首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The bonding structure of carbon films prepared by pulsed laser deposition is determined by the plasma properties especially the change of the kinetic energy. Using double laser pulses the ablation process and the characteristics of the generated plasma can be controlled by the setting of the delay between the pulses. In our experiments, amorphous carbon films have been deposited in vacuum onto Si substrates by double pulses from a Ti:sapphire laser (180 fs, λ = 800 nm, at 1 kHz) and a KrF laser system (500 fs, λ = 248 nm, at 5 Hz). The intensities have been varied in the range of 3.4 × 1012 to 2 × 1013 W/cm2. The morphology and the main properties of the thin layers were investigated as a function of the time delay between the two ablating pulses (0-116.8 ps) and as a function of the irradiated area on the target surface. Atomic force microscopy, spectroscopic ellipsometry and Raman-spectroscopy were used to characterize the films. It was demonstrated that the change of the delay and the spot size results in the modification of the thickness distribution of the layers, and the carbon sp2/sp3 bonding ratio.  相似文献   

2.
Amorphous carbon is an interesting material and its properties can be varied by tuning its diamond-like (sp3) fractions. The diamond-like fractions in an amorphous carbon films depends on the kinetic energy of the deposited carbon ions. Porous amorphous carbon thin films were deposited onto silicon substrates at room temperature in a vacuum chamber by Glancing Angle Pulsed Laser Deposition (GAPLD). Krypton fluoride (248 nm) laser pulses with duration of 15 ns and intensities of 1-20 GW/cm2 were used. In GAPLD, the angles between the substrate normal and the trajectory of the incident deposition flux are set to be almost 90°. Porous thin films consisting of carbon nanowires with diameters less than 100 nm were formed due to a self-shadowing effect. The kinetic energies of the deposited ions, the deposition rate of the films and the size of the nanowires were investigated. The sp3 fraction of the porous carbon films produced at intensity around 20 GW/cm2 were estimated from their Raman spectra.  相似文献   

3.
Diamond-like carbon (DLC) films were deposited on Si (1 0 0) substrate using a low energy (219 J) repetitive (1 Hz) miniature plasma focus device. DLC thin film samples were deposited using 10, 20, 50, 100 and 200 focus shots with hydrogen as filling gas at 0.25 mbar. The deposited samples were analyzed by XRD, Raman Spectroscopy, SEM and XPS. XRD results exhibited the diffraction peaks related to SiO2, carbon and SiC. Raman studies verified the formation amorphous carbon with D and G peaks. Corresponding variation in the line width (FWHM) of the D and G positions along with change in intensity ratio (ID/IG) in DLC films was investigated as a function of number of deposition shots. XPS confirmed the formation sp2 (graphite like) and sp3 (diamond like) carbon. The cross-sectional SEM images establish the 220 W repetitive miniature plasma focus device as the high deposition rate facility for DLC with average deposition rate of about 250 nm/min.  相似文献   

4.
It is demonstrated that a liquid hydrocarbon precursor, cyclohexane, is appropriate for laser-induced carbon deposition. Amorphous hydrogenated carbon films (a-C:H) were deposited by KrF excimer laser irradiation of single-crystal silicon surface immersed under cyclohexane. The technique is simple and easy to operate. IR absorption spectra of the deposited films confirmed the presence of carbon in the diamond phase. Raman and XPS studies showed diamond-like character of the deposited films. Moreover, these two studies provided strong evidence that laser fluence played an important role in the formation of DLC bondings and the quality of the deposited films. Received: 15 September 1998 / Accepted: 5 January 1999 / Published online: 5 May 1999  相似文献   

