首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Let A 1(x, D) and A 2(x, D) be differential operators of the first order acting on l-vector functions ${u= (u_1, \ldots, u_l)}$ in a bounded domain ${\Omega \subset \mathbb{R}^{n}}$ with the smooth boundary ${\partial\Omega}$ . We assume that the H 1-norm ${\|u\|_{H^{1}(\Omega)}}$ is equivalent to ${\sum_{i=1}^2\|A_iu\|_{L^2(\Omega)} + \|B_1u\|_{H^{\frac{1}{2}}(\partial\Omega)}}$ and ${\sum_{i=1}^2\|A_iu\|_{L^2(\Omega)} + \|B_2u\|_{H^{\frac{1}{2}}(\partial\Omega)}}$ , where B i  = B i (x, ν) is the trace operator onto ${\partial\Omega}$ associated with A i (x, D) for i = 1, 2 which is determined by the Stokes integral formula (ν: unit outer normal to ${\partial\Omega}$ ). Furthermore, we impose on A 1 and A 2 a cancellation property such as ${A_1A_2^{\prime}=0}$ and ${A_2A_1^{\prime}=0}$ , where ${A^{\prime}_i}$ is the formal adjoint differential operator of A i (i = 1, 2). Suppose that ${\{u_m\}_{m=1}^{\infty}}$ and ${\{v_m\}_{m=1}^{\infty}}$ converge to u and v weakly in ${L^2(\Omega)}$ , respectively. Assume also that ${\{A_{1}u_m\}_{m=1}^{\infty}}$ and ${\{A_{2}v_{m}\}_{m=1}^{\infty}}$ are bounded in ${L^{2}(\Omega)}$ . If either ${\{B_{1}u_m\}_{m=1}^{\infty}}$ or ${\{B_{2}v_m\}_{m=1}^{\infty}}$ is bounded in ${H^{\frac{1}{2}}(\partial\Omega)}$ , then it holds that ${\int_{\Omega}u_m\cdot v_m \,{\rm d}x \to \int_{\Omega}u\cdot v \,{\rm d}x}$ . We also discuss a corresponding result on compact Riemannian manifolds with boundary.  相似文献   

2.
Transition to turbulence in axially symmetrical laminar pipe flows with periodic time dependence classified as pure oscillating and pulsatile (pulsating) ones is the concern of the paper. The current state of art on the transitional characteristics of pulsatile and oscillating pipe flows is introduced with a particular attention to the utilized terminology and methodology. Transition from laminar to turbulent regime is usually described by the presence of the disturbed flow with small amplitude perturbations followed by the growth of turbulent bursts. The visual treatment of velocity waveforms is therefore a preferred inspection method. The observation of turbulent bursts first in the decelerating phase and covering the whole cycle of oscillation are used to define the critical states of the start and end of transition, respectively. A correlation study referring to the available experimental data of the literature particularly at the start of transition are presented in terms of the governing periodic flow parameters. In this respect critical oscillating and time averaged Reynolds numbers at the start of transition; Re os,crit and Re ta,crit are expressed as a major function of Womersley number, $\sqrt {\omega ^\prime } $ defined as dimensionless frequency of oscillation, f. The correlation study indicates that in oscillating flows, an increase in Re os,crit with increasing magnitudes of $\sqrt {\omega ^\prime } $ is observed in the covered range of $1<\sqrt {\omega ^\prime } <72$ . The proposed equation (Eq. 7), ${\rm{Re}}_{os,crit} ={\rm{Re}}_{os,crit} \left( {\sqrt {\omega ^\prime } } \right)$ , can be utilized to estimate the critical magnitude of $\sqrt {\omega ^\prime }$ at the start of transition with an accuracy of ±12?% in the range of $\sqrt {\omega ^\prime } <41$ . However in pulsatile flows, the influence of $\sqrt {\omega ^\prime }$ on Re ta,crit seems to be different in the ranges of $\sqrt {\omega ^\prime } <8$ and $\sqrt {\omega ^\prime } >8$ . Furthermore there is rather insufficient experimental data in pulsatile flows considering interactive influences of $\sqrt {\omega ^\prime } $ and velocity amplitude ratio, A 1. For the purpose, the measurements conducted at the start of transition of a laminar sinusoidal pulsatile pipe flow test case covering the range of 0.21<?A 1?<0.95 with $\sqrt {\omega ^\prime } <8$ are evaluated. In conformity with the literature, the start of transition corresponds to the observation of first turbulent bursts in the decelerating phase of oscillation. The measured data indicate that increase in $\sqrt {\omega ^\prime } $ is associated with an increase in Re ta,crit up to $\sqrt {\omega ^\prime } =3.85$ while a decrease in Re ta,crit is observed with an increase in $\sqrt {\omega ^\prime } $ for $\sqrt {{\omega }'} >3.85$ . Eventually updated portrait is pointing out the need for further measurements on i) the end of transition both in oscillating and pulsatile flows with the ranges of $\sqrt {\omega ^\prime } <8$ and $\sqrt {\omega ^\prime } >8$ , and ii) the interactive influences of $\sqrt {\omega ^\prime } $ and A 1 on Re ta,crit in pulsatile flows with the range of $\sqrt {\omega ^\prime } >8$ .  相似文献   

