首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 415 毫秒
1.
Wave trains, or periodic travelling waves, can evolve behind invasion fronts in oscillatory reaction-diffusion models for predator-prey systems. Although there is a one-parameter family of possible wave train solutions, in a particular predator invasion a single member of this family is selected. Sherratt (1998) [13] has predicted this wave train selection, using a λ-ω system that is a valid approximation near a supercritical Hopf bifurcation in the corresponding kinetics and when the predator and prey diffusion coefficients are nearly equal. Away from a Hopf bifurcation, or if the diffusion coefficients differ somewhat, these predictions lose accuracy. We develop a more general wave train selection prediction for a two-component reaction-diffusion predator-prey system that depends on linearizations at the unstable homogeneous steady states involved in the invasion front. This prediction retains accuracy farther away from a Hopf bifurcation, and can also be applied when the predator and prey diffusion coefficients are unequal. We illustrate the selection prediction with its application to three models of predator invasions.  相似文献   

2.
3.
It is shown that within the manifold of exact solutions a system of reaction-diffusion equations admits only travelling waves with planar symmetry. A derivation of the generic form of approximate (asymptotic) cylindrical and spiral travelling periodic wave solutions is given. If an exact solution homogeneous in space and periodic in time is admitted by the system of reaction-diffusion equations, then travelling periodic spiral waves are admissble as approximate solutions. This is the theoretical explanation for the travelling periodic waves of chemical activity observed in recent experiments.  相似文献   

4.
In a chain of nonlinear oscillators, linearly coupled to their nearest neighbors, all travelling waves of small amplitude are found as solutions of finite dimensional reversible dynamical systems. The coupling constant and the inverse wave speed form the parameter space. The groundstate consists of a one-parameter family of periodic waves. It is realized in a certain parameter region containing all cases of light coupling. Beyond the border of this region the complexity of wave-forms increases via a succession of bifurcations. In this paper we give an appropriate formulation of this problem, prove the basic facts about the reduction to finite dimensions, show the existence of the ground states and discuss the first bifurcation by determining a normal form for the reduced system. Finally we show the existence of nanopterons, which are localized waves with a noncancelling periodic tail at infinity whose amplitude is exponentially small in the bifurcation parameter. Received: 10 September 1999 / Accepted: 15 December 1999  相似文献   

5.
We perform a bifurcation analysis of a model of Ca2+ wave propagation in the basal region of pancreatic acinar cells. The model we consider was first presented in Sneyd et al. [J. Sneyd, K. Tsaneva-Atanasova, J.I.E. Bruce, S.V. Straub, D.R. Giovannucci, D.I. Yule, A model of calcium waves in pancreatic and parotid acinar cells, Biophys. J. 85 (2003) 1392–1405], where a partial bifurcation analysis was given of the model in the absence of diffusion. We obtain more complete information about bifurcations of the diffusionless model via numerical studies, then analyse the spatially extended model by numerical investigation of the travelling wave equations and direct numerical solution of the model equations. We find solitary waves in the model equations arising from homoclinic bifurcations in the travelling wave equations. The solitary waves exist and appear to be stable for a significant interval of the primary bifurcation parameter (i.e., the concentration of inositol trisphosphate) but are eventually replaced by irregular spatio-temporal behaviour. The homoclinic bifurcations are related to a number of complicated mathematical structures in the travelling wave equations, including an anomalous homoclinic-Hopf bifurcation, heteroclinic bifurcations between an equilibrium and a periodic orbit, and homoclinic bifurcations of periodic orbits.  相似文献   

6.
In this paper, we employ the bifurcation method of dynamical systems to study the solitary waves and periodic waves of a generalized Boussinesq equations. All possible phase portraits in the parameter plane for the travelling wave systems are obtained. The possible solitary wave solutions, periodic wave solutions and cusp waves for the general Boussinesq type fluid model are also investigated.  相似文献   

7.
Nonlinear waves in mathematical models of nonequilibrium spatially uniform media with the oscillatory instability of the trivial state are considered. The models are based on the generalized Ginsburg-Landau equations. For the long-wave system, i.e. that described by two-component reaction-diffusion equations, we obtain the full stability conditions for monochromatic plane travelling waves. The basic part of the paper is devoted to the short-wave system which can be described by reaction-diffusion equations with not less than three components or by a two-component system with residual nonlocality. We construct the Ginsburg-Landau equation for this system, and we find its general quasistationary one-dimensional solution which is a travelling wave modulated by a travelling envelope wave. The stability of this solution is investigated with the especial emphasis on different important particular cases. The obtained results are compared with experimental observations of different waves on fronts of detonation and non-gaseous combustion (which also are characterized by the oscillatory short-wave instability of the trivial state), and the qualitative agreement between theoretical and experimental results is demonstrated.  相似文献   