5.
We obtained AlN thin films by pulsed laser deposition (PLD) from a polycrystalline AlN target using a pulsed KrF* excimer laser source (248 nm, 25 ns, intensity of ∼4 × 108 W/cm2, repetition rate 3 Hz, 10 J/cm2 laser fluence). The target-Si substrate distance was 5 cm. Films were grown either in vacuum (10−4 Pa residual pressure) or in nitrogen at a dynamic pressure of 0.1 and 10 Pa, using a total of 20,000 subsequent pulses. The films structure was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and spectral ellipsometry (SE). Our TEM and XRD studies showed a strong dependence of the film structure on the nitrogen content in the ambient gas. The films deposited in vacuum exhibited a high quality polycrystalline structure with a hexagonal phase. The crystallite growth proceeds along the c-axis, perpendicular to the substrate surface, resulting in a columnar and strongly textured structure. The films grown at low nitrogen pressure (0.1 Pa) were amorphous as seen by TEM and XRD, but SE data analysis revealed ∼1.7 vol.% crystallites embedded in the amorphous AlN matrix. Increasing the nitrogen pressure to 10 Pa promotes the formation of cubic (≤10 nm) crystallites as seen by TEM but their density was still low to be detected by XRD. SE data analysis confirmed the results obtained from the TEM and XRD observations.  相似文献   

6.
The structure and optical properties of AlN thin films doped with Cr atoms were studied by X-ray diffractometry, Fourier transform infrared spectroscopy and spectroscopic ellipsometry analyses. The films were synthesized by pulsed laser deposition from an AlN:Cr (10% Cr) target onto Si(1 0 0) wafers in vacuum at residual pressure of 10−3 Pa or in nitrogen at a dynamic pressure of 0.1 Pa. The study of the XRD patterns revealed that both phases co-existed in the synthesized films and that the amorphous one was prevalent. Two different amorphous matrices, i.e. two types of chemical bond arrangements, were found in films deposited at 0.1 Pa N2. By difference, deposition in vacuum resulted in the coexistence of hexagonal and cubic crystallites embedded into an amorphous matrix. The introduction of Cr atoms into the AlN lattice causes a broadening of the IR spectrum along with the shift toward higher wavenumbers of the characteristic Al-N bands at 2351 cm−1 and 665 cm−1, respectively. This was related to the generation of a compressive stress inside films. In comparison to the optical constants of pure AlN films, the synthesized AlN:Cr films exhibited a smaller refractive index and showed a weak absorption throughout the 300-800 nm spectral region, characteristic to amorphous AlN structure.  相似文献   

7.
The growth process of silver thin films deposited by pulsed laser ablation in a controlled inert gas atmosphere was investigated. A pure silver target was ablated in Ar atmosphere, at pressures ranging between 10 and 100 Pa, higher than usually adopted for thin film deposition, at different numbers of laser shots. All of the other experimental conditions such as the laser (KrF, wavelength 248 nm), the fluence of 2.0 J cm−2, the target to substrate distance of 35 mm, and the temperature (295 K) of the substrates were kept fixed. The morphological properties of the films were investigated by transmission and scanning electron microscopies (TEM, SEM). Film formation results from coalescence on the substrate of near-spherical silver clusters landing as isolated particles with size in the few nanometers range. From a visual inspection of TEM pictures of the films deposited under different conditions, well-separated stages of film growth are identified.  相似文献   

8.
Diamond-like carbon (DLC)–MoS2 composite thin films were synthesized using a biased target ion beam deposition (BTIBD) technique in which MoS2 was produced by sputtering a MoS2 target using Ar ion beams while DLC was deposited by ion beam deposition with CH4 gas as carbon source. The structure and properties of the synthesized films were characterized by X-ray diffraction, X-ray absorption near edge structure (XANES), Raman spectroscopy, nanoindentation, ball-on-disk testing, and corrosion testing. The effect of MoS2 target bias voltage, ranging from −200 to −800 V, on the structure and properties of the DLC–MoS2 films was further investigated. The results showed that the hardness decreases from 9.1 GPa to 7 GPa, the Young?s modulus decreases from 100 GPa to 78 GPa, the coefficient of friction (COF) increases from 0.02 to 0.17, and the specific wear rate coefficient (k) increases from 5×10−7 to 5×10−6 mm3 N−1 m−1, with increasing the biasing voltage from 200 V to 800 V. Also, the corrosion resistance of the DLC–MoS2 films decreased with the raise of biasing voltage. Comparing with the pure DLC and pure MoS2 films, the DLC–MoS2 films deposited at low biasing voltages showed better tribological properties including lower COF and k in ambient air environment.  相似文献   

