首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The synthesis of complexes used to elucidate an understanding of fundamental An(III) and An(IV) coordination chemistry requires the development of suitable organic-soluble precursors. The reaction of oxide-free uranium metal turnings with 1.3 equivalents of elemental iodine in acetonitrile provided the U(III)/U(IV) complex salt, [U(N[triple bond]CMe)9][UI6][I] (1), in which the U(III) cation is surrounded by nine acetonitrile molecules in a tricapped trigonal prismatic arrangement, a [UI6]2- counterion, and a noncoordinating iodide. The U-N distances for the prismatic and capping nitrogens are 2.55(3) and 2.71(5) A, respectively. The same reaction performed in benzonitrile afforded crystalline UI4(N[triple bond]CPh)4 (3) in 78% isolated yield. In the solid state, 3 shows an eight-coordinate U(IV) atom in a "puckered" square antiprismatic geometry with U-N and U-I distances of 2.56(1) and 3.027(1) A, respectively. This benzonitrile UI4 adduct is a versatile U(IV) synthon that is soluble in methylene chloride, benzonitrile, and tetrahydrofuran, and moderately soluble in toluene and benzene, but decomposes in benzonitrile at 198 degrees C to [UI(N[triple bond]CPh)8][UI]6 (4), a U(III)/U(IV) salt analogous to 1. A toluene slurry of 3 treated with 2.2 equiv of Cp*MgCl.THF (Cp* = pentamethylcyclopentadienide) provided Cp*2UI2(N[triple bond]CPh) (5) in low yields. Single-crystal X-ray structure determination shows that the iodide ligands in 5 are in a rare cis configuration with an acute I-U-I angle of 83.16(7) degrees . Treatment of a methylene chloride solution of 3 with KTp* (Tp* = hydridotris(3,5-dimethylpyrazolylborate)) formed green TpUI3 (6) which was converted to yellow Tp*UI3(N[triple bond]CMe) (7) by rinsing with acetonitrile. Addition of 2.2 equiv of KTp* to a toluene solution of 3 followed by heating at 95 degrees C, filtration, and crystallization led to the isolation of the dinuclear species [Tp*UI(dmpz)]2[mu-O] (9) (dmpz = 3,5-dimethylpyrazolide), presumably formed by hydrolytic cleavage of excess KTp* by adventitious water. The Tp* complexes 6, 7, and 9 were characterized by single-crystal X-ray diffraction, NMR, FT-IR, and optical absorbance spectroscopies.  相似文献   

2.
The reaction of YbI(2) with KTp(Me2) gives (Tp(Me2))YbI(THF)(2) (1-Yb) as a thermally unstable product. Use of the more hindered KTp(tBu,Me) gave (Tp(tBu,Me))LnI(THF)(n) (Ln = Sm, n = 2, 2-Sm; Ln = Yb, n = 1, 2-Yb). The crystal structures of both these compounds are reported. Adducts with neutral ligands such as pyridines and isonitriles can be prepared and the crystal structures of [(Tp(tBu,Me))YbIL(n)] (L = CN(t)Bu, n = 1; L = 3,5-lutidine, n = 2) are described. 2-Sm can be oxidized using AgBPh(4) to give [(Tp(tBu,Me))SmI(THF)(2)]BPh(4). Compounds 2-Sm and 2-Yb are useful starting materials for the preparation of heteroleptic compounds by metathesis with appropriate potassium reagents. The preparations and characterization of the hydrocarbyls (Tp(tBu,Me))Ln{CH(SiMe(3))(2)} (Ln = Sm, 5-Sm; Yb, 5-Yb) and [(Tp(tBu,Me))Ln{CH(2)(SiMe(3))}(THF)] (Ln = Yb, 6a-Yb) and the triethylborohydrides [(Tp(tBu,Me))Ln(HBEt(3))(THF)(n)] (Ln = Sm, n = 0, 7-Sm; Yb, n = 1, 7-Yb) are reported, as well as the crystal structures of 5-Sm and 5-Yb, and the THF adducts 6a-Yb and [(Tp(tBu,Me))Sm{CH(SiMe(3))(2)}(THF)], 5a-Sm.  相似文献   

