首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
We use first-principles density functional theory-based calculations in the analysis of the interaction of H2O with (1 0 0), (1 1 0) and (1 1 1) surfaces of TiN, and develop understanding in terms of surface energies, polarity of the surface and chemistry of the cation, through comparison with H2O adsorption on ZrN. While water molecule physisorbs preferentially at Ti site of (1 0 0) and (1 1 1) surfaces, it adsorbs dissociatively on (1 1 0) surface of TiN with binding stronger than almost 1.32 eV/molecule. Our analysis reveals the following general trends: (a) surfaces with higher energies typically lead to stronger adsorption, (b) dissociative adsorption of H2O necessarily occurs on a charge neutral high energy surface and (c) lower symmetry of the (1 1 0) plane results in many configurations of comparable stability, as opposed to the higher symmetry (1 0 0) and (1 1 1) surfaces, which also consistently explain the results of H2O adsorption on MgO available in literature. Finally, weaker adsorption of H2O on TiN than on ZrN can be rationalized in terms of greater chemical stability of Ti arising from its ability to be in mixed valence.  相似文献   

2.
Štěpán Pick 《Surface science》2007,601(23):5571-5575
The regular CO overlayers at coverage θ = 1/3 adsorbed on the (0 0 0 1) surface of hcp Co and (1 1 1) surface of fcc Co are studied by first-principles density-functional theory with the exchange-correlation component in the PBE form. Adsorption in atop, bridge, and three-fold hcp or fcc position are considered. The adsorption energies, CO stretching frequencies, geometry, work function, and local magnetic moments are studied, and, when possible, compared with experimental or theoretical data. Particularly, we show that the recently proposed correction to adsorption energy of CO prefers correctly the atop adsorption site, whereas the remaining sites are almost degenerate in energy. The CO molecule lowers magnetization on neighbouring Co atoms, and the effect decreases with the adsorption site coordination. We show, however, that this trend is not the result of the different C-Co separation at different adsorption sites. A very small magnetic moment appears on CO that couples antiferromagnetically to Co. Most results are very similar for the Co(0 0 0 1) and Co(1 1 1) surfaces.  相似文献   

3.
Density functional theory (DFT) for generalized gradient approximation calculations has been used to study the adsorption of atomic oxygen and water molecules on Ni(1 1 1) and different kind of Ni-Cr(1 1 1) surfaces. The fcc hollow site is energetically the most favorable for atomic oxygen adsorption and on top site is favorable for water adsorption. The Ni-Cr surface has the highest absorption energy for oxygen at 6.86 eV, followed by the hcp site, whereas the absorption energy is 5.56 eV for the Ni surface. The Ni-O bond distance is 1.85 Å for the Ni surface. On the other hand, the result concerning the Ni-Cr surface implies that the bond distances are 1.93-1.95 Å and 1.75 Å for Ni-O and Cr-O, respectively. The surface adsorption energy for water on top site for two Cr atom substituted Ni-Cr surface is 0.85 eV. Oxygen atoms prefer to bond with Cr rather than Ni atoms. Atomic charge analysis demonstrates that charge transfer increases due to the addition of Cr. Moreover, a local density of states (LDOS) study examines the hybridization occurring between the metal d orbital and the oxygen p orbital; the bonding is mainly ionic, and water bonds weakly in both cases.  相似文献   

4.
M.F. Luo  G.R. Hu 《Surface science》2009,603(8):1081-1086
With density-functional-theory calculations, we have studied coverage-dependent absorption of H atoms into the sub-surface below a face-centered-cubic (fcc) hollow site of Cu(1 1 1). Both frozen and relaxed surface lattices were considered when the atomic H migrated from the surface to the sub-surface. The potential energy curve for the absorbing H shows that the surface site is in general favored over the sub-surface site, and this trend varies little with the H coverage (0.11-0.67 ML). If the hexagonal-close-packed (hcp) hollow sites immediately vicinal to the absorbing H are pre-adsorbed with other H atoms, the surface adsorption potential is greatly increased, because of the repulsive H-H interaction, to a value near, or even greater than, the sub-surface absorption potential; when two or three H atoms (on the hcp sites) are beside the absorbing H, the energy barrier for the sub-surface absorption is decreased, whereas that for diffusion from the sub-surface to the surface is enhanced. These results indicate that, on an H-saturated Cu(1 1 1) surface (0.67 ML), the sub-surface sites below the fcc sites with two or three neighboring H atoms can trap the sub-surface H.  相似文献   