9.
Protective hard coatings deposited on magnesium alloys are believed to be effective for overcoming their poor wear properties. In this work, diamond-like carbon (DLC) films as hard protective films were deposited on AZ91 magnesium alloy by arc ion plating under negative pulse bias voltages ranging from 0 to −200 V. The microstructure, composition and mechanical properties of the DLC films were analyzed by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and nanoindentation. The tribological behavior of uncoated and coated AZ91 magnesium alloy was investigated using a ball-on-disk tribotester. The results show that the negative pulse bias voltage used for film deposition has a significant effect on the sp3 carbon content and mechanical properties of the deposited DLC films. A maximum sp3 content of 33.3% was obtained at −100 V, resulting in a high hardness of 28.6 GPa and elastic modulus of 300.0 GPa. The DLC films showed very good adhesion to the AZ91 magnesium alloy with no observable cracks and delamination even during friction testing. Compared with the uncoated AZ91 magnesium alloy, the magnesium alloy coated with DLC films exhibits a low friction coefficient and a narrow, shallow wear track. The wear resistance and surface hardness of AZ91 magnesium alloy can be significantly improved by coating a layer of DLC protective film due to its high hardness and low friction coefficient.  相似文献   

10.
S.S. Yap 《Applied Surface Science》2007,253(24):9521-9524
In pulsed Nd:YAG laser ablation of highly oriented pyrolytic graphite (HOPG) at 10−6 Torr, diamond-like carbon (DLC) are deposited at laser wavelengths of 1064, 532, and 355 nm on substrates placed in the target-plane. These target-plane samples are found to contain varying sp3 content and composed of nanostructures of 40-200 nm in size depending on the laser wavelength and laser fluence. The material and origin of sp3 in the target-plane samples is closely correlated to that in the laser-modified HOPG surface layer, and hardly from the backward deposition of ablated carbon plume. The surface morphology of the target-plane samples shows the columnar growth and with a tendency for agglomeration between nanograins, in particular for long laser wavelength at 1064 nm. It is also proposed that DLC formation mechanism at the laser-ablated HOPG is possibly via the laser-induced subsurface melting and resolidification.  相似文献   

11.
Growth characteristics and surface morphology of boron carbide films fabricated by ablating a B4C target in high vacuum with a traditional KrF excimer laser and a high brightness hybrid dye/excimer laser system emitting at the same wavelength while delivering 700 fs pulses are compared. The ultrashort pulse processing is highly effective. Energy densities between 0.25 and 2 J cm−2 result in apparent growth rates ranging from 0.017 to 0.085 nm/pulse. Ablation with nanosecond pulses of one order of magnitude higher energy densities yields smaller growth rates, the figures increase from 0.002 to 0.016 nm/pulse within the 2-14.3 J cm−2 fluence window. 2D thickness maps derived from variable angle spectroscopic ellipsometry reveal that, when ablating with sub-ps pulses, the spot size rather than the energy density determines both the deposition rate and the angular distribution of film material. Pulse shortening leads to significant improvement in surface morphology, as well. While droplets with number densities ranging from 1 × 104 to 7 × 104 mm−2 deteriorate the surface of the films deposited by the KrF excimer laser, sub-ps pulses produce practically droplet-free films. The absence of droplets has also a beneficial effect on the stoichiometry and homogeneity of the films fabricated by ultrashort pulses.  相似文献   

12.
Polycrystalline cadmium telluride films were successfully deposited on glass substrates by ablating a CdTe target by pulsed Nd–YAG laser. Microstructural studies indicated an increase in the average crystallite size from 15 nm to ∼50 nm with the increase in substrate temperature during deposition. The films deposited here were slightly tellurium rich. X-ray diffraction pattern indicated that the films deposited at 300 K had wurtzite structure while those deposited above 573 K were predominantly of zinc blende structure. Residual strain in the films deposited at 300 K was quite low as compared to those deposited at higher temperatures. PL spectra of all the CdTe films were dominated by a strong peak at ∼921 nm (∼1.347 eV) followed by a low intensity peak at ∼863 nm (∼1.438 eV). Characteristics Raman peaks for CdTe indicated a peak at ∼120 cm−1 followed by peaks located at ∼140 cm−1 and 160 cm−1.  相似文献   