3.
We study the following nonlinear Stefan problem $$\left\{\begin{aligned}\!\!&u_t\,-\,d\Delta u = g(u) & &\quad{\rm for}\,x\,\in\,\Omega(t), t > 0, \\ & u = 0 \, {\rm and} u_t = \mu|\nabla_{x} u|^{2} &&\quad {\rm for}\,x\,\in\,\Gamma(t), t > 0, \\ &u(0, x) = u_{0}(x) &&\quad {\rm for}\,x\,\in\,\Omega_0,\end{aligned} \right.$$ where ${\Omega(t) \subset \mathbb{R}^{n}}$ ( ${n \geqq 2}$ ) is bounded by the free boundary ${\Gamma(t)}$ , with ${\Omega(0) = \Omega_0}$ μ and d are given positive constants. The initial function u 0 is positive in ${\Omega_0}$ and vanishes on ${\partial \Omega_0}$ . The class of nonlinear functions g(u) includes the standard monostable, bistable and combustion type nonlinearities. We show that the free boundary ${\Gamma(t)}$ is smooth outside the closed convex hull of ${\Omega_0}$ , and as ${t \to \infty}$ , either ${\Omega(t)}$ expands to the entire ${\mathbb{R}^n}$ , or it stays bounded. Moreover, in the former case, ${\Gamma(t)}$ converges to the unit sphere when normalized, and in the latter case, ${u \to 0}$ uniformly. When ${g(u) = au - bu^2}$ , we further prove that in the case ${\Omega(t)}$ expands to ${{\mathbb R}^n}$ , ${u \to a/b}$ as ${t \to \infty}$ , and the spreading speed of the free boundary converges to a positive constant; moreover, there exists ${\mu^* \geqq 0}$ such that ${\Omega(t)}$ expands to ${{\mathbb{R}}^n}$ exactly when ${\mu > \mu^*}$ .  相似文献   