5.
I. Nakamura 《Surface science》2006,600(16):3235-3242
Reactions between NO and CO on Rh(1 1 1) surfaces were investigated using infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed desorption. NO adsorbed on the fcc, atop, and hcp sites in that order, whereas CO adsorbed initially on the atop sites and then on the hollow (fcc + hcp) sites. The results of experiments with NO exposure on CO-preadsorbed Rh(1 1 1) surfaces indicated that the adsorption of NO on the hcp sites was inhibited by preadsorption of CO on the atop sites, and NO adsorption on the atop and fcc sites was inhibited by CO preadsorbed on each type of site, which indicates that NO and CO competitively adsorbed on Rh(1 1 1). From a Rh(1 1 1) surface with coadsorbed NO and CO, N2 was produced from the dissociation of fcc-NO, and CO2 was formed by the reaction of adsorbed CO with atomic oxygen from dissociated fcc-NO. The CO2 production increased remarkably in the presence of hollow-CO. Coverage of fcc-NO and hollow-CO on Rh(1 1 1) depended on the composition ratio of the NO/CO gas mixture, and a gas mixture with NO/CO ? 1/2 was required for the co-existence of fcc-NO and hollow-CO at 273 K.  相似文献   

6.
The interactions of H and H2 with W(1 0 0)-c(2 × 2)Cu and W(1 0 0) have been investigated through density functional theory (DFT) calculations to elucidate the effect of Cu atoms on the reactivity of the alloy. Cu atoms do not alter the attraction towards top-W sites felt by H2 molecules approaching the W(1 0 0) surface but make dissociation more difficult due to the rise of late activation barriers. This is mainly due to the strong decrease in the stability of the atomic adsorbed state on bridge sites, the most favourable ones for H adsorption on W(1 0 0). Still, our results show unambiguously that H2 dissociative adsorption on perfect terraces of the W(1 0 0)-c(2 × 2)Cu surface is a non-activated process which is consistent with the high sticking probability found in molecular beam experiments at low energies.  相似文献   

7.
The dehydrogenation of CH4 on the Co(1 1 1) surface is studied using density functional theory calculation (DFT). It is found that CH4 is favored to dissociate to CH3 and then transforms to CH2 and CH by sequential dehydrogenation, and CH4 activation into CH3 and H is the rate-determining step on the Co(1 1 1) surface. CH2 is quite unstable on Co(1 1 1) surface. CH dehydrogenation into C and H is difficult. CH3 and H prefer to adsorb on 3-fold hollow hcp and fcc sites, and CH2, CH and C prefer to adsorb on hcp sites.  相似文献   

8.
We report first principles calculations to analyze the ruthenium adsorption and diffusion on GaN(0 0 0 1) surface in a 2×2geometry. The calculations were performed using the generalized gradient approximation (GGA) with ultrasoft pseudopotential within the density functional theory (DFT). The surface is modeled using the repeated slabs approach. To study the most favorable ruthenium adsorption model we considered T1, T4 and H3 special sites. We find that the most energetically favorable structure corresponds to the Ru- T4 model or the ruthenium adatom located at the T4 site, while the ruthenium adsorption on top of a gallium atom (T1 position) is totally unfavorable. The ruthenium diffusion on surface shows an energy barrier of 0.612 eV. The resultant reconstruction of the ruthenium adsorption on GaN(0 0 0 1)- 2×2 surface presents a lateral relaxation of some hundredth of Å in the most stable site. The comparison of the density of states and band structure of the GaN(0 0 0 1) surface without ruthenium adatom and with ruthenium adatom is analyzed in detail.  相似文献   

