首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Neutral anion energy differences for a large class of alpha-substituted silyl radicals have been computed to determine the effect of alkyl, silyl, and halo substituents on their electron affinities. In particular, we report theoretical predictions of the adiabatic electron affinities (AEAs), vertical electron affinities (VEAs), and vertical detachment energies (VDEs) for a series of methyl-, silyl-, and halo-substituted silyl radical compounds. This work utilizes the carefully calibrated DZP++ basis set, in conjunction with the pure BLYP and OLYP functionals, as well as with the hybrid B3LYP, BHLYP, PBE1PBE, MPW1K, and O3LYP functionals. Bromine has the largest effect in stabilizing the anions, and the BLYP/DZP++ AEA for SiBr(3) is 3.29 eV. The other predicted electron affinities are for SiH(3) (1.37 eV), SiH(2)CH(3) (1.09 eV), SiH(2)F (1.54 eV), SiH(2)Cl (1.94 eV), SiH(2)Br (2.05 eV), SiH(2)(SiH(3)) (1.77 eV), SiH(CH(3))(2) (0.92 eV), SiHF(2) (1.86 eV), SiHCl(2) (2.53 eV), SiHBr(2) (2.67 eV), Si(CH(3))(3) (0.86 eV), SiF(3) (2.66 eV), SiCl(3) (3.21 eV), Si(SiH(3))(3) (2.25 eV), and SiFClBr (3.13 eV). For the five silyl radicals where experimental data are available, the BLYP functional gives the most accurate determination of AEAs; the average absolute error is 0.04(1) eV, whereas the corresponding errors for the O3LYP, MPW1K, PBE1PBE, B3LYP, OLYP, and BHLYP functionals are 0.05(8), 0.06(0), 0.06(3), 0.08(5), 0.11(5), and 0.15(3) eV, respectively.  相似文献   

2.
Three novel mixed-ligand lithium aggregates, [(mu(3)-EDBP)Li(2)](2)[(mu(3)-(n)Bu)Li(0.5Et(2)O)](2) (1), [(mu(3)-EDBP)Li(2)](2)[(mu(3)-OBn)Li](2) (2), and [(mu(3)-EDBP)Li(2)](2)[(mu(3)-OCH(2)CH(2)OCH(2)CH(3))Li](2) (3), have been synthesized and structurally characterized. The reaction of 2,2'-ethylidene-bis(4,6-di-tert-butylphenol) (EDBP-H(2)) with 3.6 molar equiv of (n)BuLi gives 1 in high yield. 1 further reacts with benzyl alcohol and 2-ethoxyethanol respectively to yield the corresponding products 2 and 3. Experimental results show that 2 and 3 efficiently initiate the ring-opening polymerization of L-lactide in a controlled fashion, yielding polymers with very narrow polydispersity indexes in a wide range of monomer-to-initiator ratios.  相似文献   

3.
Hydrothermal chemistry has been exploited in the preparation of a series of manganese(II), iron(II), and nickel(II) triazolate frameworks, [Mn7(trz)8(CH3CO2)4(OH)2].2.5H2O (1.2.5H2O), [Mn5(Htrz)2(SO4)4(OH)2] (2), [Fe5(Htrz)2(SO4)4(OH)2] (3), [Fe3(Htrz)3(HSO4)(SO4)2(OH)].H2O (4.H2O), [Ni3(trz)3(OH)3(H2O)4].5H2O (5.5H2O), and [Ni3(trz)5(OH)].2.5H2O (6.2.5H2O). The materials all exhibit three-dimensional structures, reflecting the tendency of triazole/triazolate ligands to bridge multiple metal sites. A prominent characteristic of the structures is the presence of embedded metal clusters as building blocks: heptanuclear MnII units in 1, pentanuclear MII sites in 2 and 3, and trinuclear MII clusters in 4 and 5. The presence of the pentanuclear and trinuclear clusters of magnetic metal cations in 2-5 is reflected in the unusual magnetic characteristics of these materials, all of which exhibit spin frustration. The compound 5.5H2O reversibly desorbs/sorbs solvent. However, the dehydrated phase does not adsorb methanol, N2, O2, or H2, presumably as a consequence of the highly polar void volume and the narrow channels connecting the larger cavities of the void structure.  相似文献   

