首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We investigate energy localization and transport in the form of discrete breathers and their movability in two-dimensional Fermi–Pasta–Ulam(FPU) lattices. We study the dynamics of the two-dimensional Fermi–Pasta–Ulam(FPU) lattice, incorporating the complicated effects of geometry, long-range interactions as well as nonlinear dispersion. We obtain several exact discrete breather(DB) solutions, such as the odd-parity and even-parity DBs, compact-like DBs and moving DBs for various geometries of the two-dimensional FPU chain. We show that DBs also exist in the same lattice in presence of next-nearest neighbour interaction. Large-amplitude exact subsonic travelling kink-soliton solutions are obtained in such a periodic chain in presence of long-range nonlinear dispersive interaction in the long-wavelength and weakly nonlinear limit. Such a two-dimensional FPU lattice admits finite amplitude nonlinear sinusoidal wave (NSW) solutions with short commensurate as well as incommensurate wavelengths for different geometries of the chain. The usefulness of these solutions for energy localization and transport in various physical systems are discussed.  相似文献   

2.
This paper reviews results about the existence of spatially localized waves in nonlinear chains of coupled oscillators, and provides new results for the Fermi-Pasta-Ulam (FPU) lattice. Localized solutions include solitary waves of permanent form and traveling breathers which appear time periodic in a system of reference moving at constant velocity. For FPU lattices we analyze the case when the breather period and the inverse velocity are commensurate. We employ a center manifold reduction method introduced by Iooss and Kirchgassner in the case of traveling waves, which reduces the problem locally to a finite dimensional reversible differential equation. The principal part of the reduced system is integrable and admits solutions homoclinic to quasi-periodic orbits if a hardening condition on the interaction potential is satisfied. These orbits correspond to approximate travelling breather solutions superposed on a quasi-periodic oscillatory tail. The problem of their persistence for the full system is still open in the general case. We solve this problem for an even potential if the breather period equals twice the inverse velocity, and prove in that case the existence of exact traveling breather solutions superposed on an exponentially small periodic tail.  相似文献   

3.
We study the dynamics of the discrete nonlinear Schr?dinger lattice initialized such that a very long transitory period of time in which standard Boltzmann statistics is insufficient is reached. Our study of the nonlinear system locked in this non-Gibbsian state focuses on the dynamics of discrete breathers (also called intrinsic localized modes). It is found that part of the energy spontaneously condenses into several discrete breathers. Although these discrete breathers are extremely long lived, their total number is found to decrease as the evolution progresses. Even though the total number of discrete breathers decreases we report the surprising observation that the energy content in the discrete breather population increases. We interpret these observations in the perspective of discrete breather creation and annihilation and find that the death of a discrete breather cause effective energy transfer to a spatially nearby discrete breather. It is found that the concepts of a multi-frequency discrete breather and of internal modes is crucial for this process. Finally, we find that the existence of a discrete breather tends to soften the lattice in its immediate neighborhood, resulting in high amplitude thermal fluctuation close to an existing discrete breather. This in turn nucleates discrete breather creation close to a already existing discrete breather. Received 21 January 1999 and Received in final form 20 September 1999  相似文献   

4.
We demonstrate that certain strictly anharmonic one-dimensional FPU lattices with a suitable quartic site potential appended support almost-compact discrete breathers over a macroscopic localized domain that is essentially fixed independently of the sparseness of the lattice. Beyond that domain the discrete breather tails decay at a double-exponential rate in the lattice-cell index, becoming truly compact in the continuum limit. Furthermore, the discrete breather is stable for amplitudes below a sharp threshold that depends on the sparseness of the lattice. For the two-dimensional version of the problem, the continuum limit of a planar hexagonal lattice with a purely quartic interaction potential begets an isotropic multidimensional nonlinear wave equation. When a quartic site potential of the appropriate sign is appended, the continuum equation has a compactly supported radial breather solution.  相似文献   

5.
We study the properties of spatially localized and time-periodic excitations--discrete breathers--in Fermi-Pasta-Ulam (FPU) chains. We provide a detailed analysis of their spatial profiles and stability properties. We especially demonstrate that the Page mode is linearly stable for symmetric FPU potentials. A resonant interaction between a localized and delocalized perturbations causes weak but finite strength instabilities for asymmetric FPU potentials. This interaction induces Fano resonances for plane waves scattered by the breather. Finally we analyze the interplay between energy thresholds for breathers in the presence of strongly asymmetric FPU potentials and the corresponding profiles of the low-frequency limit of breather families.  相似文献   

6.
We present a detailed analysis of the modulational instability of the zone-boundary mode for one and higher-dimensional Fermi–Pasta–Ulam (FPU) lattices. The growth of the instability is followed by a process of relaxation to equipartition, which we have called the Anti-FPU problem because the energy is initially fed into the highest frequency part of the spectrum, while in the original FPU problem low frequency excitations of the lattice were considered. This relaxation process leads to the formation of chaotic breathers in both one and two space dimensions. The system then relaxes to energy equipartition, on time scales that increase as the energy density is decreased. We supplement this study by considering the nonconservative case, where the FPU lattice is homogeneously driven at high frequencies. Standing and travelling nonlinear waves and solitonic patterns are detected in this case. Finally we investigate the dynamics of the FPU chain when one end is driven at a frequency located above the zone boundary. We show that this excitation stimulates nonlinear bandgap transmission effects.  相似文献   