4.
Three-dimensional Direct Numerical Simulations of statistically planar turbulent stratified flames at global equivalence ratios <???>?=?0.7 and <???>?=?1.0 have been carried out to analyse the statistical behaviour of the transport of co-variance of the fuel mass fraction Y F and mixture fraction ξ (i.e. $\widetilde{Y_F^{\prime\prime} \xi ^{\prime\prime}}={\overline {\rho Y_F^{\prime\prime} \xi^{\prime\prime}} } \Big/ {\overline \rho })$ for Reynolds Averaged Navier Stokes simulations where $\overline q $ , $\tilde{q} ={\overline {\rho q} } \big/ {\overline \rho }$ and $q^{\prime\prime}= q-\tilde{q}$ are Reynolds averaged, Favre mean and Favre fluctuation of a general quantity q with ρ being the gas density and the overbar suggesting a Reynolds averaging operation. It has been found that existing algebraic expressions may not capture the statistical behaviour of $\widetilde{Y_F^{\prime\prime} \xi^{\prime\prime}}$ with sufficient accuracy in low Damköhler number combustion and therefore, a transport equation for $\widetilde{Y_F^{\prime\prime} \xi^{\prime\prime}}$ may need to be solved. The statistical behaviours of $\widetilde{Y_F^{\prime\prime} \xi^{\prime\prime}}$ and the unclosed terms of its transport equation (i.e. the terms originating from turbulent transport T 1 , reaction rate T 4 and molecular dissipation $\left( {-D_2 } \right))$ have been analysed in detail. The contribution of T 1 remains important for all cases considered here. The term T 4 acts as a major contributor in <???>?=?1.0 cases, but plays a relatively less important role in <???>?=?0.7 cases, whereas the term $\left( {-D_2 } \right)$ acts mostly as a leading order sink. Through an a-priori DNS analysis, the performances of the models for T 1 , T 4 and $\left( {-D_2 } \right)$ have been addressed in detail. A model has been identified for the turbulent transport term T 1 which satisfactorily predicts the corresponding term obtained from DNS data. The models for T 4 , which were originally proposed for high Damköhler number flames, have been modified for low Damköhler combustion. Predictions of the modified models are found to be in good agreement with T 4 obtained from DNS data. It has been found that existing algebraic models for $D_2 =2\overline {\rho D\nabla Y_F^{\prime\prime} \nabla \xi^{\prime\prime}} $ (where D is the mass diffusivity) are not sufficient for low Damköhler number combustion and therefore, a transport equation may need to be solved for the cross-scalar dissipation rate $\widetilde{\varepsilon }_{Y\xi } ={\overline {\rho D\nabla Y_F^{\prime\prime} \nabla \xi^{\prime\prime}} } \big/ {\overline \rho }$ for the closure of the $\widetilde{Y_F^{\prime\prime} \xi^{\prime\prime}}$ transport equation.  相似文献   

5.
6.
For every ${\varepsilon > 0}$ , we consider the Green’s matrix ${G_{\varepsilon}(x, y)}$ of the Stokes equations describing the motion of incompressible fluids in a bounded domain ${\Omega_{\varepsilon} \subset \mathbb{R}^d}$ , which is a family of perturbation of domains from ${\Omega\equiv \Omega_0}$ with the smooth boundary ${\partial\Omega}$ . Assuming the volume preserving property, that is, ${\mbox{vol.}\Omega_{\varepsilon} = \mbox{vol.}\Omega}$ for all ${\varepsilon > 0}$ , we give an explicit representation formula for ${\delta G(x, y) \equiv \lim_{\varepsilon\to +0}\varepsilon^{-1}(G_{\varepsilon}(x, y) - G_0(x, y))}$ in terms of the boundary integral on ${\partial \Omega}$ of ${G_0(x, y)}$ . Our result may be regarded as a classical Hadamard variational formula for the Green’s functions of the elliptic boundary value problems.  相似文献   

7.
Hydrogels of different composition based on the copolymerization of N-isopropyl acrylamide and surfmers of different chemical structure were tested in elongation using Hencky/real definitions for stress, strain, and strain rate, offering a more scientific insight into the effect of deformation on the properties. In a range between $\dot {\varepsilon }=10$ and 0.01 s $^{-1}$ , the material properties are independent of strain rate and show a very clear strain hardening with a “brittle” sudden fracture. The addition of surfmer increases the strain at break $\varepsilon _{\mathrm {H}}^{\max }$ and at the same time leads to a failure of hyperelastic models. The samples can be stretched up to Hencky strains $\varepsilon _{\mathrm {H}}^{\max }$ between 0.6 and 2.5, depending on the molecular structure, yielding linear Young’s moduli E $_{0}$ between 2,700 and 39,000 Pa. The strain-rate independence indicates an ideal rubberlike behavior and fracture in a brittle-like fashion. The resulting stress at break $\sigma _{\textrm max}$ can be correlated with $\varepsilon _{\mathrm {H}}^{\max } $ and $E_{0}$ as well as with the solid molar mass between the cross-linking points $M_{\mathrm {c}}^{\textrm {solids}} $ , derived from $E_{0}$ .  相似文献   