3.
Atom transfer reactions have been employed to convert Tp(i)(Pr)MoO(2)(OAr) into monomeric cis-oxosulfido-Mo(VI) and dimeric mu-disulfido-Mo(V) species, [Tp(i)(Pr)MoOS(OAr)](n)() (Tp(i)(Pr) = hydrotris(3-isopropylpyrazol-1-yl)borate; OAr = phenolate or naphtholate derivative; n = 1 and 2, respectively). Dark red, monomeric Tp(i)(Pr)MoOS(OAr) complexes contain distorted octahedral cis-oxosulfido-Mo(VI) centers, with d(Mo=O) = 1.692(5) A, d(Mo=S) = 2.132(2) A, and angle(O=Mo=S) = 103.68(16) degrees for the 2-sec-butylphenolate derivative. Dark red-purple, dimeric [Tp(i)(Pr)MoOS(OAr)](2) complexes undergo S-S bond cleavage forming monomeric oxosulfido-Mo(VI) species in solution. In the solid state, the 3,5-di-tert-butylphenolate derivative exhibits a centrosymmetric structure, with distorted octahedral anti oxo-Mo(V) centers bridged by a disulfido-kappaS,kappaS' ligand. Hydrolysis of the oxosulfido-Mo(VI) complexes results in the formation of [Tp(i)(Pr)MoO](2)(mu-S(2))(mu-O). In anaerobic solutions, certain oxosulfido-Mo(VI) complexes convert to molybdenyl complexes bearing bidentate 2-mercaptophenolate or related naphtholate ligands formed via intramolecular attack of the sulfido ligand on a coligand C-H group. The oxosulfido-Mo(VI) complexes serve as precursors to biologically relevant Mo(V) and heterobimetallic MoO(mu-S)Cu species and undergo a range of biomimetic reactions.  相似文献   

4.
Mononuclear iron silanethiolato complexes of the type CpFe(CO)(2)SSiR(3), where R = Ph (1a) and (i)()Pr (1b), were prepared via treatment of [CpFe(CO)(2)(THF)]BF(4) with LiSSiPh(3).Et(2)O and NaSSi(i)()Pr(3), respectively. The molecular structure of 1a was determined by X-ray crystallography. Complex 1a was reacted with 1 equiv of SO(2) to give the corresponding O-silyl thiosulfite, CpFe(CO)(2)SS(O)OSiPh(3) (2), via 1,2-insertion of SO(2) into the S-Si bond. This reaction models the activation of SO(2) in the homogeneously catalyzed Claus process.  相似文献   

5.
The syntheses, structures, and magnetic properties of a series of di- and trivalent hydridotris(3,5-dimethylpyrazol-1-yl)borate (Tp*) cyanomanganates are described. Treatment of tris(acetylacetonate)manganese(III) [Mn(acac)(3)] with KTp* and tetra(ethyl)ammonium cyanide affords [NEt(4)][(Tp*)Mn(II)(κ(2)-acac)(CN)] (1), as the first monocyanomanganate(II) complex; attempted oxidation of 1 with iodine affords {(Tp*)Mn(II)(κ(2)-acac(3-CN))}(n) (2) as a one-dimensional chain and bimetallic {[NEt(4)][(Tp*)Mn(II)(κ(2)-acac(3-CN))](2)(μ-CN) (3) as the major and minor products, respectively. A fourth complex, [NEt(4)][(Tp*)Mn(II)(η(2)-acac(3-CN))(η(1)-NC-acac)] (4), is obtained via treatment of Mn(acac(3-CN))(3) with KTp* and [NEt(4)]CN, while [NEt(4)](2)[Mn(II)(CN)(4)] (5) was prepared from manganese(II) trifluoromethanesulfonate and excess [NEt(4)]CN. Tricyanomanganate(III) complexes, [cat][(Tp*)Mn(III)(CN)(3)] [cat = NEt(4)(+), 7; PPN(+), 8], are prepared via sequential treatment of Mn(acac(3-CN))(3) with KTp*, followed by [NEt(4)]CN, or [cat](3)[Mn(III)(CN)(6)] with (Tp*)SnBu(2)Cl. Magnetic measurements indicate that 1, 2, and 4 contain isotropic Mn(II) (S = (5)/(2); g = 2.00) centers, and no long-range magnetic ordering is found above 1.8 K. Compounds 7 and 8 contain S = 1 Mn(III) centers that adopt singly degenerate spin ground states without orbital contributions to their magnetic moments.  相似文献   

6.
The structures of bis(pyrazolylethyl) ether derivatives of zinc and cobalt, namely [eta(3)-O(CH(2)CH(2)pz(Pr)()i()2)(2)]Zn(NO(3))(2) and [eta(3)-O(CH(2)CH(2)pz(Me)()2)(2)]Co(NO(3))(2), have been determined with a view to addressing the applicability of such ligands in modeling bioinorganic aspects of zinc chemistry. Specific consideration is given to the possibility that bis(pyrazolylethyl) ether ligands may provide an NNO donor system which may model aspects of the binding of zinc to protein backbones in enzymes such as thermolysin. The structural studies demonstrate that the bis(pyrazolylethyl) ether ligands do indeed coordinate via each of their NNO functionalities but that the relationship to the enzyme is limited by the adoption of meridional rather than facial coordination geometries. [eta(3)-O(CH(2)CH(2)pz(Pr)()i()2)(2)]Zn(NO(3))(2) is monoclinic, P2(1)/c (No. 14), with a = 11.619(2) ?, b = 14.380(3) ?, c = 16.757(2) ?, beta = 90.44(2) degrees, and Z = 4. [eta(3)-O(CH(2)CH(2)pz(Me)()2)(2)]Co(NO(3))(2) is monoclinic, C2/c (No. 15), with a = 17.136(3) ?, b = 10.505(2) ?, c = 11.121(2) ?, beta = 104.62(3) degrees, and Z = 4.  相似文献   

