首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Blend membranes comprising cellulose acetate and polysulfone (CA/PSf) were prepared through a solution casting method using a different concentration of polyvinylpyrrolidone (PVP) as the pore former. Fourier transform infrared spectroscopy (ATR-FTIR) was used to investigate structural properties of membranes. Membranes morphology and its thermal properties were characterized by scanning electron microscope (SEM) and thermogravimetric analysis (TGA). The strength of membranes was studied by mechanical stability. The effect of PVP concentration on separation performance of the prepared membranes was studied. The separation performance of prepared membranes was tested by using an aqueous solution of cadmium metal complexed with humic acid. The results showed that an increase in the PVP concentration in the cast film from 0 to 3 wt% increased the thermal stability, water content (%), pure water flux, and solute rejection. SEM results showed that the pore size decreased but the number of pores increased on an increase in the PVP concentration.  相似文献   

2.
The effects of casting conditions, including casting solution (composition and temperature) and coagulation conditions (pre‐evaporation time, temperature and concentration of coagulation bath) on the structure and performance of acrylonitrile–maleic anhydride copolymer membrane have been investigated. The results showed that the water flux decreased gradually while the rejection of bovine serum albumin (BSA) decreased as the concentration of copolymer increased. When the total solid concentration was kept unchanged, the water flux increased with additive polyvinylpyrrolidone (PVP), the rejection did not decrease until the ratio of PVP/copolymer was 60%. When the content of copolymer in the casting solution was kept constant, the water flux decreased rapidly while the rejection increased a little (compared with the case of no additive) as the ratio of PVP/copolymer increased. As to the temperature of casting solution, the water flux had a maximum at 45 °C and the rejection had a maximum and a minimum at 45 and 55 °C, respectively. The water flux had a maximum value when the pre‐evaporation time was 40 sec. The rejection of BSA was almost unchanged when the pre‐evaporation time was less than 40 sec. and then decreased and reached a minimum value at 60 sec. As the temperature of coagulation bath increased, the water flux reached a maximum at 35 °C while the rejection increased uniformly. With increasing the concentration of DMSO in the coagulation bath, the water flux decreased gradually and got to a minimum at 50 wt% as the concentration of dimethylsulfoxide in the coagulation bath increased, but no apparent effect on the rejection was observed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
In the current research, nanocomposite polyethersulfone-based nanofiltration membranes were prepared by composite PAA-co-PMMA-g-ZnA nanoparticles. NF membranes were fabricated by phase inversion through casting solution technique. The effect of composite PAA-co-PMMA-g-ZnA nanoparticles concentration into the casting solution on physicochemical characteristics of membrane was studied. Scanning optical microscopy images showed uniform particle distribution for the membranes. Scanning electron microscopy images also demonstrated that membrane porosity was enhanced by increase in nanoparticles content ratio. The membrane surface 3D images showed smooth surface for the membranes filled with 0.05, 0.1 and 0.5 wt% nanoparticles. The contact angle results exhibited that membrane hydrophilicity was improved significantly by using of NPs in membrane matrix. The contact angle was decreased from 65.38° for PES membrane to 48.33° for membrane filled with 0.5 wt% nanoparticles. The water permeability was reduced initially by addition of 0.05 wt% nanoparticles into the casting solution and then increased by more nanoparticles loading rate (0.1 wt%). The water permeability was decreased again by more increase in nanoparticles loading range from 0.5 to 1 wt%. The salt rejection was improved strongly from 68.4 % for PES to 88.58 % for membrane filled with 0.5 wt% nanoparticles. The membranes mechanical strength was increased sharply from 2835.5 to 3337.3 kPa with addition of nanoparticles into the casting solution.  相似文献   

4.
In this study, styrene–maleic anhydride (SMA) copolymer was modified by ring opening reaction of its anhydride groups with diethanolamine (DEA). The modified SMA copolymer was blended in different concentrations (2.5, 4 and 5.5 %) with Polyethersulfone (PES) to improve the hydrophilicity of PES membranes and the corresponding blend membrane was prepared through phase inversion. The influence of SMA copolymer on morphology, mechanical properties, water flux, rejection and anti-fouling properties of blend membrane were investigated. The modified SMA and their composition were confirmed by FT-IR and 1HNMR techniques. The asymmetric structure of membrane was revealed by SEM. The water flux and contact angle results show that the hydrophilicity of membrane surface was increased by addition of SMA copolymer. The better anti-fouling properties of the PES/modified SMA blend membranes in comparison with the PES membrane also confirmed that the hydrophilicity of blend membrane enhances.  相似文献   