9.
To investigate solvent effects, CO and H2 adsorption on Cu2O (1 1 1) surface in vacuum, liquid paraffin, methanol and water are studied by using density functional theory (DFT) combined with the conductor-like solvent model (COSMO). When H2 and CO adsorb on Cucus of Cu2O (1 1 1) surface, solvent effects can improve CO and H2 activation. The H-H bond increases with dielectric constant increasing as H2 adsorption on Osuf of Cu2O (1 1 1) surface, and the H-H bond breaks in methanol and water. It is also found that both the structural parameters and Mulliken charges are very sensitive to the COSMO solvent model. In summary, the solvent effects have obvious influence on the clean surface of Cu2O (1 1 1) and the adsorptive behavior.  相似文献   

10.
We determined the local adsorption structure of disordered oxygen on the Ni(1 1 1) surface by means of diffuse holographic LEED. The measurements have been performed above the critical temperature (Tc=450 K) for the oxygen order-disorder phase transition at 500 K and at a coverage of Θ=0.25 ML. At this temperature we found, in agreement with a previous LEED-IV-analysis [Surf. Sci. 349 (1996) 185], that besides the fcc threefold sites also hcp sites are occupied. In addition, a small amount seems to be located also at top and bridge sites. Reconstructing the holographic wavefield information, the different oxygen adsorption geometries are superimposed in the real space image. Nevertheless, a spatial resolution of 0.5-1 Å was sufficient to clearly distinguish between them. The influence of algorithmic parameters on the image quality was tested.  相似文献   

11.
Water molecule adsorption properties at the surface of InVO4 have been investigated using an ab initio molecular dynamics approach. It was found that the water molecules were adsorbed dissociatively to the three-fold oxygen coordinated V sites on the (0 0 1) surface. The dissociative adsorption energy was estimated to be 0.8-0.9 eV per molecule. The equilibrium distance between V and O of the hydroxyl -OH was almost the same as the V-O distance of tetrahedra VO4 in the InVO4 bulk crystal (1.7-1.8 Å).  相似文献   

12.
Adsorption of CO molecules and Pb atoms on the Ni(1 1 1) and Ni3Al(1 1 1) substrates is studied theoretically within an ab initio density-functional-theory approach. Stable adsorption sites and the corresponding adsorption energies are first determined for stoichiometric surfaces. The three-fold hollow sites (fcc for Pb and hcp for CO) are found most favourable on both substrates. Next, the effect of surface alloying by a substitution of selected topmost substrate atoms by Pb or Ni atoms on the adsorption characteristics is investigated. When the surface Al atoms of the Ni3Al(1 1 1) substrate are replaced by Ni atoms, the Pb and CO adsorption energies approach those for a pure Ni(1 1 1) substrate. The Pb alloying has a more substantial effect. On the Ni3Al(1 1 1) substrate, it reduces considerably adsorption energy of CO. On the Ni(1 1 1) substrate, CO binding strengthens slightly upon the formation of the Ni(1 1 1)p(2×2)-Pb surface alloy, whereas it weakens drastically when the Ni(1 1 1)-Pb surface alloy is formed.  相似文献   

13.
Adsorption structures of the pentacene (C22H14) molecule on the clean Si(0 0 1)-2 × 1 surface were investigated by scanning tunneling microscopy (STM) in conjunction with density functional theory calculations and STM image simulations. The pentacene molecules were found to adsorb on four major sites and four minor sites. The adsorption structures of the pentacene molecules at the four major sites were determined by comparison between the experimental and the simulated STM images. Three out of the four theoretically identified adsorption structures are different from the previously proposed adsorption structures. They involve six to eight Si-C covalent chemical bonds. The adsorption energies of the major four structures are calculated to be in the range 67-128 kcal/mol. It was also found that the pentacene molecule hardly hopped on the surface when applying pulse bias voltages on the molecule, but was mostly decomposed.  相似文献   