7.
The preparation of new "scorpionate" ligands in the form of the lithium derivatives [(Li(bdmpzdta)(H(2)O))(4)] (1) [bdmpzdta = bis(3,5-dimethylpyrazol-1-yl)dithioacetate], [Li(bdphpza)(H(2)O)(THF)] (2) [bdphpza = bis(3,5-diphenylpyrazol-1-yl)acetate], and [Li(bdphpzdta)(H(2)O)(THF)] (3) [bdphpzdta = bis(3,5-diphenylpyrazol-1-yl)dithioacetate] has been carried out. Furthermore, a series of titanium complexes has been prepared by reaction of TiCl(4)(THF)(2) with the lithium reagents [(Li(bdmpza)(H(2)O))(4)] (4) [bdmpza = bis(3,5-dimethylpyrazol-1-yl)acetate] and 1. Under the appropriate experimental conditions neutral complexes, namely [TiCl(3)(kappa(3)-bdmpza)] (5), [TiCl(3)(kappa(3)-bdmpzdta)] (6), and [TiCl(2)(kappa(2)-bdmpzdta)(2)] (7), and cationic complexes, namely [TiCl(2)(THF)(kappa(3)-bdmpza)]Cl (8) and [TiCl(2)(THF)(kappa(3)-bdmpzdta)]Cl (9), were isolated. Complexes 8 and 9 undergo an interesting nucleophilic THF ring-opening reaction to give the corresponding alkoxide-containing species [TiCl(2)(kappa(3)-bdmpza)(O(CH(2))(4)Cl)] (10) and [TiCl(2)(kappa(3)-bdmpzdta)(O(CH(2))(4)Cl)] (11). A family of alkoxide-containing complexes of general formulas [TiCl(2)(kappa(3)-bdmpza)(OR)] [R = Me (12); R = Et (14); R = (i)Pr (16); R = (t)Bu (18)] and [TiCl(2)(kappa(3)-bdmpzdta)(OR)] [R = Me (13); R = Et (15); R = (i)Pr (17)] was also prepared. The structures of these complexes have been determined by spectroscopic methods, and in addition, the X-ray crystal structures of 3, 7, 10, and 11 were also established.  相似文献   

8.
The reaction of [(3,5-Me(2)-C(5)H(3)N)(2)Zn(ESiMe(3))(2)] (E = Se, Te) with cadmium(II) acetate in the presence of PhESiMe(3) and P(n)Pr(3) at low temperature leads to the formation of single crystals of the ternary nanoclusters [Zn(x)()Cd(10)(-)(x)()E(4)-(EPh)(12)(P(n)()Pr(3))(4)] [E = Se, x = 1.8 (2a), 2.6 (2b); Te, x = 1.8 (3a), 2.6 (3b)] in good yield. The clusters [Zn(3)Hg(7)Se(4)(SePh)(12)(P(n)()Pr(3))(4)] (4) and [Cd(3.7)Hg(6.3)Se(4)(SePh)(12)(P(n)()Pr(3))(4)] (5) can be accessed by similar reactions involving [(3,5-Me(2)-C(5)H(3)N)(2)Zn(SeSiMe(3))(2)] or [(N,N'-tmeda)Cd(SeSiMe(3))(2)] (1) and mercury(II) chloride. The metal silylchalcogenolate reagents are efficient delivery sources of {ME(2)} in cluster synthesis, and thus, the metal ion content of these clusters can be readily moderated by controlling the reaction stoichiometry. The reaction of cadmium acetate with [(3,5-Me(2)-C(5)H(3)N)(2)Zn(SSiMe(3))(2)], PhSSiMe(3), and P(n)()Pr(3) affords the larger nanocluster [Zn(2.3)Cd(14.7)S(4)(SPh)(26)(P(n)()Pr(3))(2)] (6). The incorporation of Zn(II) into {Cd(10)E} (E = Se, Te) and Zn(II) or Cd(II) into {Hg(10)Se} nanoclusters results in a significant blue shift in the energy of the first "excitonic" transition. Solid-state thermolysis of complexes 2 and 3 reveals that these clusters can be used as single-source precursors to bulk ternary Zn(x)Cd(1)(-)(x)E materials as well as larger intermediate clusters and that the metal ion ratio is retained during these reactions.  相似文献   