4.
Absolute ClO radical product yields in the gas-phase reactions of O((1)D) with Cl(2), HCl, CCl(4), CHCl(3), CH(2)Cl(2), CH(3)Cl, CFCl(3), CF(2)Cl(2), CF(3)Cl, CHFCl(2), and CHF(2)Cl are reported. Product yields were measured using pulsed-laser photolysis of O(3) to produce O((1)D) in the presence of excess reactant combined with dual wavelength differential cavity ring-down spectroscopic detection of the ClO radical. ClO radical absorption cross sections for the A(2)Π(v = 10) ← X(2)Π(v = 0) transition band head near 280 nm were determined between 200 and 296 K as part of this work. The ClO product yields obtained at room temperature were Cl(2) (0.77 ± 0.10), HCl (0.20 ± 0.04), CCl(4) (0.79 ± 0.04), CHCl(3) (0.77 ± 0.04), CH(2)Cl(2) (0.73 ± 0.04), CH(3)Cl (0.46 ± 0.06), CFCl(3) (0.79 ± 0.04), CF(2)Cl(2) (0.76 ± 0.06), CF(3)Cl (0.82 ± 0.06), CHFCl(2) (0.73 ± 0.05), and CHF(2)Cl (0.56 ± 0.03), where the quoted error limits are 2σ of the measurement precision. ClO product yields in the O((1)D) + Cl(2) and CFCl(3) reactions were found to be independent of temperature between 200 and 296 K, within the precision of the measurements. The absolute ClO yields obtained in this study are compared with previously reported values determined using relative and indirect methods.  相似文献   

5.
The coordination chemistry of the 2,3-dimethylindolide anion (DMI), (Me(2)C(8)H(4)N)(-), with potassium, yttrium, and samarium ions is described. In the potassium salt [K(DMI)(THF)](n), 1, prepared from Me(2)C(8)H(4)NH and KH in THF, the dimethylindole anion binds and bridges potassium ions in three different binding modes, namely eta(1), eta(3), and eta(5), to form a two-dimensional extended structure. In the dimethoxyethane (DME) adduct [K(DMI)(DME)(2)](2), 2, prepared by crystallizing a sample of 1 from DME, DMI exists as a mu-eta(1):eta(1) ligand. Compound 1 reacts with SmI(2)(THF)(4) in THF to form the distorted octahedral complex trans-(DMI)(2)Sm(THF)(4), 3, in which the dimethyindolide anions are bound in the eta(1) mode to samarium. Reaction of 2,3-dimethylindole with Y(CH(2)SiMe(3))(3)(THF)(2) afforded the amide complex (DMI)(3)Y(THF)(2), 4, in which the dimethylindolide anions are also bound in the eta(1) mode to yttrium. Compound 1 also reacts with (C(5)Me(5))(2)LnCl(2)K(THF)(2) (Ln = Sm, Y) to form unsolvated amide complexes (C(5)Me(5))(2)Ln(DMI) (Ln = Sm, 5; Y, 6), in which DMI attaches primarily through nitrogen, although the edge of the arene ring is oriented toward the metals at long distances.  相似文献   

6.
Reaction of the disulfide [HpicanS](2) (HpicanS is the carboxamide based on picolinate (pic) and o-mercaptoaniline (anS); the [] brackets are used to denote disulfides) with [VOCl(2)(thf)(2)] leads to reductive scission of the disulfide bond and formation of the mixed-valence (V(IV)/V(V)) complex anion [(OVpicanS)(2)mu-O](-) (1), with the dianionic ligand coordinating through the pyridine-N atom, the deprotonated amide-N atom, and thiophenolate-S atom. Reductive cleavage of the SbondS bond is also observed as [VCl(2)(tmeda)(2)] (tmeda=tetramethylethylenediamine) is treated with the disulfides [HsalanS](2) or [HvananS](2) (HsalanS and HvananS are the Schiff bases formed between o-mercaptoaniline and salicylaldehyde (Hsal) or vanillin (Hvan), respectively), yielding the V(III) complexes [VCl(tmeda)(salanS)] (2 a), or [VCl(tmeda)(vananS)] (2 b). The disulfide bond remains intact in the aerial reaction between [HsalanS](2) and [VCl(3)(thf)(3)] to yield the V(V) complex [VOCl[salanS](2)] (3), where (salanS)(2-) coordinates through the two phenolate and one of the imine functions. The S-S bond is also preserved as [VO(van)(2)] or [VO(nap)(2)] (Hnap=2-hydroxynaphthalene-1-carbaldehyde) is treated with bis(2-aminophenyl)disulfide, [anS](2), a reaction which is accompanied by condensation of the aldehyde and the diamine, and complexation of the resulting bis(Schiff bases) [HvananS](2) or [HnapanS](2) to form the complexes [VO[vananS](2)] (4 a) or [VO[napanS](2)] (4 b). In 4 a and 4 b, the phenolate and imine functions, and presumably also one of the disulfide-S atoms, coordinate to V(IV). 2-Mercaptophenyl-2'-pyridinecarboxamide (H(2)picanS) retains its identity in the presence of V(III); reaction between [VCl(3)(thf)(3)] and H(2)picanS yields [V[picanS](2)](-) (5). The dithiophenolate 2,6-bis(mercaptophenylthio)dimethylpyridine (6 a) is oxidized, mediated by VO(2+), to the bis(disulfide) octathiadiaza-cyclo-hexaeicosane 6 b. The relevance of these reactions for the speciation of vanadium under physiological conditions is addressed. [HNEt(3)]-1.0.5 NEt(3,) 3.3 CH(2)Cl(2), [HsalanS](2), [HNEt(3)]-5, and 6 b.4 THF have been characterized by X-ray diffraction analysis.  相似文献   

