumed in the literature.  相似文献   

8.
The development of a time-resolved coherent anti-Stokes Raman scattering (CARS) variant for use as a probe of excited electronic state Raman-active modes following excitation with an ultrafast pump pulse is detailed. Application of this technique involves a combination of broadband fs-time scale pulses and a narrowband pulse of ps duration that allows multiplexed detection of the CARS signal, permitting direct observation of molecular Raman frequencies and intensities with time resolution dictated by the broadband pulses. Thus, this nonlinear optical probe, designated fs/ps CARS, is suitable for observation of Raman spectral evolution following excitation with a pump pulse. Because of the spatial separation of the CARS output signal relative to the three input beams inherent in a folded BOXCARS arrangement, this technique is particularly amenable to probing low-frequency vibrational modes, which play a significant role in accepting vibrational energy during intramolecular vibrational energy redistribution within electronically excited states. Additionally, this spatial separation allows discrimination against strong fluorescence signal, as demonstrated in the case of rhodamine 6G.  相似文献   

9.
Quantum beats in nonlinear spectroscopy of molecular aggregates are often attributed to electronic phenomena of excitonic systems, while nuclear degrees of freedom are commonly included into models as overdamped oscillations of bath constituents responsible for dephasing. However, molecular systems are coupled to various high-frequency molecular vibrations, which can cause the spectral beats hardly distinguishable from those created by purely electronic coherences. Models containing damped, undamped, and overdamped vibrational modes coupled to an electronic molecular transition are discussed in this paper in context of linear absorption and two-dimensional electronic spectroscopy. Analysis of different types of bath models demonstrates how do vibrations map onto two-dimensional spectra and how the damping strength of the coherent vibrational modes can be resolved from spectroscopic signals.  相似文献   

10.
11.
We study the application of nonlinear wave packet interferometry to the preparation and resolution of the overlaps of nonstationary nuclear wave functions evolving in an excited electronic state of a diatomic molecule. It is shown that possible experiments with two phase-locked ultrashort pulsepairs can be used to determine a specific vibrational wave packet state in terms of coherent states of the ground electronic state. We apply this scheme to an idealized molecule with harmonic potential energy surfaces and to the X <-- B transition states of the iodine molecule. Our results indicate that this scheme is very promising as a potential tool to quantum control.  相似文献   

12.
The ultrafast dynamics of CS2 in the 1B2(1Σu+) state was studied by photoelectron imaging with a time resolution of 22 fs. The photoelectron signal intensity exhibited clear vibrational quantum beats due to wave packet motion. The signal intensity decayed with a lifetime of about 400 fs. This decay was preceded by a lag of around 30 fs, which was considered to correspond to the time for a vibrational wave packet to propagate from the Franck–Condon region to the region where predissociation occurred. The photoelectron angular distribution remained constant when the pump–probe delay time was varied. Consequently, variation of the electronic character caused by the vibrational wave packet motion was not identified within the accuracy of our measurements.  相似文献   

13.
Calculations are presented of ground state resonance structure at THz frequencies for molecular clusters of the high explosive RDX using density functional theory (DFT). The spectral features of this resonance structure are due to coupling of resonance modes for ground state excitation. In particular, the coupling among ground state resonance modes provides a reasonable molecular level interpretation of spectral features associated with THz excitation of molecular clusters. THz excitation is associated with frequencies that are characteristically perturbative to molecular electronic states, in contrast to frequencies that can induce appreciable electronic state transition. Owing to this characteristic of THz excitation, one is able to make a direct association between local oscillations about ground-state minima of molecules, either isolated or comprising a cluster, and THz excitation spectra. The DFT software GAUSSIAN was used for the calculations of ground state resonance structure presented here.  相似文献   

14.
Femtosecond nuclear dynamics of mass-selected neutral Ag2 and Ag2O2 clusters are investigated with the 'negative ion-to neutral-to positive ion'(NeNePo) technique. For the bare silver dimer, wave packet dynamics occurring in the neutral electronic ground state and in the first excited triplet state are observed after photodetachment from the anion with 3.05 eV photon energy. While the dynamics in the ground state lead to an oscillatory structure in the NeNePo-pump-probe spectra with a vibrational constant of 185 cm-1, the dynamics in the triplet state are assigned to a bound-free transition leading to dissociation. Photodetachment from the Ag2O2- complex results in the desorption of O2. The experimental data clearly show the influence of the desorbing oxygen ligand on the nuclear dynamics of the silver dimer inducing a red shift in the vibrational frequency and an intensity enhancement of the oscillatory signal.  相似文献   

15.
We investigated nuclear wave packet dynamics in the excited state of KI F centers at 10 K using time-resolved luminescence spectroscopy. Observed transient spectrum is divided into oscillatory and non-oscillatory components. The former lasts over 11 ps without appreciable damping and is attributed to the oscillation of the wave packet consisting mainly of the A(1g) mode around the center. The non-oscillatory part rises quickly after photo-excitation exhibiting a cooling of incoherent vibrational population. This behavior suggests the fast energy dissipation due to the dephasing of the bulk phonon modes.  相似文献   