7.
We find that the sextic nonlinear Schrödinger (NLS) equation admits breather‐to‐soliton transitions. With the Darboux transformation, analytic breather solutions with imaginary eigenvalues up to the second order are explicitly presented. The condition for breather‐to‐soliton transitions is explicitly presented and several examples of transitions are shown. Interestingly, we show that the sextic NLS equation admits not only the breather‐to‐bright‐soliton transitions but also the breather‐to‐dark‐soliton transitions. We also show the interactions between two solitons on the constant backgrounds, as well as between breather and soliton.  相似文献   

8.
《Physics letters. A》1997,229(6):367-374
We re-examine the first recurrence time of the cubic FPU lattice as a function of the amplitude of the initial condition and the number of masses in the lattice. The parameter dependence of the recurrence time shows some novel features that are not explained by previous theoretical work.  相似文献   

9.
《Physics letters. A》2006,349(6):422-429
We derive two new solutions in terms of elliptic functions, one for the dark and one for the bright soliton regime, for the semi-discrete cubic nonlinear Schrödinger equation of Ablowitz and Ladik. When considered in the complex plane, these two solutions are identical. In the continuum limit, they reduce to known elliptic function solutions. In the long wave limit, the dark one reduces to the collision of two discrete dark solitons, and the bright one to a discrete breather.  相似文献   

10.
We study the effect of time-dependent linear and quadratic potentials on the profile and dynamics of rogue waves represented by a Peregrine soliton. The Akhmediev breather, Ma breather, bright soliton, Peregrine soliton, and constant wave (CW) are all obtained by changing the value of one parameter in the general solution corresponding to the amplitude of the input CW. The corresponding solutions for the case with linear and quadratic potentials were derived by the similarity transformation method. While the peak height and width of the rogue wave turn out to be insensitive to the linear potential, the trajectory of its center-of-mass can be manipulated with an arbitrary time-dependent slope of the linear potential. With a quadratic potential, the peak height and width of the rogue wave can be arbitrarily manipulated to result, for a special case, in a very intense pulse.  相似文献   

11.
We investigate the stability and phase transition of localized modes in Bose–Einstein Condensates (BECs) in an optical lattice with the discrete nonlinear Schrödinger model by considering both two- and three-body interactions. We find that there are three types of localized modes, bright discrete breather (DB), discrete kink (DK), and multi-breather (MUB). Moreover, both two- and three-body on-site repulsive interactions can stabilize DB, while on-site attractive three-body interactions destabilize it. There is a critical value for the three-body interaction with which both DK and MUB become the most stable ones. We give analytically the energy thresholds for the destabilization of localized states and find that they are unstable (stable) when the total energy of the system is higher (lower) than the thresholds. The stability and dynamics characters of DB and MUB are general for extended lattice systems. Our result is useful for the blocking, filtering, and transfer of the norm in nonlinear lattices for BECs with both two- and three-body interactions.  相似文献   

12.
In this review we try to capture some of the recent excitement induced by a large volume of theoretical and computational studies addressing nonlinear Schrödinger models (discrete and continuous) and the localized structures that they support. We focus on some prototypical structures, namely the breather solutions and solitary waves. In particular, we investigate the bifurcation of travelling wave solution in Discrete NLS system applying dynamical systems methods. Next, we examine the combined effects of cubic and quintic terms of the long range type in the dynamics of a double well potential. The relevant bifurcations, the stability of the branches and their dynamical implications are examined both in the reduced (ODE) and in the full (PDE) setting. We also offer an outlook on interesting possibilities for future work on this theme.  相似文献   

13.
Orbital and asymptotic stability for 1-soliton solutions of the Toda lattice equations as well as for small solitary waves of the FPU lattice equations are established in the energy space. Unlike analogous Hamiltonian PDEs, the lattice equations do not conserve the adjoint momentum. In fact, the Toda lattice equation is a bidirectional model that does not fit in with the existing theory for the Hamiltonian systems by Grillakis, Shatah and Strauss. To prove stability of 1-soliton solutions, we split a solution around a 1-soliton into a small solution that moves more slowly than the main solitary wave and an exponentially localized part. We apply a decay estimate for solutions to a linearized Toda equation which has been recently proved by Mizumachi and Pego to estimate the localized part. We improve the asymptotic stability results for FPU lattices in a weighted space obtained by Friesecke and Pego.  相似文献   