8.
By using the bifurcation theory of planar dynamical systems and the qualitative theory of differential equations, we studied the dynamical behaviours and exact travelling wave solutions of the modified generalized Vakhnenko equation (mGVE). As a result, we obtained all possible bifurcation parametric sets and many explicit formulas of smooth and non-smooth travelling waves such as cusped solitons, loop solitons, periodic cusp waves, pseudopeakon solitons, smooth periodic waves and smooth solitons. Moreover, we provided some numerical simulations of these solutions.  相似文献   

9.
Synaptically coupled neurons show in-phase or antiphase synchrony depending on the chemical and dynamical nature of the synapse. Deterministic theory helps predict the phase differences between two phase-locked oscillators when the coupling is weak. In the presence of noise, however, deterministic theory faces difficulty when the coexistence of multiple stable oscillatory solutions occurs. We analyze the solution structure of two coupled neuronal oscillators for parameter values between a subcritical Hopf bifurcation point and a saddle node point of the periodic branch that bifurcates from the Hopf point, where a rich variety of coexisting solutions including asymmetric localized oscillations occurs. We construct these solutions via a multiscale analysis and explore the general bifurcation scenario using the lambda-omega model. We show for both excitatory and inhibitory synapses that noise causes important changes in the phase and amplitude dynamics of such coupled neuronal oscillators when multiple oscillatory solutions coexist. Mixed-mode oscillations occur when distinct bistable solutions are randomly visited. The phase difference between the coupled oscillators in the localized solution, coexisting with in-phase or antiphase solutions, is clearly represented in the stochastic phase dynamics.  相似文献   

10.
We investigate bifurcation and stability of nonuniform current states at a voltage-controlled current instability. We consider a model which exhibits bulk negative differential conductivity due to Bragg scattering of hot electrons. The system is described by balance equations for momentum and energy densities of the carriers. These transport fields are coupled to Maxwell's equations. The uniform stationary current state is unstable against long-wavelength dielectric relaxation modes at a critical field. We find that the softening of these modes gives rise to a family of periodic travelling waves and to a solitary solution (dipole domain). We show that the periodic travelling waves are unstable, wheras the dipole domain can be stabilized by coupling the sample to a suitable external circuit, if the static impedance of the sample in the domain state is negative. The model describes therefore a discontinuous nonequilibrium transition to a large amplitude domain state.Work Supported by the Swiss National Science Foundation  相似文献   

11.
In this paper we consider a class of scalar integral equations with a form of space-dependent delay. These nonlocal models arise naturally when modelling neural tissue with active axons and passive dendrites. Such systems are known to support a dynamic (oscillatory) Turing instability of the homogeneous steady state. In this paper we develop a weakly nonlinear analysis of the travelling and standing waves that form beyond the point of instability. The appropriate amplitude equations are found to be the coupled mean-field Ginzburg-Landau equations describing a Turing-Hopf bifurcation with modulation group velocity of O(1). Importantly we are able to obtain the coefficients of terms in the amplitude equations in terms of integral transforms of the spatio-temporal kernels defining the neural field equation of interest. Indeed our results cover not only models with axonal or dendritic delays but also those which are described by a more general distribution of delayed spatio-temporal interactions. We illustrate the predictive power of this form of analysis with comparison against direct numerical simulations, paying particular attention to the competition between standing and travelling waves and the onset of Benjamin-Feir instabilities.  相似文献   

12.
Exploiting the nonlinear dynamics in the negative feedback loop, we propose a statistical signal-response model to describe the different oscillatory behaviour in a biological network motif. By choosing the delay as a bifurcation parameter, we discuss the existence of Hopf bifurcation and the stability of the periodic solutions of model equations with the centre manifold theorem and the normal form theory. It is shown that a periodic solution is born in a Hopf bifurcation beyond a critical time delay, and thus the bifurcation phenomenon may be important to elucidate the mechanism of oscillatory activities in regulatory biological networks.  相似文献   

13.
We perform bifurcation analysis in a complex Ginzburg–Landau system with delayed feedback under the homogeneous Neumann boundary condition. We calculate the amplitude death region, and it turns out that the boundary of the amplitude death region consists of two Hopf bifurcation curves with wave number zero. The existence conditions for double Hopf bifurcations are established. Taking the feedback strength and time delay as bifurcation parameters, normal forms truncated to the third order at double Hopf singularity are derived, and the unfolding near the critical points is given. The bifurcation diagram near the double Hopf bifurcation is drawn in the two-parameter plane. The phenomena of amplitude death, the existence of stable bifurcating periodic solutions, and the coexistence of two stable periodic solutions with fast oscillation and slow oscillation respectively are simulated.  相似文献   