9.
Yan L  Liu H  Wang J  Zhang Y  Shen Q 《Inorganic chemistry》2012,51(7):4151-4160
Metathesis reactions of YbI(2) with Li(2)L (L = Me(3)SiN(Ph)CN(CH(2))(3)NC(Ph)NSiMe(3)) in THF at a molar ratio of 1:1 and 1:2 both afforded the Yb(II) iodide complex [{YbI(DME)(2)}(2)(μ(2)-L)] (1), which was structurally characterized to be a dinuclear Yb(II) complex with a bridged L ligand. Treatment of EuI(2) with Li(2)L did not afford the analogous [{EuI(DME)(2)}(2)(μ(2)-L)], or another isolable Eu(II) complex, but the hexanuclear heterobimetallic cluster [{Li(DME)(3)}(+)](2)[{(EuI)(2)(μ(2)-I)(2)(μ(3)-L)(2)(Li)(4)}(μ(6)-O)](2-) (2) was isolated as a byproduct in a trace yield. The rational synthesis of cluster 2 could be realized by the reaction of EuI(2) with Li(2)L and H(2)O in a molar ratio of 1:1.5:0.5. The reduction reaction of LLnCl(THF)(2) (Ln = Yb and Eu) with Na/K alloy in THF gave the corresponding Ln(II) complexes [Yb(3)(μ(2)-L)(3)] (3) and [Eu(μ(2)-L)(THF)](2) (4) in good yields. An X-ray crystal structure analysis revealed that each L in complex 3 might adopt a chelating ligand bonding to one Yb atom and each Yb atom coordinates to an additional amidinate group of the other L and acts as a bridging link to assemble a macrocyclic structure. Complex 4 is a dimer in which the two monomers [Eu(μ(2)-L)(THF)] are connected by two μ(2)-amidinate groups from the two L ligands. Complex 3 reacted with CyN═C═NCy and diazabutadienes [2,6-(i)Pr(2)C(6)H(3)N═CRCR═NC(6)H(3)(i)Pr(2)-2,6] (R═H, CH(3)) (DAD) as a one-electron reducing agent to afford the corresponding Yb(III) derivatives: the complex with an oxalamidinate ligand [LYb{(NCy)(2)CC(NCy)(2)}YbL] (5) and the complexes containing a diazabutadiene radical anion [LYb((i)Pr(2)C(6)H(3)NCRCRNC(6)H(3)(i)Pr(2))] (R = H (6), R = CH(3) (7)). Complexes 5-7 were confirmed by an X-ray structure determination.  相似文献   

10.
The indium(I) complex [Tp(Bu)()t()2]In ([Tp(Bu)()t()2] = tris(3,5-di-tert-butylpyrazolyl)hydroborato), synthesized by the reaction of [Tp(Bu)()t()2]Na with InCl, exhibits a structure in which the [Tp(Bu)()t()2] ligand adopts a highly twisted configuration due to steric interactions of the tert-butyl substituents in the 5-positions of the pyrazolyl groups. In contrast, the absence of 5-tert-butyl substituents allows the pyrazolyl groups in [Tp(Bu)()t]In to be coplanar with their respective In-N-N-B planes. The structure of [Tp(Bu)()t]In has been previously reported but was noted to exhibit an unusual type of disorder in which a nitrogen atom of one molecule was coincident with the boron atom of its disordered configuration [Dias, H. V. R.; Huai, L.; Jin, W.; Bott, S. G. Inorg. Chem. 1995, 34, 1973-1974]. In view of the unusual nature of the disorder, which involved both a 2-fold rotation and a canting of the molecule, the disordered structure of [Tp(Bu)()t]In was re-evaluated. Significantly, an ordered structure of [Tp(Bu)()t]In was obtained. The disorder present in the previously reported structure is a consequence of adopting a space group with unnecessarily high symmetry. Thus, [Tp(Bu)()t]In provides an example where the structure is much better described as ordered in a noncentrosymmetric space group, rather than disordered in the centrosymmetric alternative. [Tp(Bu)()t()2]In is monoclinic, of space group P2(1)/c (No. 14), with a = 18.781(9) ?, b = 10.380(2) ?, c = 20.849(6) ?, beta = 112.76(3) degrees, and Z = 4. [Tp(Bu)()t]In is orthorhombic, of space group Cmc2(1) (No. 36), with a = 16.193(3) ?, b = 15.214(3) ?, c = 9.963(3) ?, and Z = 4.  相似文献   