8.
The steady mixed convection boundary layer flows over a vertical surface adjacent to a Darcy porous medium and subject respectively to (i) a prescribed constant wall temperature, (ii) a prescribed variable heat flux, $q_\mathrm{w} =q_0 x^{-1/2}$ q w = q 0 x ? 1 / 2 , and (iii) a convective boundary condition are compared to each other in this article. It is shown that, in the characteristic plane spanned by the dimensionless flow velocity at the wall ${f}^{\prime }(0)\equiv \lambda $ f ′ ( 0 ) ≡ λ and the dimensionless wall shear stress $f^{\prime \prime }(0)\equiv S$ f ′ ′ ( 0 ) ≡ S , every solution $(\lambda , S)$ ( λ , S ) of one of these three flow problems at the same time is also a solution of the other two ones. There also turns out that with respect to the governing mixed convection and surface heat transfer parameters $\varepsilon $ ε and $\gamma $ γ , every solution $(\lambda , S)$ ( λ , S ) of the flow problem (iii) is infinitely degenerate. Specifically, to the very same flow solution $(\lambda , S)$ ( λ , S ) there corresponds a whole continuous set of values of $\varepsilon $ ε and $\gamma $ γ which satisfy the equation $S=-\gamma (1+\varepsilon -\lambda )$ S = ? γ ( 1 + ε ? λ ) . For the temperature solutions, however, the infinite degeneracy of the velocity solutions becomes lifted. These and further outstanding features of the convective problem (iii) are discussed in the article in some detail.  相似文献   

9.
In a previous paper (Dehghanpour et al., Phys Rev E 83:065302, 2011a), we showed that relative permeability of mobilized oil, $k_\mathrm{ro}$ , measured during tertiary gravity drainage, is significantly higher than that of the same oil saturation in other tests where oil is initially a continuous phase. We also showed that tertiary $k_\mathrm{ro}$ strongly correlates to both water saturation, $S_\mathrm{w}$ , water flux (water relative permeability), $k_\mathrm{rw}$ , and the change in water saturation with time, $\mathrm{d}S_\mathrm{w}/\mathrm{d}t$ . To develop a model and understanding of the enhanced oil transport, identifying which of these parameters ( $S_\mathrm{w},\,k_{\mathrm{rw}}$ , or $\mathrm{d}S_\mathrm{w}/\mathrm{d}t$ ) plays the controlling role is necessary, but in the previous experiments these could not be deconvolved. To answer the remaining question, we conduct specific three-phase displacement experiments in which $k_{\mathrm{rw}}$ is controlled by applying a fixed water influx, and $S_\mathrm{w}$ develops naturally. We obtain $k_{\mathrm{ro}}$ by using the saturation data measured in time and space. The results suggest that steady-state water influx, in contrast to transient water displacement, does not enhance $k_{\mathrm{ro}}$ . Instead, reducing water influx rate results in excess oil flow. Furthermore, according to our pore scale hydraulic conductivity calculations, viscous coupling and fluid positioning do not sufficiently explain the observed correlation between $k_{\mathrm{ro}}$ and $S_{\mathrm{w}}$ . We conclude that tertiary $k_{\mathrm{ro}}$ is controlled by the oil mobilization rate, which in turn is linked to the rate of water saturation decrease with time, $\mathrm{d}S_\mathrm{w}/\mathrm{d}t$ . Finally, we develop a simple model which relates tertiary $k_{\mathrm{ro}}$ to transient two-phase gas/water relative permeability.  相似文献   