14.
15.
We consider a system of partial differential equations describing two spatially distributed populations in a "predator-prey" interaction with each other. The spatial evolution is governed by three processes: positive taxis of predators up the gradient of prey (pursuit), negative taxis of prey down the gradient of predators (evasion), and diffusion resulting from random motion of both species. We demonstrate a new type of propagating wave in this system. The mechanism of propagation of these waves essentially depends on the taxis and is entirely different from waves in a reaction-diffusion system. Unlike typical reaction-diffusion waves, which annihilate on collision, these "taxis" waves can often penetrate through each other and reflect from impermeable boundaries.  相似文献   

16.
We analyze the nonlinear dynamics near the incoherent state in a mean-field model of coupled oscillators. The population is described by a Fokker-Planck equation for the distribution of phases, and we apply center-manifold reduction to obtain the amplitude equations for steady-state and Hopf bifurcation from the equilibrium state with a uniform phase distribution. When the population is described by a native frequency distribution that is reflection-symmetric about zero, the problem has circular symmetry. In the limit of zero extrinsic noise, although the critical eigenvalues are embedded in the continuous spectrum, the nonlinear coefficients in the amplitude equation remain finite, in contrast to the singular behavior found in similar instabilities described by the Vlasov-Poisson equation. For a bimodal reflection-symmetric distribution, both types of bifurcation are possible and they coincide at a codimension-two Takens-Bogdanov point. The steady-state bifurcation may be supercritical or subcritical and produces a time-independent synchronized state. The Hopf bifurcation produces both supercritical stable standing waves and supercritical unstable traveling waves. Previous work on the Hopf bifurcation in a bimodal population by Bonilla, Neu, and Spigler and by Okuda and Kuramoto predicted stable traveling waves and stable standing waves, respectively. A comparison to these previous calculations shows that the prediction of stable traveling waves results from a failure to include all unstable modes.  相似文献   

17.
By applying the bifurcation theory of dynamical system to the generalized KP-BBM equation, the phase portraits of the travelling wave system are obtained. It can be shown that singular straight line in the travelling wave system is the reason why smooth periodic waves converge to periodic cusp waves. Under different parametric conditions, various sufficient conditions to guarantee the existence of the above solutions are given. Some exact explicit parametric representations of the above waves are obtained.   相似文献   

18.
A new kind of nonlinear nonequilibrium patterns--twisted spiral waves--is predicted for periodically forced oscillatory reaction-diffusion media. We show, furthermore, that, in such media, spatial regions with modified local properties may act as traps where propagating waves can be stored and released in a controlled way. Underlying both phenomena is the effect of the wavelength-dependent propagation reversal of traveling phase fronts, always possible when homogeneous oscillations are modulationally stable without forcing. The analysis is performed using as a model the complex Ginzburg-Landau equation, applicable for reaction-diffusion systems in the vicinity of a supercritical Hopf bifurcation.  相似文献   

19.
Attempts have been made to explore the exact periodic and solitary wave solutions of nonlinear reaction diffusion (RD) equation involving cubic–quintic nonlinearity along with time-dependent convection coefficients. Effect of varying model coefficients on the physical parameters of solitary wave solutions is demonstrated. Depending upon the parametric condition, the periodic, double-kink, bell and antikink-type solutions for cubic–quintic nonlinear reaction-diffusion equation are extracted. Such solutions can be used to explain various biological and physical phenomena.  相似文献   

20.
We study spatial instabilities in reacting and diffusing systems, where diffusion is modeled by a persistent random walk instead of the usual Brownian motion. Perturbations in these reaction walk systems propagate with finite speed, whereas in reaction-diffusion systems localized disturbances affect every part instantly, albeit with heavy damping. We present evolution equations for reaction random walks whose kinetics do not depend on the particles' direction of motion. The homogeneous steady state of such systems can undergo two types of transport-driven instabilities. One type of bifurcation gives rise to stationary spatial patterns and corresponds to the Turing instability in reaction-diffusion systems. The other type occurs in the ballistic regime and leads to oscillatory spatial patterns; it has no analog in reaction-diffusion systems. The conditions for these bifurcations are derived and applied to two model systems. We also analyze the stability properties of one-variable systems and find that small wavelength perturbations decay in an oscillatory manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号