7.
A series of the extremely crowded triarylpnitogens, tris(2,4,6-triisopropylphenyl)phosphine (1), arsine (2), stibine (3), and bismuthine (4), were synthesized by the reaction of 2,4,6-triisopropylphenylcopper(I) with the corresponding pnictogen trichlorides. Introducion of the three bulky aryl groups resulted in the unusual structures and redox properties, which were studied by X-ray crystallography and cyclic voltammetry. The triarylpnictogens 1, 2, and 3 had extremely large bond angles around pnictogen atoms (1: 111.5 degrees , 2: 109.2 degrees , 3: 106.7 degrees ), and not only 1 and 2, but also stibine 3 displayed a reversible redox wave in the cyclic voltammograms at very low potentials (1: 0.16 V, 2: 0.50 V, 3: 0.57 V vs Ag/Ag+), which suggests considerable stability of the corresponding cation radicals.  相似文献   

8.
N,N-Dimethylaminoxygermane, H3GeONMe2, was prepared by the reaction of H3GeBr with LiONMe2 in dimethyl ether at -96 degrees C. The identity of H3GeONMe2 was proven by gas-phase IR and solution NMR spectroscopy (1H, 13C, 15N, 17O). It is an unstable volatile liquid compound. It decomposes by cleavage of a Ge-O and a Ge-H bond giving HONMe2 and an insoluble germanium hydride polymer (GeH2)n. This decomposition reaction has been modeled at the MP2/6-311G(d,p) level of theory by the homodesmotic reaction H3GeONMe2 + Ge2H6-->Ge3H8 + HONMe2, which is predicted slightly exothermic by 14 kJ mol-1. The molecular structure of H3GeONMe2 was determined by gas-phase electron diffraction supported by an ab initio geometry [MP2/6-311G(d,p)] and a force field [MP2/6-31G(d)]. The structure of the compound in the crystal lattice was determined by low-temperature crystallography using a single crystal of H3GeONMe2 grown in situ [C2H9NOGe, orthorhombic, Pnma, Z = 4, a = 8.1280(12) A, b = 9.7037(15) A, c = 7.0722(12) A]. Important bond lengths and angles (gas phase/solid state, A/deg) are Ge-O 1.785(2)/1.815(1), O-N 1.462(7)/1.460(2), N-C 1.460(4)/1.453(2), Ge-O-N 105.2(5)/104.6(1), O-N-C 105.8(5)/105.8(1), C-N-C 110.8(9)/111.2(2), Ge...N 2.587(6)/2.601(1). In the solid state the compound forms infinite chains by intermolecular Ge...O contacts of 2.808 A. The question of the attraction between Ge and N atoms is discussed with respect to reference Ge/O and N/O compounds, which have wider angles at oxygen than H3GeONMe2. For comparison the structures of the compounds H3CONMe2, H3SiONMe2, and H3SnONMe2 were also calculated to reflect the influence of the group 14 atom on the structure and to discuss the occurrence of weak E...N interactions in the compounds H3EONMe2.  相似文献   

9.
Yang W  Chen L  Wang S 《Inorganic chemistry》2001,40(3):507-515
Two novel blue luminescent bridging ligands N,N,N',N'-tetra(2-pyridyl)-1,4-phenylenediamine (tppd) and N,N,N',N'-tetra(2-pyridyl)-1,1-biphenyl-4,4'-diamine (tpbpd) have been synthesized. Several novel lanthanide complexes containing 2,2',2"-tripyridylamine (2,2',2"-tpa), 2,2',3"-tpa, tppd, or tpbpd ligands have been synthesized and characterized structurally, which include Pr(hfa)3(2,2',2"-tpa), I, Ln(tmhd)3(2,2',3"-tpa), 2 (Ln = Dy, 2a; Eu, 2b; Tb, 2c; Sm, 2d), [Eu(tmhd)3][Pr(hfa)3](2,2',3"-tpa), 3, [Pr(hfa)3]2(tppd), 4, and [Ln(hfa)3]2(tpbpd), 5, where Ln = Pr (5a), Eu (5b), tmhd = 2,2,6,6-tetramethyl-3,5-heptanedionato, and hfa = hexafluoroacetylacetonate. The Dy(III), Eu(III), and Tb(III) complexes display a bright photoluminescence, which can be achieved by either a direct excitation process or an indirect excitation process. Compounds 2a-2d can be sublimed readily.  相似文献   