10.
Limestone dissolution by $\hbox {CO}_2$ -rich brine induces critical changes of the pore network geometrical parameters such as the pore size distribution, the connectivity, and the tortuosity which govern the macroscopic transport properties (permeability and dispersivity) that are required to parameterize the models, simulating the injection and the fate of $\hbox {CO}_2$ . A set of four reactive core-flood experiments reproducing underground conditions ( $T = 100\,^{\circ }\hbox {C}$ and $P = 12$ MPa) has been conducted for different $\hbox {CO}_2$ partial pressures $(0.034 < P_{\mathrm{CO}_2}< 3.4\; \hbox {MPa})$ in order to study the different dissolution regimes. X-ray microtomographic images have been used to characterize the changes in the structural properties from pore scale to Darcy scale, while time-resolved pressure loss and chemical fluxes enabled the determination of the sample-scale change in porosity and permeability. The results show the growth of localized dissolution features associated with high permeability increase for the highest $P_{\mathrm{CO}_2}$ , whereas dissolution tends to be more homogeneously distributed for lower values of $P_{\mathrm{CO}_2}$ . For the latter, the higher the $P_{\mathrm{CO}_2}$ , the more the dissolution patterns display ramified structures and permeability increase. For the lowest value of $P_{\mathrm{CO}_2}$ , the preferential dissolution of the calcite cement associated with the low dissolution kinetics triggers the transport that may locally accumulate and form a microporous material that alters permeability and produces an anti-correlated porosity–permeability relationship. The combined analysis of the pore network geometry and the macroscopic measurements shows that $P_{\mathrm{CO}_2}$ regulates the tortuosity change during dissolution. Conversely, the increase of the exponent value of the observed power law permeability–porosity trend while $P_{\mathrm{CO}_2}$ increases, which appears to be strongly linked to the increase of the effective hydraulic diameter, depends on the initial rock structure.  相似文献   

11.
Turbulent mixing generated by shock-driven acceleration of a perturbed interface is simulated using a new multi-component Reynolds-averaged Navier–Stokes (RANS) model closed with a two-equation $K$ $\epsilon $ model. The model is implemented in a hydrodynamics code using a third-order weighted essentially non-oscillatory finite-difference method for the advection terms and a second-order central difference method for the gradients in the source and diffusion terms. In the present reshocked Richtmyer–Meshkov instability and mixing study, an incident shock with Mach number $M\!a_{\mathrm{s}}=1.20$ is generated in air and progresses into a sulfur hexafluoride test section. The time evolution of the predicted mixing layer widths corresponding to six shock tube test section lengths are compared with experimental measurements and three-dimensional multi-mode numerical simulations. The mixing layer widths are also compared with the analytical self-similar power-law solution of the simplified model equations prior to reshock. A set of model coefficients and initial conditions specific to these six experiments is established, for which the widths before and after reshock agree very well with experimental and numerical simulation data. A second set of general coefficients that accommodates a broader range of incident shock Mach numbers, Atwood numbers, and test section lengths is also established by incorporating additional experimental data for $M\!a_{\mathrm{s}}=1.24$ , $1.50$ , and $1.98$ with $At=0.67$ and $M\!a_{\mathrm{s}}=1.45$ with $At=-0.67$ and previous RANS modeling. Terms in the budgets of the turbulent kinetic energy and dissipation rate equations are examined to evaluate the relative importance of turbulence production, dissipation and diffusion mechanisms during mixing. Convergence results for the mixing layer widths, mean fields, and turbulent fields under grid refinement are presented for each of the $M\!a_{\mathrm{s}}=1.20$ cases.  相似文献   

12.
In this paper, we consider the Cauchy problem for a nonlinear parabolic system ${u^\epsilon_t - \Delta u^\epsilon + u^\epsilon \cdot \nabla u^\epsilon + \frac{1}{2}u^\epsilon\, {\rm div}\, u^\epsilon - \frac{1}{\epsilon}\nabla\, {\rm div}\, u^\epsilon = 0}$ in ${\mathbb {R}^3 \times (0,\infty)}$ with initial data in Lebesgue spaces ${L^2(\mathbb {R}^3)}$ or ${L^3(\mathbb {R}^3)}$ . We analyze the convergence of its solutions to a solution of the incompressible Navier?CStokes system as ${\epsilon \to 0}$ .  相似文献   