11.
Electronic structure, spin-state, and geometrical relationships for a series of pseudotetrahedral Co(II) aryloxide, siloxide, arylthiolate, and silylthiolate complexes supported by the tris(phosphino)borate [BP(3)] ligands [PhBP(3)] and [PhBP(i)()(Pr)(3)] ([PhB(CH(2)PPh(2))(3)](-) and [PhB(CH(2)P(i)()Pr(2))(3)](-), respectively) are described. Standard (1)H NMR, optical, electrochemical, and solution magnetic data, in addition to low-temperature EPR and variable temperature SQUID magnetization data, are presented for the new cobalt(II) complexes [PhBP(3)]CoOSiPh(3) (2), [PhBP(3)]CoO(4-(t)()Bu-Ph) (3), [PhBP(3)]CoO(C(6)F(5)) (4), [PhBP(3)]CoSPh (5), [PhBP(3)]CoS(2,6-Me(2)-Ph) (6), [PhBP(3)]CoS(2,4,6-(i)()Pr(3)-Ph) (7), [PhBP(3)]CoS(2,4,6-(t)()Bu(3)-Ph) (8), [PhBP(3)]CoSSiPh(3) (9), [PhBP(3)]CoOSi(4-NMe(2)-Ph)(3) (10), [PhBP(3)]CoOSi(4-CF(3)-Ph)(3) (11), [PhBP(3)]CoOCPh(3) (12), [PhBP(i)()(Pr)(3)]CoOSiPh(3) (14), and [PhBP(i)()(Pr)(3)]CoSSiPh(3) (15). The low-temperature solid-state crystal structures of 2, 3, 5-10, 12, and 15 are also described. These pseudotetrahedral cobalt(II) complexes are classified as featuring one of two limiting distortions, either umbrella or off-axis. Magnetic and spectroscopic data demonstrate that both S = (1)/(2) and S = (3)/(2) ground-state electronic configurations are accessible for the umbrella distorted structure type, depending on the nature of the X-type ligand, its denticity (eta(1) versus eta(3)), and the tripodal phosphine ligand employed. Off-axis distorted complexes populate an S = (1)/(2) ground-state exclusively. For those four-coordinate complexes that populate S = (1)/(2) ground states, X-ray data show two Co-P bond distances that are invariably shorter than a third Co-P bond. The pseudotetrahedral siloxides 2, 10, and 11 are exceptional in that they display gradual spin crossover in the solid state. The diamagnetic cobalt(III) complex {[PhBP(3)]CoOSiPh(3)}{BAr(4)} ({16}{BAr(4)}) (Ar = Ph or 3,5-(CF(3))(2)-C(6)H(3)) has also been prepared and structurally characterized. Accompanying electronic structure calculations (DFT) for complexes 2, 6, and {16}(+) support the notion of a close electronic structure relationship between these four-coordinate systems and octahedral, sandwich, and half-sandwich coordination complexes.  相似文献   

12.
This report covers studies in trivalent lanthanide complexation by two simple cyclohexanetriols that are models of the two coordination sites found in sugars and derivatives. Several complexes of trivalent lanthanide ions with cis,cis-1,3,5-trihydroxycyclohexane (L(1)()) and cis,cis-1,2,3-trihydroxycyclohexane (L(2)()) have been characterized in the solid state, and some of them have been studied in organic solutions. With L(1)(), Ln(L)(2) complexes are obtained when crystallization is performed from acetonitrile solutions whatever the nature of the salt (nitrate or triflate) [Ln(L(1)())(2)(NO(3))(2)](NO(3)) (Ln = Pr, Nd); [Ln(L(1)())(2)(NO(3))H(2)O](NO(3))(2) (Ln = Eu, Ho, Yb); [Ln(L(1)())(2)(OTf)(2)(H(2)O)](OTf) (Ln = Nd, Eu). Lanthanum nitrate itself gives a mixed complex [La(L(1)())(2)(NO(3))(2)][LaL(1)()(NO(3))(4)] from acetonitrile solution while [La(L(1)())(2)(NO(3))(2)](NO(3)) is obtained using dimethoxyethane as reaction solvent and crystallization medium. With L(2)(), Ln(L)(2) complexes have also been crystallized from methanol solution [Ln(L(2)())(2)(NO(3))(2)]NO(3), (Ln = Pr, Nd, Eu). Single-crystal X-ray diffraction analyses are reported for these complexes. Complex formation in solution has been studied for several triflate salts (La, Pr, Nd, Eu, and Yb) with L(1 )()and L(2)(), respectively in acetonitrile and in methanol. In contrast to the solid state, both structures Ln(L) and Ln(L)(2) equilibrate in solution, as was demonstrated by low-temperature (1)H NMR and electrospray ionization mass spectrometry experiments. Competing experiments in complexing abilities of L(1)() and L(2)() with trivalent lanthanide cations have shown that only L(2)() exhibits a small selectivity (Nd > Pr > Yb > La > Eu) in methanol.  相似文献   

13.
Cao Y  Du Z  Li W  Li J  Zhang Y  Xu F  Shen Q 《Inorganic chemistry》2011,50(8):3729-3737
Reaction of Ln(OAr(1))(3)(THF)(2) (Ar(1)= [2,6-((t)Bu)(2)-4-MeC(6)H(2)] with carbodiimides (RNCNR) in toluene afforded the RNCNR coordinated complexes (Ar(1)O)(3)Ln(NCNR) (R = (i)Pr (isopropyl), Ln = Y (1) and Yb (2); R = Cy (cyclohexyl), Ln = Y (3)) in high yields. Treatment of 1 and 2 with 4-chloroaniline, respectively, at a molar ratio of 1:1 yielded the corresponding monoguanidinate complex (Ar(1)O)(2)Y[(4-Cl-C(6)H(4)N)C(NH(i)Pr)N(i)Pr](THF) (4) and (Ar(1)O)(2)Yb[(4-Cl-C(6)H(4)N)C(NH(i)Pr)N(i)Pr](THF) (5). Complexes 4 and 5 can be prepared by the reaction of Ln(OAr(1))(3)(THF)(2) with RNCNR and amine in toluene at a 1:1:1 molar ratio in high yield directly. A remarkable influence of the aryloxide ligand on this transformation was observed. The similar transformation using the less bulky yttrium complexes Y(OAr(2))(3)(THF)(2) (Ar(2) = [2,6-((i)Pr)(2)C(6)H(3)]) or Y(OAr(3))(3)(THF)(2) (Ar(3) = [2,6-Me(2)C(6)H(3)]) did not occur. Complexes Ln(OAr(1))(3)(THF)(2) were found to be the novel precatalysts for addition of RNCNR with amines, which represents the first example of catalytic guanylation by the lanthanide complexes with the Ln-O active group. The catalytic activity of Y(OAr(1))(3)(THF)(2) was found to be the same as that of monoguanidinate complex 4, indicating 4 is one of the active intermediates in the present process. The other intermediate, amide complex (Ar(1)O)(2)Ln[(2-OCH(3)-C(6)H(4)NH)(2-OCH(3)-C(6)H(4)NH(2))] (6), was isolated by protonolysis of 4 with 2-OCH(3)-C(6)H(4)NH(2). All the complexes were structurally characterized by X-ray single crystal determination.  相似文献   