5.
Here, polyvinylidene fluoride (PVDF) membranes were fabricated via non-solvent induced phase separation (NIPS) using dopamine (DA) and polyethyleneimine (PEI) as the hydrophilic additives, which has a loose surface and somewhat improved hydrophilicity. Then nanofiltration (NF)-like thin-film composite forward osmosis (TFC FO) membrane with a loose polyamide (PA) active layer on the blend membrane was synthesized via the interfacial polymerization. The as-prepared NF-like TFC FO membrane exhibited a high water flux (Jw) of 29.98 L m−2 h−1 and a much low specific salt flux (Js/Jw) of 0.018 g/L, when 0.6 M NaCl was used as draw solution (DS). It had a superior rejection of malachite green (99.6% ± 0.1%) and a low rejection of NaCl (27.4% ± 4.2%), when filtrated malachite green/NaCl mixture solution in active layer-facing draw solution (AL-FS) mode. The results provide new insights on the design and preparation of FO membranes of selective separation for dyes from salty water.  相似文献   

6.
Chitosan (CS) with good hydrophilicity and charged property was used to modify graphene oxide (GO), the obtained GO‐CS was used as a novel modifier to fabricate thin film composite forward osmosis (FO) membranes. The results revealed that the amino groups on CS reacted with carboxyl groups on GO, and the lamellar structure of the GO nanosheets was peeled off by CS, resulting in the reducing of their thicknesses. The GO‐CS improved the hydrophilicity of polyethersulfone (PES) substrate, and their contact angles decreased to 64° with the addition of GO‐CS in the substrate. GO‐CS also increased the porosity of the substrate and surface roughness of FO membrane, thereby optimizing the water flux and reverse salt flux of FO membrane. The average water flux of the FO membrane reached the optimal flux of 21.34 L/(m2 h) when GO‐CS addition was 0.5 wt%, and further addition of GO‐CS to the substrate would decrease the water flux of FO membrane, and the reverse salt flux also decreased to the lowest value of 2.26 g/(m2 h). However, the salt rejection of the membrane increased from 91.4% to 95.1% when GO‐CS addition increased from 0.5 to 1.0 wt% under FO mode using 1 mol/L sodium chloride (NaCl) solution as draw solution (DS). In addition, high osmotic pressure favored water permeation, and at the same concentration of DS, magnesium chloride (MgCl2) exhibited better properties than NaCl. These results all suggested that GO‐CS was a good modifier to fabricate FO membrane, and MgCl2 was a good DS candidate.  相似文献   

7.
In this study, effects of methanol, ethanol and 1‐propanol as variable nonsolvent additives (NSAs) on the morphology and performance of flat sheet asymmetric polyethersulfone (PES) membranes were investigated. The membranes were prepared from PES/Polyvinylpyrrolidone (PVP)/N‐methyl‐2‐pyrrolidone (NMP) system via phase inversion. The obtained results indicate that with the addition of NSAs to the casting solution, the membrane morphology changes slowly from macrovoids to an asymmetric structure with finger‐like pores. By increasing the NSAs concentrations in the casting solution and decreasing their polarities, the membrane structure changes from finger‐like pores to sponge. The AFM and SEM images reveal that addition of NSA to the casting solution decreases the pore size of the prepared membranes and reduces the pure water flux and BSA solution flux, while increasing the protein rejection. Surface analysis of the membranes showed that mean pore size and surface porosity of the prepared membranes with NSAs in the casting solution are smaller compared with those of the membrane prepared with no NSA. Pure water flux and BSA solution flux through the membranes decrease and BSA rejection increases with increase in the concentration of NSAs and decrease in their polarity. Finally, it can be concluded that the Tg values of the PES membranes increase by addition of NSAs to the casting solution. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Calcium alginate-chitosan (CA/CS) blended membranes were prepared and crosslinked with maleic anhydride (MA) for the pervaporation (PV) separation of ethylene glycol (EG)/water mixtures at 30°C. The structure and properties of blend membranes were studied with the aid of FTIR, XRD, TGA, and SEM. The effect of experimental parameters such as feed composition, membrane thickness, and permeate pressure on separation performance of the MA crosslinked membranes were determined in terms of flux, selectivity, and pervaporation separation index. Sorption studies were carried out to evaluate the extent of interaction and degree of swelling of the blend membranes in pure, as well as in binary mixtures. The experimental results suggested that the crosslinked membrane (M-CA/CS) exhibited a good selectivity of 302 at a normalized flux of 0.38 kg.m? 2.h? 1.10 μ m at 30°C for 96.88 wt% EG aqueous solution.  相似文献   