13.
C. Knock  N. Davies 《Shock Waves》2013,23(4):337-343
Comparisons of explosives are often carried out using TNT equivalency which is based on data for spherical charges, despite the fact that many explosive charges are not spherical in shape, but cylindrical. Previous work has shown that it is possible to predict the over pressure and impulse from the curved surface of cylindrical charges using simple empirical formulae for the case when the length-to-diameter (L/D) ratio is greater or equal to 2/1. In this paper, by examining data for all length-to-diameter ratios, it is shown that it is possible to predict the peak over pressure, P, for any length-to-diameter ratio from the curved side of a bare cylindrical charge of explosive using the equation $P=K_PM(L/D)^{1/3}/R^3$ , where M is the mass of explosive, R the distance from the charge and $ K_P$ is an explosive-dependent constant. Further out where the cylindrical blast wave ‘heals’ into a spherical one, the more complex equation $P=C_1(Z^{\prime \prime })^{-3}+C_2(Z^{\prime \prime })^{-2}+C_3(Z^{\prime \prime })^{-1}$ gives a better fit to experimental data, where $ Z^{\prime \prime } = M^{1/3}(L/D)^{1/9}/D$ and $C_1,\, C_2 $ and $ C_3$ are explosive-dependent constants. The impulse is found to be independent of the L/D ratio.  相似文献   

14.
Within the Landau–de Gennes theory, the order parameter describing a biaxial nematic liquid crystal assigns a symmetric traceless 3 × 3 matrix Q with three distinct eigenvalues to every point of the region Ω occupied by the system. In the constrained case of matrices Q with constant eigenvalues, the order parameter space is diffeomorphic to the eightfold quotient ${\mathbb{S}^3/\mathcal{H}}$ of the 3-sphere ${\mathbb{S}^3}$ , where ${\mathcal{H}}$ is the quaternion group, and a configuration of a biaxial nematic liquid crystal is described by a map from Ω to ${\mathbb{S}^3/\mathcal{H}}$ . We express the (simplest form of the) Landau–de Gennes elastic free-energy density as a density defined on maps ${q: \Omega \to \mathbb{S}^3}$ , whose functional dependence is restricted by the requirements that (1) it is well defined on the class of configuration maps from Ω to ${\mathbb{S}^3/\mathcal{H}}$ (residual symmetry) and (2) it is independent of arbitrary superposed rigid rotations (frame indifference). As an application of this representation, we then discuss some properties of the corresponding energy functional, including coercivity, lower semicontinuity and strong density of smooth maps. Other invariance properties are also considered. In the discussion, we take advantage of the identification of ${\mathbb{S}^3}$ with the Lie group of unit quaternions ${Sp(1) \cong SU(2)}$ and of the relations between quaternions and rotations in ${\mathbb{R}^3}$ and ${\mathbb{R}^4}$ .  相似文献   

15.
In this paper, we prove unique existence of solutions to the generalized resolvent problem of the Stokes operator with first order boundary condition in a general domain ${\Omega}$ of the N-dimensional Eulidean space ${\mathbb{R}^N, N \geq 2}$ . This type of problem arises in the mathematical study of the flow of a viscous incompressible one-phase fluid with free surface. Moreover, we prove uniform estimates of solutions with respect to resolvent parameter ${\lambda}$ varying in a sector ${\Sigma_{\sigma, \lambda_0} = \{\lambda \in \mathbb{C} \mid |\arg \lambda| < \pi-\sigma, \enskip |\lambda| \geq \lambda_0\}}$ , where ${0 < \sigma < \pi/2}$ and ${\lambda_0 \geq 1}$ . The essential assumption of this paper is the existence of a unique solution to a suitable weak Dirichlet problem, namely it is assumed the unique existence of solution ${p \in \hat{W}^1_{q, \Gamma}(\Omega)}$ to the variational problem: ${(\nabla p, \nabla \varphi) = (f, \nabla \varphi)}$ for any ${\varphi \in \hat W^1_{q', \Gamma}(\Omega)}$ . Here, ${1 < q < \infty, q' = q/(q-1), \hat W^1_{q, \Gamma}(\Omega)}$ is the closure of ${W^1_{q, \Gamma}(\Omega) = \{ p \in W^1_q(\Omega) \mid p|_\Gamma = 0\}}$ by the semi-norm ${\|\nabla \cdot \|_{L_q(\Omega)}}$ , and ${\Gamma}$ is the boundary of ${\Omega}$ . In fact, we show that the unique solvability of such a Dirichlet problem is necessary for the unique existence of a solution to the resolvent problem with uniform estimate with respect to resolvent parameter varying in ${(\lambda_0, \infty)}$ . Our assumption is satisfied for any ${q \in (1, \infty)}$ by the following domains: whole space, half space, layer, bounded domains, exterior domains, perturbed half space, perturbed layer, but for a general domain, we do not know any result about the unique existence of solutions to the weak Dirichlet problem except for q =  2.  相似文献   