14.
Reaction of [(Tp(Me)2)(2)UI] with KNR(2) (R = C(6)H(5), SiMe(3)) in tetrahydrofuran (THF) afforded the monomeric trivalent actinide amide complexes [(Tp(Me)2)(2)U[N(C(6)H(5))(2)]], 1, and [(Tp(Me)2)(2)U[N(SiMe(3))(2)]], 2. The complexes have been fully characterized by spectroscopic methods and their structures were confirmed by X-ray crystallographic studies. In the solid state 1 and 2 exhibit distorted pentagonal bipyramidal geometries. The U-NR(2) bond lengths in both complexes are the same but in complex 2 the greater steric demands of the N(SiMe(3))(2) ligand led to elongated U-N(pz) bonds, especially those opposite the amido ligand.  相似文献   

15.
The series of complexes [CdX(2)(C(5)H(4)NCOOR)] (X = Cl or Br; R = Me, Et, Pr(n)() or Pr(i)()) and [CdX(2)(C(5)H(4)NCOOR)(2)] (X = I; R = Me, Et, Pr(n)(), or Pr(i)()) have been obtained by the addition reaction of esters of 2-pyridinecarboxylic acid to cadmium(II) halides. X-ray crystal structures of two complexes [CdI(2)(C(5)H(4)NCOOR)(2)], R = Me (10) and R = Pr(n)() (12), have been determined. In both cases, the structure consists of discrete neutral monomeric units where the cadmium atom has a distorted octahedral coordination with CdI(2)N(2)O(2) core, two halides being in cis disposition. Structural information is compared with that deduced from (113)Cd CPMAS NMR experiments. Chemical shift anisotropies are discussed in terms of distortions produced in cadmium octahedra. The orientation of the principal axes of (113)Cd shielding tensor is also analyzed and related to the disposition of ligands in the structures of two analyzed compounds.  相似文献   

16.
17.
This paper describes the synthesis and selected reactions of a series of crystalline mono(beta-diiminato)yttrium chlorides , , , , , , and . The X-ray structure of each has been determined, as well as of [YCl()(2)] (), [Y()(2)OBu(t)] () and [Y{CH(SiMe(3))(2)}(thf)(mu-Cl)(2)Li(OEt(2))(2)(mu-Cl)](2) (). The N,N'-kappa(2)-beta-diiminato ligands were [{N(R)C(Me)}(2)CH](-) [R = C(6)H(4)Pr(i)-2 (); R = C(6)H(4)Bu(t)-2 (); R = C(6)H(3)Pr(i)(2)-2,6 ()], [{N(SiMe(3))C(Ph)}(2)CH)](-) () and [{N(C(6)H(3)Pr(i)(2)-2,6)C(H)}(2)CPh](-) (). Equivalent portions of Li[L(x)] and YCl(3) in Et(2)O under mild conditions yielded [Y(mu-Cl)(L(x))(mu-Cl)(2)Li(OEt(2))(2)](2) [L(x) = () or ()] and [Y(mu-Cl)()(mu-Cl)Li(OEt(2))(2)(mu-Cl)](2) () or its thf (instead of Et(2)O) equivalent . Each of the Li(OEt(2))(2)Cl(2) moieties is bonded in a terminal () or bridging () mode with respect to the two Y atoms; the difference is attributed to the greater steric demand of than or . Under slightly more forcing conditions, YCl(3) and Li() (via) gave the lithium-free complex [YCl(2)()(thf)(2)] (). Two isoleptic compounds and (having in place of in , and , respectively) were obtained from YCl(3) and an equivalent portion of K[] and Na[], respectively; under the same conditions using Na[], the unexpected product was [YCl()(2)] () (i.e. incorporating only one half of the YCl(3)). A further unusual outcome was in the formation of from and 2 Li[CH(SiMe(3))(2)]. Compound [Y(){N(H)C(6)H(3)Pr(i)(2)-2,6}(thf)(mu(3)-Cl)(2)K](2).4Et(2)O (), obtained from and K[N(H)C(6)H(3)Pr(i)(2)-2,6], is noteworthy among group 3 or lanthanide metal (M) compounds for containing MClKCl (M = Y) moieties.  相似文献   