16.
Femtosecond dynamics of riboflavin, the parent chromophore of biological blue-light receptors, was measured by broadband transient absorption and stationary optical spectroscopy in polar solution. Rich photochemistry is behind the small spectral changes observed: (i) loss of oscillator strength around time zero, (ii) sub-picosecond (ps) spectral relaxation of stimulated emission (SE), and (iii) coherent vibrational motion along a' (in-) and a' (out-of-plane) modes. Loss of oscillator strength is deduced from the differences in the time-zero spectra obtained in water and DMSO, with stationary spectroscopy and fluorescence decay measurements providing additional support. The spectral difference develops faster than the time resolution (20 fs) and is explained by formation of a superposition state between the optically active (1pi pi*) S1 and closely lying dark (1n pi*) states via vibronic coupling. Subsequent spectral relaxation involves decay of weak SE in the blue, 490 nm, together with rise and red shift of SE at 550 nm. The process is controlled by solvation (characteristic times 0.6 and 0.8 ps in water and DMSO, respectively). Coherent oscillations for a' and a' modes show up in different regions of the SE band. a' modes emerge in the blue edge of the SE and dephase faster than solvation. In turn, a' oscillations are found in the SE maximum and dephase on the solvation timescale. The spectral distribution of coherent oscillations according to mode symmetry is used to assign the blue edge of the SE band to a 1n pi*-like state (A'), whereas the optically active 1pi pi* (A') state emits around the SE maximum. The following model comes out: optical excitation occurs to the Franck-Condon pi pi* state, a pi pi*-n pi* superposition state is formed on an ultrafast timescale, vibrational coherence is transferred from a' to a' modes by pi pi*-n pi* vibronic coupling, and subsequent solvation dynamics alters the pi pi*/n pi* population ratio.  相似文献   

17.
The complex vibronic spectra and the nonradiative decay dynamics of the cyclopropane radical cation (CP+) are simulated theoretically with the aid of a time-dependent wave packet propagation approach using the multireference time-dependent Hartree scheme. The theoretical results are compared with the experimental photoelectron spectrum of cyclopropane. The ground and first excited electronic states of CP+ are of X2E' and A2E' type, respectively. Each of these degenerate electronic states undergoes Jahn-Teller (JT) splitting when the radical cation is distorted along the degenerate vibrational modes of e' symmetry. The JT split components of these two electronic states can also undergo pseudo-Jahn-Teller (PJT)-type crossings via the vibrational modes of e', a1' and a2' symmetries. These lead to the possibility of multiple multidimensional conical intersections and highly nonadiabatic nuclear motions in these coupled manifolds of electronic states. In a previous publication [J. Phys. Chem. A 2004, 108, 2256], we investigated the JT interactions alone in the X2E' ground electronic manifold of CP+. In the present work, the JT interactions in the A2E' electronic manifold are treated, and our previous work is extended by considering the coupling between the X2E' and A2E' electronic states of CP+. The nuclear dynamics in this coupled manifold of two JT split doubly degenerate electronic states is simulated by considering fourteen active and most relevant vibrational degrees of freedom. The vibronic level spectra and the ultrafast nonradiative decay of the excited cationic states are examined and are related to the highly complex entanglement of electronic and nuclear degrees of freedom in this prototypical molecular system.  相似文献   

18.
The ultraviolet absorption spectra in the static vapor phase and the laser induced fluorescence spectra (both fluorescence excitation and single vibronic level fluorescence spectra) of jet-cooled 1,2,3,4-tetrahydronaphthalene have been used along with theoretical calculations to assign many of the vibronic levels in the S1(pi,pi*) state. These have been compared to the corresponding vibrational levels for the S0 ground state. Analysis of the upper states of the ring-twisting vibration nu(31) and three other low-frequency modes has allowed us to construct an energy map of the lowest vibrational quantum states for both S0 and S1. The molecule is highly twisted in both electronic states with high barriers to planarity, which are calculated to be 4811 cm(-1) for S0 and 5100 cm(-1) for S1. However, the experimental data show that the barrier should be lower in the S1 state.  相似文献   

19.
The coherent photoisomerization of a chromophore in condensed phase is a rare process in which light energy is funneled into specific molecular vibrations during electronic relaxation from the excited to the ground state. In this work, we employed ultrafast spectroscopy and computational methods to investigate the molecular origin of the coherent motion accompanying the photoisomerization of indanylidene–pyrroline (IP) molecular switches. UV/Vis femtosecond transient absorption gave evidence for an excited‐ and ground‐state vibrational wave packet, which appears as a general feature of the IP compounds investigated. In close resemblance to the coherent photoisomerization of rhodopsin, the sudden onset of a far‐red‐detuned and rapidly blue‐shifting photoproduct signature indicated that the population arriving on the electronic ground state after nonadiabatic decay through the conical intersection (CI) is still very focused in the form of a vibrational wave packet. Semiclassical trajectories were employed to investigate the reaction mechanism. Their analysis showed that coupled double‐bond twisting and ring inversions, already populated during the excited‐state reactive motion, induced periodic changes in π‐conjugation that modulate the ground‐state absorption after the non‐adiabatic decay. This prediction further supports that the observed ground‐state oscillation results from the reactive motion, which is in line with a biomimetic, coherent photoisomerization scenario. The IP compounds thus appear as a model system to investigate the mechanism of mode‐selective photomechanical energy transduction. The presented mechanism opens new perspectives for energy transduction at the molecular level, with applications to the design of efficient molecular devices.  相似文献   

20.
The vibronically resolved electronic spectra for S(1)<-->S(0) transitions of a mixed dimer between 2-pyridone (2PY) and formamide have been measured in a supersonic free jet expansion using laser-induced fluorescence spectroscopy. Quantum chemistry method at different levels of theory has been used to optimize the geometries of the dimer for the S(0) and S(1) electronic states and also to calculate the normal vibrational modes. Assignments for the vibronic bands observed in the dispersed fluorescence spectrum of the 0(0) (0) band have been suggested with the aid of the ground state frequencies calculated by density functional theoretical method. Spectral analysis reveals that electronic excitation causes extensive mixing of the low-frequency intermolecular vibrational modes of the dimer with some of the intramolecular modes of the 2PY moiety. This spectral behavior is consistent with the complete active space self-consistent field theoretical prediction that with respect to a number of geometrical parameters the dimer geometry in S(1) is significantly distorted from the geometry of the S(0) state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号