10.
Summary The following compounds were chosen as reference substances for HPLC investigations on 4-(6-bis(2-chloro-ethyl)amino-3-methylbenzimidazoyl(2))butyric acid (bendamustin), an antineoplastic agent of the N-lost type (synthesized or isolated from crude bendamustin): 4-(6-((2-chloroethyl)(2-hydroxyethyl)amino)-3-methylbenzimidazoyl(2))butyric acid (HP1), 4-(6-bis(2-hydroxyethyl)amino-3-methylbenzimidazoyl(2))butyric acid (HP2), ethyl-4-(6-bis(2-hydroxyethyl)amino-3-methylbenzimidazoyl(2))butyrate (dihydroxyester), and ethyl-4-(6-bis(2-chloroethyl)amino-3-methylbenzimidazoyl(2))butyrate (dichloroester). Furthermore, the so far unidentified side product 4-(7,8-dihydro-6-(2-chloroethylamino)-3-methyl-1,4-thiazino[3,2-g]benzimidazoyl(2))-butyric acid (NP1), formed in the last step of the synthesis, was isolated and identified.
Untersuchungen zur Stabilität von Bendamustin, einem Cytostatikum vom N-Lost-Typ, 1. Mitt.: Synthese, Isolierung und Charakterisierung von Vergleichssubstanzen
Zusammenfassung Die folgenden Verbindungen wurden als Vergleichssubstanzen für HPLC-analytische Untersuchungen von 4-(6-Bis(2-chlorethyl)amino-3-methylbenzimidazoyl(2))buttersäure (Bendamustin), einem Antitumormittel des N-lost-Typs, synthetisiert oder aus Bendamustin-Rohstoff vor der Endreinigung isoliert: (4-(6-((2-Chlorethyl)(2-hydroxyethyl)amino)-3-methylbenzimidazoyl(2))buttersäure (HP1), 4-(6-Bis(2-hydroxyethyl)amino-3-methylbenzimidazoyl(2))buttersäure (HP2), 4-(6-Bis(2-hydroxyethyl)amino-3-methylbenzimidazoyl(2))buttersäureethylester (Dichlorester). Weiterhin konnte das bislang unbekannte Nebenprodukt 4-(7,8-Dihydro-6-(2-chlorethylamino)-3-methyl-1,4-thiazino[3,2-g]benzimidazoyl(2))buttersäure (NP1), welches sich im letzten Schritt der Synthese bildet, isoliert und identifiziert werden.
  相似文献   

11.
An extended family of aryl-substituted alkaline earth metal silylamides M{N(2,4,6-Me3C6H2)(SiMe3)}donor(n) was prepared using alkane elimination (Mg), salt elimination (Ca, Sr, Ba), and direct metalation (Sr, Ba). Three different donors, THF, TMEDA (TMEDA = N,N,N',N'-tetramethylethylenediamine), and PMDTA (PMDTA = N,N,N',N',N'-pentamethyldiethylenetriamine) were employed to study their influence on the coordination chemistry of the target compounds, producing monomeric species with the composition M{N(2,4,6-Me3C6H2)(SiMe3)}2(THF)2 (M = Mg, Ca, Sr, Ba), M{N(2,4,6-Me3C6H2)(SiMe3)}2TMEDA (M = Ca, Ba), and M{N(2,4,6-Me3C6H2)(SiMe3)}2PMDTA (M = Sr, Ba). For the heavier metal analogues, varying degrees of agostic interactions are completing the coordination sphere of the metals. Compounds were characterized using IR and NMR spectroscopy in addition to X-ray crystallography.  相似文献   