18.
The reactivity of KNHAr reagents (Ar = C(6)H(5), C(6)H(3)Me(2)-2,6, C(6)H(3)(i)Pr(2)-2,6) with lanthanide and yttrium trichlorides has been investigated. With the larger metals Nd and Sm and the smaller 2,6-dimethyl-substituted ligand, the bimetallic dianionic complexes [K(THF)(6)](2)[Ln(&mgr;-NHC(6)H(3)Me(2)-2,6)(NHC(6)H(3)Me(2)-2,6)(3)](2) (Ln: Sm, 1a; Nd, 1b) are isolated as the potassium salts. Under the same reaction conditions YCl(3) forms a bimetallic anion which retains chloride: [K(DME)(2)(THF)(3)][Y(2)(&mgr;-NHC(6)H(3)Me(2)-2,6)(2)(&mgr;-Cl)(NHC(6)H(3)Me(2)-2,6)(4)(THF)(2)], 2. With the larger 2,6-diisopropyl ligands, neutral complexes are isolated in both solvated monometallic and unsolvated bimetallic forms. With Nd, a distorted octahedral trisolvate, Nd(NHC(6)H(3)(i)Pr(2)-2,6)(3)(THF)(3), 3, was obtained, whereas with Yb and Y the trigonal bipyramidal disolvates, Ln(NHC(6)H(3)(i)Pr(2)-2,6)(3)(THF)(2) (Ln: Yb, 4a; Y, 4b), were isolated. THF-free complexes of the NHC(6)H(3)(i)Pr(2)-2,6 ligand are available by reacting the amine NH(2)C(6)H(3)(i)Pr(2)-2,6 with Ln[N(SiMe(3))(2)](3) complexes. By this route, the dimers [Ln(&mgr;-NHC(6)H(3)(i)Pr(2)-2,6)(NHC(6)H(3)(i)Pr(2)-2,6)(2)](2) (Ln: Yb, 5a; Y, 5b) were isolated. The reaction of the unsubstituted arylamido salt KNHC(6)H(5) with NdCl(3) produced an insoluble material which was characterized as [Nd(NHC(6)H(5))(3)(KCl)(3)], 6. 6 reacted with Al(2)Me(6) in hexanes and produced a heteroleptic mixed-metal complex {[Me(2)Al(&mgr;-Me(2))](2)Nd(&mgr;(3)-NC(6)H(5))(&mgr;-Me)AlMe}(2), 7, and the trimeric aluminum arylamido complex [Me(2)Al(&mgr;-NHC(6)H(5))](3), 8. The solvent of crystallization and relevant crystallographic data for the compounds identified by X-ray analysis follow: 1a,THF, 156 K, P2(1)/n, a = 12.985(2) ?, b = 27.122(5) ?, c = 17.935(3) ?, beta = 100.19(1) degrees, V = 6216(1) ?(3), Z = 2, 6148 reflections (I > 3sigma(I)), R(F)() = 7.1%; 1b,THF, 156 K, P2(1)/n, a = 12.998(2) ?, b = 27.058(3) ?, c = 17.962(2) ?, beta = 99.74(1) degrees, V = 6225(1) ?(3), Z = 2; 2,DME/hexanes, P2(1)/n, a = 23.335(2) ?, b = 12.649(1) ?, c = 27.175(3) ?, beta = 96.36(1) degrees, V = 7971(1) ?(3), Z = 4, 2788 reflections (I > 3sigma(I)), R(F)() = 9.5%; 3, THF, P2(1), a = 12.898(1) ?, b = 16.945(1) ?, c = 13.290(1) ?, beta = 118.64(2) degrees, V = 2549.3(3) ?(3), Z = 2, 3414 reflections (I > 3sigma(I)), R(F)() = 4.3%; 4a, hexanes, P2(1), a = 9.718(2) ?, b = 19.119(3) ?, c = 12.640(2) ?, beta = 112.08(1) degrees, V = 2176.3(6) ?(3), Z = 2, 2933 reflections (I > 3sigma(I)), R(F)() = 4.3%; 4b, hexanes, 158 K, a = 9.729(2) ?, b = 19.095(5) ?, c = 12.744(1) ?, beta = 112.11(1) degrees, V = 2193.4(6) ?(3); 5b, hot toluene, 158 K, P2(1), a =19.218(9) ?, b = 9.375(3) ?, c = 19.820(5) ?, beta = 110.25(2) degrees, V = 3350(2)?(3), Z = 2, 1718 reflections (I > 2sigma (I)), R1 = 9.7%; 7, hexanes, 156 K, P&onemacr;, a = 9.618(3) ?, b = 12.738(4) ?, c = 9.608(3) ?, alpha = 99.32(1) degrees, beta = 108.87(1) degrees, gamma = 94.23(1) degrees, V = 1089.1(6) ?(3), Z = 2, 2976 reflections (I > 3sigma(I)), R(F)() = 3.9%; 8, hexanes, 156 K, Pcab, a = 23.510(5) ?, b = 25.462(5) ?, c = 8.668(2) ?, V = 5188(1) ?(3), Z = 8, 1386 reflections (I > 3sigma(I)), R(F)() = 5.7%.  相似文献   