14.
We study the existence of travelling breathers in Klein-Gordon chains, which consist of one-dimensional networks of nonlinear oscillators in an anharmonic on-site potential, linearly coupled to their nearest neighbors. Travelling breathers are spatially localized solutions which appear time periodic in a referential in translation at constant velocity. Approximate solutions of this type have been constructed in the form of modulated plane waves, whose envelopes satisfy the nonlinear Schrödinger equation (M. Remoissenet, Phys. Rev. B 33, n.4, 2386 (1986), J. Giannoulis and A. Mielke, Nonlinearity 17, p. 551–565 (2004)). In the case of travelling waves (where the phase velocity of the plane wave equals the group velocity of the wave packet), the existence of nearby exact solutions has been proved by Iooss and Kirchgässner, who have obtained exact solitary wave solutions superposed on an exponentially small oscillatory tail (G. Iooss, K. Kirchgässner, Commun. Math. Phys. 211, 439–464 (2000)). However, a rigorous existence result has been lacking in the more general case when phase and group velocities are different. This situation is examined in the present paper, in a case when the breather period and the inverse of its velocity are commensurate. We show that the center manifold reduction method introduced by Iooss and Kirchgässner is still applicable when the problem is formulated in an appropriate way. This allows us to reduce the problem locally to a finite dimensional reversible system of ordinary differential equations, whose principal part admits homoclinic solutions to quasi-periodic orbits under general conditions on the potential. For an even potential, using the additional symmetry of the system, we obtain homoclinic orbits to small periodic ones for the full reduced system. For the oscillator chain, these orbits correspond to exact small amplitude travelling breather solutions superposed on an exponentially small oscillatory tail. Their principal part (excluding the tail) coincides at leading order with the nonlinear Schrödinger approximation.  相似文献   

15.
The modulational instability, quantum breathers and two-breathers in a frustrated easy-axis ferromagnetic zig-zag chain under an external magnetic field are investigated within the Hartree approximation. By means of a linear stability analysis, we analytically study the discrete modulational instability and analyze the effect of the frustration strength on the discrete modulational instability region. Using the results from the discrete modulational instability analysis, the presence conditions of those stationary bright type localized solutions are presented. On the other hand, we obtain the analytical expressions for the stationary bright localized solutions and analyze the effect of the frustration on their emergence conditions. By taking advantage of these bright type single-magnon bound wave functions obtained, quantum breather states in the present frustrated ferromagnetic zig-zag lattice are constructed. What is more, the analytical forms for quantum two-breather states are also obtained. In particular, the energy level formulas of quantum breathers and two-breathers are derived.  相似文献   

16.
We restrict our attention to the discrete two-dimensional monatomic β-FPU lattice. We look for two- dimensional breather lattice solutions and two-dimensional compact-like discrete breathers by using trying method and analyze their stability by using Aubry's linearly stable theory. We obtain the conditions of existence and stability of two-dimensional breather lattice solutions and two-dimensional compact-like discrete breathers in the discrete two- dimensional monatomic β-FPU lattice.  相似文献   

17.
Discrete breathers (nonlinear localized modes) have been shown to exist in various nonlinear Hamiltonian lattice systems. This paper is devoted to the investigation of a classical d-dimensional ferromagnetic lattice with easy plane anisotropy. Its dynamics is described via the Heisenberg model. Discrete breathers exist in such a model and represent excitations with locally tilted magnetization. They possess energy thresholds and have no analogs in the continuum limit. We are going to review the previous results on such solutions and also to report new results. Among the new results we show the existence of a big variety of these breather solutions, depending on the respective orientation of the tilted spins. Floquet stability analysis has been used to classify the stable solutions depending on their spatial structure, their frequency, and other system parameters, such as exchange interaction and local (single-ion) anisotropy.  相似文献   

18.
We study the existence and stability of solutions of the two-dimensional nonlinear Schrodinger equation in the combined presence of a parabolic and a periodic potential. The motivating physical example consists of Bose-Einstein condensates confined in an harmonic (e.g., magnetic) trap and an optical lattice. By connecting the nonlinear problem with the underlying linear spectrum, we examine the bifurcation of nonlinear modes out of the linear ones for both focusing and defocusing nonlinearities. In particular, we find real-valued solutions (such as multipoles) and complex-valued ones (such as vortices). A primary motivation of the present work is to develop "rules of thumb" about what waveforms to expect emerging in the nonlinear problem and about the stability of those modes. As a case example of the latter, we find that among the real-valued solutions, the one with larger norm for a fixed value of the chemical potential is expected to be unstable.  相似文献   

19.
We consider real breather solutions of the discrete cubic nonlinear Schrödinger equation near the limit of vanishing coupling between the lattice sites and present leading order asymptotics for the eigenvalues of the linearization around the breathers. The expansion is given in fractional powers of the intersite coupling parameter and determines the linear stability of the breathers. The method we use relies on normal form ideas and applies to one and higher-dimensional lattices. We also present some examples.  相似文献   

20.
Certain strictly anharmonic one-dimensional lattices support discrete breathers over a macroscopic localized domain that in the continuum limit becomes exactly compact. The discrete breather tails decay at a double-exponential rate, so such systems can store energy locally, especially since discrete breathers appear to be stable for amplitudes below a sharp stability threshold. The effective width of other solutions broadens over time, but, under appropriate conditions, only after a positive waiting time. The continuum limit of a planar hexagonal lattice also supports a compact breather.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号