9.
Large sheet asymmetric polyethersulfone (PES) ultrafiltration membranes were prepared via phase inversion process in a continuous conveyor system with addition of PVP to the casting solution. Dimethylacetamide (DMAc) and mixture of water and isopropyl alcohol (70/30 v%) were used as solvent and non‐solvent respectively. The prepared membrane was 0.96 m wide and 3 m long. The pieces of the membrane were selected randomly for characterization in terms of performance using cross flow filtration for milk concentration, image analysis, scanning electron microscopy (SEM), and cleaning procedures. It was found that the prepared membrane has high porosity and high water flux during milk filtration. In addition, cleaning experiments indicated that NaOH/HCl/NaOH sequence is an effective procedure for cleaning the fouled membrane during milk concentration. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Polyacrylonitrile (PAN) membrane is known as one of the hydrophilic membranes for ultrafiltration. However, the membrane has been preventing from the versatile applications, because the semi-crystalline PAN membranes are so brittle that cannot reuse once the membrane has been dried. The effect of crystalline domains in asymmetric polyacrylonitrile membranes is investigated, when the membranes are annealed in hot water and when the membranes are dried. Asymmetric polyacrylonitrile membranes were prepared via phase inversion process in a water bath and the effect of additive, PVP to the casting solution on the morphology and the water flux and the rejection were investigated. When the membranes were annealed in hot water (80 °C), the size of pores have been reduced and the water flux also decreased. Using wide angle X-ray scattering (WAXS), the effect of absorbed water on PAN membranes was studied. The absorption of water in PAN membranes mainly occurred through amorphous phase like a plasticizer, and induced the change of crystalline structure. The size of crystallite and the degree of crystallinity have changed when the membrane were annealed in the hot water. When the asymmetric PAN membranes were dried, the moisture also plays a crucial role in transforming the crystalline structures. The kinetics of drying strongly influences the size of crystallite as well as the crystallinity.  相似文献   

11.
Polyvinylidene fluoride (PVDF) membranes were prepared via the phase inversion method from casting solutions containing PVDF, dimethylformamide (DMF), and polyvinylpyrrolidone (PVP) as pore former. PVP was used in the casting solution in a range of 0–5 wt % and extracted. The effect on membranes of using PVP in the casting process was analyzed by X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, viscosity, and water permeability techniques. With an increase of PVP from 0 to 5 wt %, the PVDF casting solution viscosities increased from 858 to 1148 cP; the resulting PVDF membrane thickness increased; and the crystallinity of PVDF membranes decreased from 40.0 to 33.3%, which indicates that the addition of PVP inhibits the degree of crystallization in the PVDF membranes. SEM results revealed the shape and size of macropores in the membranes; these macropores changed after PVP addition to the casting solutions. The impact of structural changes on free-volume properties was evaluated using positron annihilation lifetime spectroscopy (PALS) studies. PALS analysis indicated no effect on the average radius (~3.4 Å) of membrane free-volume holes from the addition of PVP to the casting solution. However, the percentage of o-Ps pick-off annihilation intensity, I3, increased from 1.7 to 5.1% with increased PVP content. Further, increasing the PVP content from 0.5 to 5% resulted in an increased final pure water permeability flux. For instance, the 210 min flux for a 14% PVDF + 0.5% PVP membrane was found to be 3.3 times greater than a control membrane having the same PVDF concentration. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 589–598  相似文献   

12.
In this study, temperature-sensitive membranes were prepared by phase transition of the mixture of the temperature-sensitive poly(N-isopropylacrylamides) (PNIPAAM) microgels and poly(vinylidene fluoride). The results of Fourier transformed infrared spectrometer, X-ray photoelectron spectroscopy, elemental analysis, and scanning electron microscope photographs indicate that the PNIPAAM microgels are distributed more in the inner membrane than on the surface. The scanning electron microscope photographs reveal the blend membranes having porous surfaces with nanometer sizes and porous cross-sections with micrometer sizes. The addition of the PNIPAAM microgels is found to improve the porosity, the pore size, water flux, as well as to enhance the hydrophilicity and anti-fouling property of the blend membranes. The blend membrane shows temperature-sensitive permeability and protein rejection with the most dramatic change at around 32 °C which is the lower critical solution temperature of PNIPAAM, when water or bovine serum albumin solution flow through. Specifically, below 32 °C, the blend membrane shows a high protein rejection ratio which decreases with increasing temperature and a low water flux which increases with increasing temperature; above 32 °C, the blend membrane shows a low protein rejection ratio which decreases with increasing temperature and a high water flux which increases with increasing temperature.  相似文献   