19.
A series of sterically varied aryl alcohols H-OAr [OAr = OC6H5 (OPh), OC6H4(2-Me) (oMP), OC6H3(2,6-(Me))2 (DMP), OC6H4(2-Pr(i)) (oPP), OC6H3(2,6-(Pr(i)))2 (DIP), OC6H4(2-Bu(t)) (oBP), OC6H3(2,6-(Bu(t)))2 (DBP); Me = CH3, Pr(i) = CHMe2, and Bu(t) = CMe3] were reacted with LiN(SiMe3)2 in a Lewis basic solvent [tetrahydrofuran (THF) or pyridine (py)] to generate the appropriate "Li(OAr)(solv)x". In the presence of THF, the OPh derivative was previously identified as the hexagonal prismatic complex [Li(OPh)(THF)]6; however, the structure isolated from the above route proved to be the tetranuclear species [Li(OPh)(THF)]4 (1). The other "Li(OAr)(THF)x" products isolated were characterized by single-crystal X-ray diffraction as [Li(OAr)(THF)]4 [OAr = oMP (2), DMP (3), oPP (4)], [Li(DIP)(THF)]3 (5), [Li(oBP)(THF)2]2, (6), and [Li(DBP)(THF)]2, (7). The tetranuclear species (1-4) consist of symmetric cubes of alternating tetrahedral Li and pyramidal O atoms, with terminal THF solvent molecules bound to each metal center. The trinuclear species 5 consists of a six-membered ring of alternating trigonal planar Li and bridging O atoms, with one THF solvent molecule bound to each metal center. Compound 6 possesses two Li atoms that adopt tetrahedral geometries involving two bridging oBP and two terminal THF ligands. The structure of 7 was identical to the previously reported [Li(DBP)(THF)]2 species, but different unit cell parameters were observed. Compound 7 varies from 6 in that only one solvent molecule is bound to each Li metal center of 7 because of the steric bulk of the DBP ligand. In contrast to the structurally diverse THF adducts, when py was used as the solvent, the appropriate "Li(OAr)(py)x" complexes were isolated as [Li(OAr)(py)2]2 (OAr = OPh (8), oMP (9), DMP (10), oPP (11), DIP (12), oBP (13)) and [Li(DBP)(py)]2 (14). Compounds 8-13 adopt a dinuclear, edge-shared tetrahedral complex. For 14, because of the steric crowding of the DBP ligand, only one py is coordinated, yielding a dinuclear fused trigonal planar arrangement. Two additional structure types were also characterized for the DIP ligand: [Li(DIP)(H-DIP)(py)]2 (12b) and [Li2(DIP)2(py)3] (12c). Multinuclear (6,7Li and 13C) solid-state MAS NMR spectroscopic studies indicate that the bulk powder possesses several Li environments for "transitional ligands" of the THF complexes; however, the py adducts possess only one Li environment, which is consistent with the solid-state structures. Solution NMR studies indicate that "transitional" compounds of the THF precursors display multiple species in solution whereas the py adducts display only one lithium environment.  相似文献   

20.
Reaction of the vanadium(V) imide [V(NAr)Cl(3)(THF)] (Ar = 2,6-C(6)H(3)(i)()Pr(2)) with the diamino-pyridine derivative MeC(2-C(5)H(4)N)(CH(2)NHSiMe(2)(t)()Bu)(2) (abbreviated as H(2)N'(2)N(py)) gave modest yields of the vanadium(IV) species [V(NAr)(H(3)N'N' 'N(py))Cl(2)] (1 where H(3)N'N' 'N(py) = MeC(2- C(5)H(4)N)(CH(2)NH(2))(CH(2)NHSiMe(2)(t)()Bu) in which the original H(2)N'(2)N(py) has effectively lost SiMe(2)(t)()Bu (as ClSiMe(2)(t)()Bu) and gained an H atom. Better behaved reactions were found between the heavier Group 5 metal complexes [M(NR)Cl(3)(py)(2)] (M = Nb or Ta, R = (t)()Bu or Ar) and the dilithium salt Li(2)[N(2)N(py)] (where H(2)N(2)N(py) = MeC(2-C(5)H(4)N)(CH(2)NHSiMe(3))(2)), and these yielded the six-coordinate M(V) complexes [M(NR)Cl(N(2)N(py))(py)] (M = Nb, R = (t)()Bu 2; M = Ta, R = (t)()Bu 3 or Ar 4). The compounds 2-4 are fluxional in solution and undergo dynamic exchange processes via the corresponding five-coordinate homologues [M(NR)Cl(N(2)N(py))]. Activation parameters are reported for the complexes 2 and 3. In the case of 2, high vacuum tube sublimation afforded modest quantities of [Nb(N(t)()Bu)Cl(N(2)N(py))] (5). The X-ray crystal structures of the four compounds 1, 2, 3, and 4 are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号