12.
Complex OsH(6)(P(i)Pr(3))(2) (1) deprotonates cytosine to give molecular hydrogen and the d(4)-trihydride derivative OsH(3)(cytosinate)(P(i)Pr(3))(2) (2), which in solution exists as a mixture of isomers containing κ(2)-N1,O (2a) and κ(2)-N3,O (2b) amino-oxo and κ(2)-N3,N4 (2c) imino-oxo tautomers. The major isomer 2b associates with the minor one 2c through N-H···N and N-H···O hydrogen bonds to form [2b·2c](2) dimers, which crystallize from saturated pentane solutions of 2. Complex 1 is also able to perform the double deprotonation of cytosine (cytosinate') to afford the dinuclear derivative (P(i)Pr(3))(2)H(3)Os(cytosinate')OsH(3)(P(i)Pr(3))(2) (3), where the anion is coordinated κ(2)-N1,O and κ(2)-N3,N4 to two different OsH(3)(P(i)Pr(3))(2) metal fragments. The deprotonation of deoxycytidine and cytidine leads to OsH(3)(deoxycytidinate)(P(i)Pr(3))(2) (4) and OsH(3)(cytidinate)(P(i)Pr(3))(2) (5), respectively, containing the anion κ(2)-N3,N4 coordinated. Dimer [2b·2c](2) and dinuclear complex 3 have been characterized by X-ray diffraction analysis.  相似文献   

13.
Lo KK  Tsang KH  Hui WK  Zhu N 《Inorganic chemistry》2005,44(17):6100-6110
We report the synthesis, characterization, and photophysical and electrochemical properties of a series of luminescent rhenium(I) diimine indole complexes, [Re(N-N)(CO)3(L)](CF3SO3) (N-N = 3,4,7,8-tetramethyl-1,10-phenanthroline (Me4-phen), L = N-(3-pyridoyl)tryptamine (py-3-CONHC2H4-indole) (1a), N-[N-(3-pyridoyl)-6-aminohexanoyl]tryptamine, (py-3-CONHC5H10CONHC2H4-indole) (1b); N-N = 1,10-phenanthroline (phen), L = py-3-CONHC2H4-indole (2a), py-3-CONHC5H10CONHC2H4-indole (2b); N-N = 2,9-dimethyl-1,10-phenanthroline (Me2-phen), L = py-3-CONHC2H4-indole (3a), py-3-CONHC5H10CONHC2H4-indole (3b); N-N = 4,7-diphenyl-1,10-phenanthroline (Ph2-phen), L = py-3-CONHC2H4-indole (4a), py-3-CONHC5H10CONHC2H4-indole (4b)), and their indole-free counterparts, [Re(N-N)(CO)3(py-3-CONH-Et)](CF3SO3) (py-3-CONH-Et = N-ethyl-(3-pyridyl)formamide; N-N = Me4-phen (1c), phen (2c), Me2-phen (3c), Ph2-phen (4c)). The X-ray crystal structure of complex 3a has also been investigated. Upon irradiation, most of the complexes exhibited triplet metal-to-ligand charge-transfer (3MLCT) (d pi(Re) --> pi*(diimine)) emission in fluid solutions at 298 K and in low-temperature glass. However, the structural features and long emission lifetimes of the Me4-phen complexes in solutions at room temperature suggest that the excited state of these complexes exhibited substantial triplet intraligand (3IL) (pi --> pi*) (Me4-phen) character. The binding interactions of these complexes to indole-binding proteins including bovine serum albumin and tryptophanase have been examined.  相似文献   

14.
The intermolecular interaction energy curves of CH(3)OCH(3)-CH(2)F(2), CF(3)OCH(3)-CH(2)F(2), CF(3)OCF(3)-CH(2)F(2), CH(3)OCH(3)-CHF(3), CF(3)OCH(3)-CHF(3), and CF(3)OCF(3)-CHF(3) complexes were calculated by the MP2 level ab initio molecular orbital method using the 6-311G** basis set augmented with diffuse polarization functions. We investigate the fluorine substitution effects of both methane and dimethyl ether on intermolecular interactions. In addition, orientation dependence of intermolecular interaction energies is also studied with utilizing eight types of orientations. Our analyses demonstrate that partial fluorinations of methane make electrostatic interaction dominant, and consequently enhance attractive interaction at several specific orientations. On the contrary, fluorine substitutions of dimethyl ether substantially decrease the electrostatic interaction between ether and CH(2)F(2) or CHF(3); thus, there is no such characteristic interaction between the C-H of fluorinated methane and ether oxygen of CF(3)OCF(3) as conventional hydrogen bonding, due to reduced polarity of fluorinated ether. The combination of different pairs of the electrostatic interaction is therefore responsible for the intermolecular interaction differences among the complexes investigated herein and also their orientations.  相似文献   