16.
Let ${\mathcal{S}}$ be a semigroup acting on a topological space M. We define attractors for the action of ${\mathcal{S}}$ on M. This concept depends on a family ${\mathcal{F}}$ of subsets of ${\mathcal{S}}$ . For certain semigroups and families it recovers the concept of attractors for flows or semiflows. We define and study the complementary repeller of an attractor. We also characterize the set of chain recurrent points in terms of attractors.  相似文献   

17.
This paper investigates the asymptotic behavior of the solutions of the Fisher-KPP equation in a heterogeneous medium, $$\partial_t u = \partial_{xx} u + f(x,u),$$ associated with a compactly supported initial datum. A typical nonlinearity we consider is ${f(x,u) = \mu_0 (\phi (x)) u(1-u)}$ , where??? 0 is a 1-periodic function and ${\phi}$ is a ${\mathcal{C}^1}$ increasing function that satisfies ${\lim_{x \to+\infty}\phi (x) = +\infty}$ and ${\lim_{x \to +\infty}\phi' (x) =0}$ . Although quite specific, the choice of such a reaction term is motivated by its highly heterogeneous nature. We exhibit two different behaviors for u for large times, depending on the speed of the convergence of ${\phi}$ at infinity. If ${\phi}$ grows sufficiently slowly, then we prove that the spreading speed of u oscillates between two distinct values. If ${\phi}$ grows rapidly, then we compute explicitly a unique and well determined speed of propagation w ??, arising from the limiting problem of an infinite period. We give a heuristic interpretation for these two behaviors.  相似文献   

18.
In this work we use Lie symmetries to investigate monodromic points on center manifolds of a singularity of an analytic vector field ${\mathcal {X}}$ in ${\mathbb {R}}^3$ . We investigate how whether the singularity is a focus or a center, is analytically normalizable or not, and is linearizable or not is reflected in the centralizer and normalizer of ${\mathcal {X}}$ .  相似文献   

19.
The Kedem-Katchalsky equations, modified by means of symmetric transformations of Peusner thermodynamic networks, were applied to interpret the membrane transport in concentration polarization conditions. The results from the study demonstrate that the resistance coefficients counted for membrane transport of aqueous solutions of glucose through Nephrophan membrane in horizontal plane are nonlinearly dependent on mean concentration of glucose in the membrane ${(\bar{C})}$ . It was also shown that the threshold value of concentration ${(\bar{C}_{cr})}$ existed, and for ${\bar{C} > \bar{C}_{cr}}$ , the resistance coefficients depend, while for ${\bar{C} < \bar{C}_{cr}}$ , they do not depend on the membrane system configuration. Increase of mean glucose concentration in the membrane (in the range ${\bar{C} > \bar{C}_{cr})}$ causes decrease of difference between resistance coefficients of the membrane system in homogeneous conditions (solutions mechanically stirred) and in conditions with hydrodynamic instabilities (configuration B). Besides increase of mean glucose concentration in the membrane (in the range ${\bar{C} > \bar{C}_{cr})}$ causes increase of the difference between resistance coefficients for membrane system with concentration polarization without hydrodynamic instabilities (configuration A) and membrane system in homogeneous conditions.  相似文献   

20.
We consider the steady Stokes and Oseen problems in bounded and exterior domains of ${\mathbb{R}^n}$ of class C k-1,1 (n = 2, 3; k ≥ 2). We prove existence and uniqueness of a very weak solution for boundary data a in ${W^{2-k-1/q,q} (\partial\Omega)}$ . If ${\Omega}$ is of class ${C^\infty}$ , we can assume a to be a distribution on ${\partial\Omega}$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号