13.
Cellulose acetate (CA) microfiltration membranes were prepared by two‐stage vapor‐induced phase separation (VIPS) and immersion precipitation. To improve the hydrophilicity and permeability of the membranes at low operating pressures, plasma‐treated natural zeolite was incorporated into the membranes. A response surface methodology based on the three‐level central composite design (CCD) was used to model and optimize the casting solution composition of the membranes with the aim of maximizing membranes permeability. Three independent variables for CCD optimization were concentration of CA, polyvinylpyrrolidone (PVP) pore former, and plasma‐treated zeolite additive. The results showed that a second‐order polynomial model could properly predict the response (pure water flux) at any input variable values with a satisfying determination coefficient (R2) of 0.954. Also, analysis of variance (ANOVA) confirmed the adequacy of the obtained model. The permeability of the prepared membranes increased by increasing zeolite loading from 0.10 to 0.50 wt%, which was related to the membranes morphology and porosity and confirmed by scanning electron microscopy (SEM) images. Pure water flux of the membranes decreased by increasing CA concentration while an optimum PVP amount was required to reach the maximum flux. The result of the bubble point analysis well matched with surface SEM images of the membranes and permeability trend predicted by CCD model. Also, the prepared CA membranes with different compositions showed no toxicity for mouse L929 fibroblast, which indicated their nontoxic and biocompatible nature.  相似文献   

14.
This paper reports the characterization of new synthesized chiral polymeric membranes, based on a cellulose acetate propionate polymer. The flux and permselective properties of the membrane were studied using 50 % ethanol solution of (R,S)-trans-stilbene oxide as feed solution. Scanning electron microscopy revealed the asymmetric structure of these membranes. The roughness of the surface was measured by atomic force microscopy. The resolution of over 97 % enantiomeric excess was achieved when the enantioselective membrane was prepared with 18 wt% cellulose acetate and 8 wt% cellulose acetate propionate in the casting solution of dimethyl formamide/N-methyl-2-pyrrolidone/acetone, at 20 °C and 55 % humidity, and a water bath at 10 °C for the gelation of the membrane. The operating pressure and the feed concentration of the trans-stilbene oxide were 275.57, 345.19, and 413.84 kPa and 2.6 mM, respectively.  相似文献   

15.
陈文清 《高分子科学》2010,28(4):527-535
<正>Polyvinylidene fluoride(PVDF) hollow fiber membranes prepared from spinning solutions with different polyvinyl pyrrolidone(PVP) contents(1%and 5%) at different extrusion rates were obtained by wet/dry phase process keeping all other spinning parameters constant.In spinning these PVDF hollow fibers,dimethylacetamide(DMAc) and PVP were used as a solvent and an additive,respectively.Water was used as the inner coagulant.Dimethylformamide(DMF) and water(30/70) were used as the external coagulant.The performances of membranes were characterized in terms of water flux,solute rejection for the wet membranes.The structure and morphology of PVDF hollow fiber were examined by BET adsorption,dry/wet weight method and scanning electron microscopy(SEM).It is found that the increase in PVP content and extrusion rate of spinning solution can result in the increase of water flux and decrease of solute rejection.The improvements of interconnected porous structure and pore size are induced by shear-thinning behavior of spinning solution at high extrusion rates,which could result in the increase of water flux of hollow fiber membranes.The increase of extrusion rate also leads to the increase of membrane thickness due to the recovery effect of elastic property of polymer chains.  相似文献   

16.
《先进技术聚合物》2018,29(9):2420-2439
Polyethersulfone (PES) microfiltration membranes were fabricated by a combined vapor‐induced phase separation and wet phase separation method. The effect of different non‐solvent additives in casting solution, ie, acetone, diethylene glycol, and triethylene glycol (TEG) was investigated on the membrane morphology and performance. Scanning electron microscopy images showed that the membrane containing TEG additive had a skinless symmetric structure with well interconnected pores. The permeability of the PES/PVP/TEG membranes increased by decreasing PES and TEG and increasing PVP concentration. Bacteria removal performance of the prepared membranes was investigated by the filtration of E. coli suspension. The membrane made from casting solution containing 15 wt.% PES, 16 wt.% PVP, and 20wt.% TEG showed a pure water flux of ~ 5370 L/m2 h at low transmembrane pressure of 10 psi and 100% bacteria removal efficiency. The results of in vitro cytotoxicity test and cell viability assay showed non‐toxic nature of the prepared membranes.  相似文献   