15.
In this work, we report on a photoionization study of the microhydration of the four DNA bases. Gas-phase clusters of water with DNA bases [guanine (G), cytosine (C), adenine (A), and thymine (T)] are generated via thermal vaporization of the bases and expansion of the resultant vapor in a continuous supersonic jet expansion of water seeded in Ar. The resulting clusters are investigated by single-photon ionization with tunable vacuum-ultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Photoionization efficiency (PIE) curves are recorded for the DNA bases and the following water (W) clusters: G, GWn (n = 1-3); C, CWn (n = 1-3); A, AWn (n = 1,2); and T, TWn (n = 1-3). Appearance energies (AE) are derived from the onset of these PIE curves (all energies in eV): G (8.1 +/- 0.1), GW (8.0 +/- 0.1), GW2 (8.0 +/- 0.1), and GW3 (8.0); C (8.65 +/- 0.05), CW (8.45 +/- 0.05), CW2 (8.4 +/- 0.1), and CW3 (8.3 +/- 0.1); A (8.30 +/- 0.05), AW (8.20 +/- 0.05), and AW2 (8.1 +/- 0.1); T (8.90 +/- 0.05); and TW (8.75 +/- 0.05), TW2 (8.6 +/- 0.1), and TW3 (8.6 +/- 0.1). The AEs of the DNA bases decrease slightly with the addition of water molecules (up to three) but do not converge to values found for photoinduced electron removal from DNA bases in solution.  相似文献   

16.
The generation of metal cyanide ions in the gas phase by laser ablation of M(CN)(2) (M = Co, Ni, Zn, Cd, Hg), Fe(III)[Fe(III)(CN)(6)] x xH(2)O, Ag(3)[M(CN)(6)] (M = Fe, Co), and Ag(2)[Fe(CN)(5)(NO)] has been investigated using Fourier transform ion cyclotron resonance mass spectrometry. Irradiation of Zn(CN)(2) and Cd(CN)(2) produced extensive series of anions, [Zn(n)(CN)(2n+1)](-) (1 < or = n < or = 27) and [Cd(n)(CN)(2n+1)](-) (n = 1, 2, 8-27, and possibly 29, 30). Cations Hg(CN)(+) and [Hg(2)(CN)(x)](+) (x = 1-3), and anions [Hg(CN)(x)](-) (x = 2, 3), are produced from Hg(CN)(2). Irradiation of Fe(III)[Fe(III)(CN)(6)] x xH(2)O gives the anions [Fe(CN)(2)](-), [Fe(CN)(3)](-), [Fe(2)(CN)(3)](-), [Fe(2)(CN)(4)](-), and [Fe(2)(CN)(5)](-). When Ag(3)[Fe(CN)(6)] is ablated, [AgFe(CN)(4)](-) and [Ag(2)Fe(CN)(5)](-) are observed together with homoleptic anions of Fe and Ag. The additional heterometallic complexes [AgFe(2)(CN)(6)](-), [AgFe(3)(CN)(8)](-), [Ag(2)Fe(2)(CN)(7)](-), and [Ag(3)Fe(CN)(6)](-) are observed on ablation of Ag(2)[Fe(CN)(5)(NO)]. Homoleptic anions [Co(n)(CN)(n+1)](-) (n = 1-3), [Co(n)(CN)(n+2)](-) (n = 1-3), [Co(2)(CN)(4)](-), and [Co(3)(CN)(5)](-) are formed when anhydrous Co(CN)(2) is the target. Ablation of Ag(3)[Co(CN)(6)] yields cations [Ag(n)(CN)(n-1)](+) (n = 1-4) and [Ag(n)Co(CN)(n)](+) (n = 1, 2) and anions [Ag(n)(CN)(n+1)](-) (n = 1-3), [Co(n)(CN)(n-1)](-) (n = 1, 2), [Ag(n)Co(CN)(n+2)](-) (n = 1, 2), and [Ag(n)Co(CN)(n+3)](-) (n = 0-2). The Ni(I) species [Ni(n)(CN)(n-1)](+) (n = 1-4) and [Ni(n)(CN)(n+1)](-) (n = 1-3) are produced when anhydrous Ni(CN)(2) is irradiated. In all cases, CN(-) and polyatomic carbon nitride ions C(x)N(y)(-) are formed concurrently. On the basis of density functional calculations, probable structures are proposed for most of the newly observed species. General structural features are low coordination numbers, regular trigonal coordination stereochemistry for d(10) metals but distorted trigonal stereochemistry for transition metals, the occurrence of M-CN-M and M(-CN-)(2)M bridges, addition of AgCN to terminal CN ligands, and the occurrence of high spin ground states for linear [M(n)(CN)(n+1)](-) complexes of Co and Ni.  相似文献   