14.
We have performed density-functional theory (DFT) calculations to investigate the adsorption structures of methanol on a Ge(1 0 0) surface. Among many possible adsorption configurations, the most favorable configurations at room temperature were found to be those in which the OH-dissociated methanol molecule forms O-Ge bonds, with the methoxy group either parallel or perpendicular to the Ge surface. The spatial arrangement of methoxy group relative to the Ge(1 0 0) surface is not critical. The dissociated H is bonded to an adjacent up-Ge atom, passivating the dangling bond. The possibility of H diffusion to other Ge atoms is also investigated. The corresponding simulated images explain well the adsorption features observed experimentally. The reaction pathways explain the feasibility of OH-dissociative structures at room temperature. The two OH-dissociative configurations where methoxy groups are either parallel or perpendicular to Ge surfaces are similar in thermodynamic and kinetic aspects.  相似文献   

15.
We use core level photoelectron spectroscopy and density functional theory (DFT) to investigate the iodine-induced Pd(1 1 1)-I(√3 × √3) structure formed at 1/3 ML coverage. From the calculations we find that iodine adsorbs preferentially in the fcc hollow site. The calculated equilibrium distance is 2.06 Å and the adsorption energy is 68 kcal/mol, compared to 2.45 Å and 54 kcal/mol in the atop position. The adsorption energy difference between fcc and hcp hollows is 1.7 kcal/mol. Calculated Pd 3d surface core level shift on clean Pd(1 l 1) is 0.30 eV to lower binding energy, in excellent agreement with our experimental findings (0.28-0.29 eV). On the Pd(1 1 1)-I(√3 × √3) we find no Pd 3d surface core level shift, neither experimentally nor theoretically. Calculated charge transfer for the fcc site, determined from the Hirshfeld partitioning method, suggests that the iodine atom remains almost neutral upon adsorption.  相似文献   

16.
The previously developed kinetic Monte Carlo model of molecular oxygen adsorption on fcc (1 0 0) metal surfaces has been extended to fcc (1 1 1) surfaces. The model treats uniformly all elementary steps of the process—O2 adsorption, dissociation, recombination, desorption, and atomic oxygen hopping—at various coverages and temperatures. The model employs the unity bond index—quadratic exponential potential (UBI-QEP) formalism to calculate coverage-dependent energetics (atomic and molecular binding energies and activation barriers of elementary steps) and a Metropolis-type algorithm including the Arrhenius-type reaction rates to calculate coverage- and temperature-dependent features, particularly the adsorbate distribution over the surface. Optimal values of non-energetic model parameters (the spatial constraint, a travel distance of “hot” atoms, attempt frequencies of elementary steps) have been chosen. Proper modifications of the fcc (1 0 0) model have been made to reflect structural differences in the fcc (1 1 1) surface, in particular the presence of two different hollow sites (fcc and hcp). Detailed simulations were performed for molecular oxygen adsorption on Ni(1 1 1). We found that at very low coverages, only O2 adsorption and dissociation were effective, while O2 desorption and O2 and O diffusion practically did not occur. At a certain O + O2 coverage, the O2 dissociation becomes the fastest process with a rate one-two orders of magnitude higher than adsorption. Dissociation continuously slows down due to an increase in the activation energy of dissociation and due to the exhaustion of free sites. The binding energies of both molecular and atomic oxygen decrease with coverage, and this leads to greater mobility of atomic oxygen and more pronounced desorption of molecular oxygen. Saturation is observed when the number of adsorbed molecules becomes approximately equal to the number of desorbed molecules. Simulated coverage dependences of the sticking probability and of the atomic binding energy are in reasonable agreement with experimental data. From comparison with the results of the previous work, it appears that the binding energy profiles for Ni(1 1 1) and Ni(1 0 0) have similar shapes, although at any coverage the absolute values of the oxygen binding energy are higher for the (1 0 0) surface. For metals other than Ni, particularly Pt, the model projections were found to be too parameter-dependent and therefore less certain. In such cases further model developments are needed, and we briefly comment on this situation.  相似文献   