13.
Attempt has been made to deposit diamond like carbon (DLC) films from ethanol through electrodeposition at low voltages (80-300 V) at 1 mm interelectrode separation. The films were characterized by atomic force microscopy (AFM), Scanning electron microscopy (SEM), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy and Auger electron Spectroscopy (AES). AFM investigations revealed the grain sizes are of tens of nanometers. The films were found to be continuous, smooth and close packed. Presence of peaks at 2958, 2929 and 2869 cm−1 in FTIR spectrum indicates the bonding states to be of predominantly sp3 type (C-H). Raman spectroscopy analysis revealed two broad bands at ∼1350 and ∼1570 cm−1. The downshift of the G-band of graphite is indicative of presence of DLC. Analysis of the Raman spectra for the samples revealed an improvement in the film quality with increase in the voltage. Micro Raman investigations indicate the formation of diamond phase at the deposition potential of 80 V. The sp2 contents the films calculated from Auger electron spectra were calculated and were found to be 31, 19 and 7.8% for the samples prepared at 80, 150 and 300 V, respectively. A tentative mechanism for the formation of DLC has been proposed. These results indicate the possibility of deposition of DLC at low voltage.  相似文献   

14.
In this work we report on pulsed laser deposition (PLD) of chalcogenide thin films from the systems (AsSe)100−xAgIx and (AsSe)100−xAgx for sensing applications. A KrF* excimer laser (λ = 248 nm; τFWHM = 25 ns) was used to ablate the targets that had been prepared from the synthesised chalcogenide materials. The films were deposited in either vacuum (4 × 10−4 Pa) or argon (5 Pa) on silicon and glass substrates kept at room temperature. The basic properties of the films, including their morphology, topography, structure, and composition were characterised by complementary techniques. Investigations by X-ray diffraction (XRD) confirmed the amorphous nature of the films, as no strong diffraction reflections were found. The film composition was studied by energy dispersive X-ray (EDX) spectroscopy. The morphology of the films investigated by scanning electron microscopy (SEM), revealed a particulate-covered homogeneous surface, typical of PLD. Topographical analyses by atomic force microscopy (AFM) showed that the particulate size was slightly larger in Ar than in vacuum. The uniform surface areas were rather smooth, with root mean square (rms) roughness increasing up to several nanometers with the AgI or Ag doping. Based upon the results from the comprehensive investigation of the basic properties of the chalcogenide films prepared by PLD and their dependence on the process parameters, samples with appropriate sorption properties can be selected for possible applications in cantilever gas sensors.  相似文献   

15.
A novel kind of La2O3 doped diamond-like carbon (DLC) films with thickness of 100-120 nm were deposited by unbalanced magnetron sputtering. Raman spectra and photoluminescence properties were measured by Raman spectrometer operated by 325 nm He-Cd laser and 514 nm Ar+ laser, respectively. The intensities of Raman spectra and photoluminescence are higher than those of pure DLC films. The La2O3 doped DLC films have the potential promising for the application of solar cell coatings.  相似文献   

16.
Cobalt-DLC multilayer films were deposited with increasing content of cobalt, keeping carbon content constant by pulsed laser deposition technique. A cobalt free carbon film was also deposited for comparison. Excimer laser was employed to ablate the materials onto silicon substrate, kept at 250 °C, while post-deposition annealing at 400 °C was also performed in situ. The formation of cobalt grains within the carbon matrix in Co-DLC films can be seen through scanning electron and atomic force micrographs while no grains on the surface of the cobalt-free DLC film were observed. Raman spectra of all the films show D- and G-bands, which is a confirmation that the films are DLC in nature. According to Vibrating sample magnetometer (VSM) measurements, the DLC films with cobalt revealed ferromagnetic behaviour whereas the cobalt free DLC film exhibited diamagnetic behaviour. The pure DLC film also shows ferromagnetic nature when diamagnetic background is subtracted. Spectroscopic Ellipsometry (SE) analysis showed that the optical band gaps, refractive indices and extinction coefficients of Co-DLC films can be effectively tuned with increasing content of cobalt.  相似文献   