17.
Hydrous manganese dioxide (HMO) nanoparticles incorporated cellulose acetate (CA) composite ultrafiltration (UF) membranes are prepared with the aim of improving the water permeation and BSA contaminant removal. The HMO nanoparticles are synthesized from manganese ion and characterized by FT‐IR, XRD, and FESEM. The effect of variation of HMO on CA membranes is probed using FT‐IR, EDAX, contact angle, SEM, and AFM analysis to demonstrate their chemical functionality, hydrophilicity, and morphology. CA/HMO membranes are showing the enhancement in pure water flux (PWF), water uptake, porosity, hydrophilicity, fouling resistance, BSA rejection, and flux recovery ratio (FRR). CA‐1 membrane displayed higher PWF (143.6 Lm2h?1), BSA rejection (95.9%), irreversible fouling (93.3%), and FRR (93.3%). Overall results confirmed that the CA/HMO nanocomposite UF membranes overcome the bottlenecks and shows potential for water treatment applications.  相似文献   

18.
Modification of poly(phthalazinone ether sulfone ketone) (PPESK) by sulfonation with concentrated or fuming sulfuric acid was carried out in order to prepare thermally stable polymers as membrane materials having increased hydrophilicity and potentially improved fouling-resistance. The sulfonated poly(phthalazinone ether sulfone ketone)s (SPPESK) were fabricated into ultrafiltration (UF) and nanofiltration (NF) asymmetric membranes. The effects of SPPESK concentration and the type and concentration of additives in the casting solution on membrane permeation flux and rejection were evaluated by using an orthogonal array experimental design in the separation of polyethyleneglycol (PEG12000 and PEG2000) and Clayton Yellow (CY, MW 695). One UF membrane formulation type had a 98% rejection rate for PEG12000 and a high pure water flux of 867 kg m−2 h−1. All the NF membranes made in the present study had rejections of ≥96%, and one had a high water flux of 160 kg m−2 h−1. Several of the NF membrane formulation types had ∼90% rejection for CY. When the membranes were operated at higher temperatures (80°C), the rejection rates declined slightly and pure water flux was increased more than two-fold. Rejection and flux values returned to previous values when the membranes were operated at room temperature again. Mono- and divalent salt rejections and fluxes were studied on an additional NF membrane set.  相似文献   

19.
采用木质素磺酸钠作为亲水添加剂,通过浸没沉淀相转化法制备了木质素磺酸钠共混改性聚砜膜,以改善聚砜膜的亲水性,并用作正渗透膜的支撑层,以降低内浓差极化效应.利用扫描电子显微镜、衰减全反射傅里叶变换红外光谱仪、水接触角仪等研究了不同木质素磺酸钠添加量对聚砜膜的结构和表面性质的影响.结果表明,添加木质素磺酸钠后,聚砜膜的指状孔变得规整且狭长.水接触角实验证实添加木质素磺酸钠能改善聚砜膜的亲水性,当木质素磺酸钠含量为0.4 wt%时,聚砜膜的表面水接触角可降低至65°.正/反渗透测试装置分别用于表征正渗透膜的传质性质和结构参数.结果表明,以0.4 wt%木质素磺酸钠改性聚砜膜为支撑层的正渗透膜的水渗透性能(A=3.12×10~(-5) LMH×Pa~(-1))优于纯聚砜基底正渗透膜(0.76×10~(-5)LMH×Pa~(-1)),而且前者的结构参数(S=2010mm)远小于后者(3450mm),说明木质素磺酸钠改性聚砜膜有效弱化了正渗透膜的内浓差极化效应.  相似文献   

20.
A thermal stable composite membrane was prepared by interfacial polymerization of piperazine (PIP) and trimesoyl chloride (TMC) on poly(phthalazinone ether amide) (PPEA) ultrafiltration membrane. The effect of reaction parameters on the performance of composite membranes was studied and optimized. The surface morphologies of the composite membrane and the substrate were observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The rejection of optimized composite membrane for dyes Congo red (CGR) and Acid chrome blue K (ACBK), the molecular weight (MW) of which is over 400, was over 99.2%, with a flux at about 180 L m−2 h−1. While the rejection for NaCl was only 18.2% with a flux over 270 L m−2 h−1, when tested at 1.0 MPa 60 °C. The composite membrane was applied in the desalination-purification experiment of dye ACBK and NaCl mixed solution. The flux of the membrane increased obviously as the operation pressure and/or temperature increased, while the rejection for dye was constant and kept over 99.3%. The purification experiments were accomplished effectively at 1.0 MPa, 80 °C. Only after five rounds of desalination-concentration experiment, about 160 min, the salt mixed in dye solution was fully removed. The initial flux of the eighth cycle was about 254 L m−2 h−1, which was only 20 L m−2 h−1 lower than that of the first round. The rejection of the membrane was constant and kept over 99.3% through out the eight cycles of purification experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号