17.
We present a comprehensive picture of structural and electronic properties of the TiC(0 0 1)(1 × 1) surface. Our investigations are based on first-principles calculations within the local-density approximation of the density-functional theory. Good agreement has been observed between our calculation and experimental data for the atomic geometry of the surface. In particular, the calculated bond lengths between the first-layer C and the second-layer Ti (d1C-2Ti = 2.188 Å) and between the first-layer Ti and the second-layer C (d1Ti-2C = 2.031 Å) are in good agreement with the corresponding experimental values of 2.25 Å and 2.14 Å, respectively. We have also identified surface electronic states and provided clear support for previously available photoemission measurements. We have further calculated surface phonon modes at the zone centre and at the zone-edge point X using a linear response scheme based on the ab initio pseudopotential method. Our calculated surface phonon results are in excellent agreement with electron energy loss spectroscopy results.  相似文献   

18.
We report first principles density functional theory (DFT) results of H2S and HS adsorption and dissociation on the Fe(1 1 0) surface. We investigate the site preference of H2S, HS, and S on Fe(1 1 0). H2S is found to weakly adsorb on either the short bridge (SB) or long bridge (LB) site of Fe(1 1 0), with a binding energy of no more than 0.50 eV. The diffusion barrier from the LB site to the SB site is found to be small (∼0.10 eV). By contrast to H2S, HS is predicted to be strongly chemisorbed on Fe(1 1 0), with the S atom in the LB site and the HS bond oriented perpendicular to the surface. Isolated S atoms also are predicted to bind strongly to the LB sites of Fe(1 1 0), where the SB is found to be a transition state for S surface hopping between neighboring LB sites. The minimum energy paths for H2S and HS dehydrogenation involve rotating an H atom towards a nearby surface Fe atom, with the S-H bonds breaking on the top of one Fe atom. The barrier to break the first S-H bond in H2S is low at 0.10 eV, and breaking the second S-H bond is barrierless, suggesting deposition of S on Fe(1 1 0) via H2S is kinetically and thermodynamically facile.  相似文献   

19.
We have investigated the adsorption mechanism of SiO molecule incident on a clean Si(1 0 0) p(2 × 2) reconstructed surface using density functional theory based methods. Stable adsorption geometries of SiO on Si surface, as well as their corresponding activation and adsorption energies are identified. We found that the SiO molecule is adsorbed on the Si(1 0 0) surface with almost no activation energy. An adsorption configuration where the SiO binds on the channel separating the dimer rows, forming a Si-O-Si bridge on the surface, is the energetically most favourable geometry found. A substantial red-shift in the calculated vibrational frequencies of the adsorbed SiO molecule in the bridging configurations is observed. Comparison of adsorption energies shows that SiO adsorption on a Si(1 0 0) surface is energetically less favourable than the comparable O2 adsorption. However, the role of SiO in the growth of silicon sub-oxides during reactive magnetron plasma deposition is expected to be significant due to the relatively large amount of SiO molecules incident on the deposition surface and its considerable sticking probability. The stable adsorption geometries found here exhibit structural properties similar to the Si/SiO2 interface and may be used for studying SiOx growth.  相似文献   

20.
Periodic density functional theory (DFT) calculations using plane waves had been performed to systematically investigate the stable adsorption amine and its dehydrogenated reaction on Au(1 1 1) surface. The equilibrium configuration including on top, bridge, and hollow (fcc and hcp) sites had been determined by relaxation of the system. The adsorption both NH3 on top site and NH2 on bridge site is favorable on Au(1 1 1) surface, while the adsorption of NH on hollow (fcc) site is preferred. The adsorbates are adsorbed on the gold surface with the interaction between p orbital of adsorbate and the d orbital of gold atoms. The interaction between adsorbate and gold slab is more evident on the first layer than on any others. Furthermore, the dissociation reaction of NH3 on clean gold surface, as well as on the pre-covered oxygen atom and pre-covered hydroxyl group surface had been investigated. The results show that the dehydrogenated reaction energy barrier on the pre-covered oxygen gold surface is lower. The adsorbed O can promote the dehydrogenation of amine. Additionally, OH as the product of the NH3 dissociation reaction participates in continuous dehydrogenation reaction, and the reaction energy barrier is the lowest (22.77 kJ/mol). The results indicated that OHads play a key role in the dehydrogenated reaction on Au(1 1 1) surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号