17.
Si K-edge XAFS was used to characterize a stoichiometric SiC film prepared by pulsed KrF laser deposition. The film was deposited on a p-type Si(1 0 0) wafer at a substrate temperature of 250 °C in high vacuum with a laser fluence of ∼5 J/cm2. The results reveal that the film contains mainly a SiC phase with an amorphous structure in which the Si atoms are bonded to C atoms in its first shell similar to that of crystalline SiC powder but with significant disorder.  相似文献   

18.
Titanium dioxide thin films have been deposited by reactive magnetron sputtering on glass substrate and subsequently irradiated by UV radiation using a KrF excimer laser. In this work, we have study the influence of the laser fluence (F) ranging between 0.05 and 0.40 mJ/cm2 on the constitution and microstructure of the deposited films. Irradiated thin films are characterized by profilometry, scanning electron microscopy and X-ray diffraction. As deposited films are amorphous, while irradiated films present an anatase structure. The crystallinity of the films strongly varies as a function of F with maximum for F = 0.125 J/cm2. In addition to the modification of their constitution, the irradiated areas present a strongly modified microstructure with appearance of nanoscale features. The physico-chemical mechanisms of these structural modifications are discussed based on the theory of nucleation.  相似文献   

19.
Pristine ZnO thin films have been deposited with zinc acetate [Zn(CH3COO)2], mono-ethanolamine (stabilizer), and isopropanol solutions by sol-gel method. After deposition, pristine ZnO thin films have been irradiated by excimer laser (λ = 248, KrF) source with energy density of 50 mJ/cm2 for 30 sec. The effect of excimer laser annealing on the optical and structural properties of ZnO thin films are investigated by photoluminescence and field emission scanning electron microscope. As-grown ZnO thin films show a huge peak of visible region and a wide full width at half maximum (FWHM) of UV region due to low quality with amorphous ZnO thin films. After KrF excimer laser annealing, ZnO thin films show intense near-band-edge (NBE) emission and weak deep-level emission. The optically improved pristine ZnO thin films have demonstrated that excimer laser annealing is novel treatment process at room temperature.  相似文献   

20.
Epitaxial La1−xSrxMnO3 (LSMO) films were prepared by excimer laser-assisted metal organic deposition (ELAMOD) at a low temperature using ArF, KrF, and XeCl excimer lasers. Cross-section transmission electron microscopy (XTEM) observations confirmed the epitaxial growth and homogeneity of the LSMO film on a SrTiO3 (STO) substrate, which was prepared using ArF, KrF, and XeCl excimer lasers. It was found that uniform epitaxial films could be grown at 500 °C by laser irradiation. When an XeCl laser was used, an epitaxial film was formed on the STO substrate at a fluence range from 80 to 140 mJ/cm2 of the laser fluence for the epitaxial growth of LSMO film on STO substrate was changed. When the LaAlO3 (LAO) substrate was used, an epitaxial film was only obtained by ArF laser irradiation, and no epitaxial film was obtained using the KrF and XeCl lasers. When the back of the amorphous LSMO film on an LAO substrate was irradiated using a KrF laser, no epitaxial film formed. Based on the effect of the wavelength and substrate material on the epitaxial growth, formation of the epitaxial film would be found to be photo thermal reaction and photochemical reaction. The maximum temperature coefficient of resistance (TCR) of the epitaxial La0.8Sr0.2MnO3 film on an STO substrate grown using an XeCl laser is 4.0%/K at 275 K. XeCl lasers that deliver stabilized pulse energies can be used to prepare LSMO films with good a TCR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号