17.
The standard molar enthalpies of formation of chloro-, bromo-, and iodoacetic acids in the crystalline state, at 298.15 K, were determined as deltafH(o)m(C2H3O2Cl, cr alpha)=-(509.74+/- 0.49) kJ x mol(-1), deltafH(o)m(C2H3O2Br, cr I)-(466.98 +/- 1.08) kJ x mol(-1), and deltafH(o)m (C2H3O2I, cr)=-(415.44 +/- 1.53) kJ x mol(-1), respectively, by rotating-bomb combustion calorimetry. Vapor pressure versus temperature measurements by the Knudsen effusion method led to deltasubH(o)m(C2H3O2Cl)=(82.19 +/- 0.92) kJ x mol(-1), deltasubH(o)m(C2H3O2Br)=(83.50 +/- 2.95) kJ x mol(-1), and deltasubH(o)m-(C2H3O2I) = (86.47 +/- 1.02) kJ x mol(-1), at 298.15 K. From the obtained deltafH(o)m(cr) and deltasubH(o)m values it was possible to derive deltafH(o)m(C2H3O2Cl, g)=-(427.55 +/- 1.04) kJ x mol(-1), deltafH(o)m (C2H3O2Br, g)=-(383.48 +/- 3.14) kJ x mol(-1), and deltafH(o)m(C2H3O2I, g)=-(328.97 +/- 1.84) kJ x mol(-1). These data, taken with a published value of the enthalpy of formation of acetic acid, and the enthalpy of formation of the carboxymethyl radical, deltafH(o)m(CH2COOH, g)=-(238 +/- 2) kJ x mol(-1), obtained from density functional theory calculations, led to DHo(H-CH2COOH)=(412.8 +/- 3.2) kJ x mol(-1), DHo(Cl-CH2COOH)=(310.9 +/- 2.2) kJ x mol(-1), DHo(Br-CH2COOH)=(257.4 +/- 3.7) kJ x mol(-1), and DHo(I-CH2COOH)=(197.8 +/- 2.7) kJ x mol(-1). A discussion of the C-X bonding energetics in XCH2COOH, CH3X, C2H5X, C2H3X, and C6H5X (X=H, Cl, Br, I) compounds is presented.  相似文献   

18.
To tune the lanthanide luminescence in related molecular structures, we synthesized and characterized a series of lanthanide complexes with imidazole-based ligands: two tripodal ligands, tris{[2-{(1-methylimidazol-2-yl)methylidene}amino]ethyl}amine (Me(3)L), and tris{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(3)L), and the dipodal ligand bis{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(2)L). The general formulas are [Ln(Me(3)L)(H(2)O)(2)](NO(3))(3)·3H(2)O (Ln = 3+ lanthanide ion: Sm (1), Eu (2), Gd (3), Tb (4), and Dy (5)), [Ln(H(3)L)(NO(3))](NO(3))(2)·MeOH (Ln(3+) = Sm (6), Eu (7), Gd (8), Tb (9), and Dy (10)), and [Ln(H(2)L)(NO(3))(2)(MeOH)](NO(3))·MeOH (Ln(3+) = Sm (11), Eu (12), Gd (13), Tb (14), and Dy (15)). Each lanthanide ion is 9-coordinate in the complexes with the Me(3)L and H(3)L ligands and 10-coordinate in the complexes with the H(2)L ligand, in which counter anion and solvent molecules are also coordinated. The complexes show a screw arrangement of ligands around the lanthanide ions, and their enantiomorphs form racemate crystals. Luminescence studies have been carried out on the solid and solution-state samples. The triplet energy levels of Me(3)L, H(3)L, and H(2)L are 21?000, 22?700, and 23?000 cm(-1), respectively, which were determined from the phosphorescence spectra of their Gd(3+) complexes. The Me(3)L ligand is an effective sensitizer for Sm(3+) and Eu(3+) ions. Efficient luminescence of Sm(3+), Eu(3+), Tb(3+), and Dy(3+) ions was observed in complexes with the H(3)L and H(2)L ligands. Ligand modification by changing imidazole groups alters their triplet energy, and results in different sensitizing ability towards lanthanide ions.  相似文献   

19.
Hirano T  Oi T  Nagao H  Morokuma K 《Inorganic chemistry》2003,42(20):6575-6583
cis-[Ru(NO)Cl(pyca)(2)] (pyca = 2-pyridinecarboxylato), in which the two pyridyl nitrogen atoms of the two pyca ligands coordinate at the trans position to each other and the two carboxylic oxygen atoms at the trans position to the nitrosyl ligand and the chloro ligand, respectively (type I shown as in Chart 1), reacted with NaOCH(3) to generate cis-[Ru(NO)(OCH(3))(pyca)(2)] (type I). The geometry of this complex was confirmed to be the same as the starting complex by X-ray crystallography: C(13.5)H(13)N(3)O(6.5)Ru; monoclinic, P2(1)/n; a = 8.120(1), b = 16.650(1), c = 11.510(1) A; beta = 99.07(1) degrees; V = 1536.7(2) A(3); Z = 4. The cis-trans geometrical change reaction occurred in the reactions of cis-[Ru(NO)(OCH(3))(pyca)(2)] (type I) in water and alcohol (ROH, R = CH(3), C(2)H(5)) to form [[trans-Ru(NO)(pyca)(2)](2)(H(3)O(2))](+) (type V) and trans-[Ru(NO)(OR)(pyca)(2)] (type V). The reactions of the trans-form complexes, trans-[Ru(NO)(H(2)O)(pyca)(2)](+) (type V) and trans-[Ru(NO)(OCH(3))(pyca)(2)] (type V), with Cl(-) in hydrochloric acid solution afforded the cis-form complex, cis-[Ru(NO)Cl(pyca)(2)] (type I). The favorable geometry of [Ru(NO)X(pyca)(2)](n)(+) depended on the nature of the coexisting ligand X. This conclusion was confirmed by theoretical, synthetic, and structural studies. The mono-pyca-containing nitrosylruthenium complex (C(2)H(5))(4)N[Ru(NO)Cl(3)(pyca)] was synthesized by the reaction of [Ru(NO)Cl(5)](2)(-) with Hpyca and characterized by X-ray structural analysis: C(14)H(24)N(3)O(3)Cl(3)Ru; triclinic, Ponemacr;, a = 7.631(1), b = 9.669(1), c = 13.627(1) A; alpha = 83.05(2), beta = 82.23(1), gamma = 81.94(1) degrees; V = 981.1(1) A(3); Z = 2. The type II complex of cis-[Ru(NO)Cl(pyca)(2)] was synthesized by the reaction of [Ru(NO)Cl(3)(pyca)](-) or [Ru(NO)Cl(5)](2)(-) with Hpyca and isolated by column chromatography. The structure was determined by X-ray structural analysis: C(12)H(8)N(3)O(5)ClRu; monoclinic, P2(1)/n; a = 10.010(1), b = 13.280(1), c = 11.335(1) A; beta = 113.45(1) degrees; V = 1382.4(2) A(3); Z = 4.  相似文献   

20.
The synthesis and structures of six compounds prepared in two different systems have been explored with the purpose of isolating coordination polymers with interlaced triple-stranded molecular braid architectures. The dinuclear paddle-wheel units of [Cu(2)(maa)(4)2 H(2)O] can be rationally tuned to form three classes of isomorphous compounds, namely [Cu(2)(maa)(4)(bpp)] (1) (bpp=1,3-bis(4-pyridyl)propane, Hmaa=2-methylacrylic acid), [Cu(3)(maa)(6)(bpp)(2)] (2), and[Cu(4)(maa)(8)(bpp)(4)(H(2)O)(2)]2 H(2)O (3), with a bridging bpp ligand, at controlled ligand-to-metal molar ratios, and lead to three coordination polymers having similar one-dimensional characteristics but different mono- and dinuclear nodes. Compound 1, with a bpp:[Cu(2)(maa)(4)2 H(2)O] stoichiometry of 1:1, contains a zigzag chain containing dinuclear nodes, whereas polymer 2, with a bpp:[Cu(2)(maa)(4)2 H(2)O] stoichiometry of 1.5:1, also adopts the topology of a zigzag chain but with both mono- and dinuclear nodes. Compound 3, with a bpp:[Cu(2)(maa)(4)2 H(2)O] stoichiometry of 2:1, contains a neutral, interlaced, triple-stranded molecular braid, which is interwoven by three single-stranded meso-helical chains that contain only a mononuclear node. With the three aromatic chelating terminal ligands 2,2':6',2'-terpyridine (tpy), 1,10-phenanthroline (phen), and di(2-pyridyl)amine (dpa) we have also prepared three neutral complexes containing the linear, rigid bridging ligand biphenyl-4,4'-dicarboxylate (bpdc), namely [Cd(bpdc)(tpy)]H(2)O (4), [Cu(bpdc)(phen)(2)]4.25 H(2)O (5), and [Cu(bpdc)(dpa)] (6). An infinite meso-helix is formed initially in 4, and then three of these chains assemble into a triple-stranded braid similar to that of 3. Complexes 5 and 6 have a mononuclear and a looped dinuclear structure, respectively. Compounds 3 and 4 are unusual examples of triple-stranded molecular braid coordination frameworks based on different types of co-ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号