首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Rate constants have been determined for the reactions of Cl atoms with the halogenated ethers CF3CH2OCHF2, CF3CHClOCHF2, and CF3CH2OCClF2 using a relative‐rate technique. Chlorine atoms were generated by continuous photolysis of Cl2 in a mixture containing the ether and CD4. Changes in the concentrations of these two species were measured via changes in their infrared absorption spectra observed with a Fourier transform infrared (FTIR) spectrometer. Relative‐rate constants were converted to absolute values using the previously measured rate constants for the reaction, Cl + CD4 → DCl + CD3. Experiments were carried out at 295, 323, and 363 K, yielding the following Arrhenius expressions for the rate constants within this range of temperature:Cl + CF3CH2OCHF2: k = (5.15 ± 0.7) × 10−12 exp(−1830 ± 410 K/T) cm3 molecule−1 s−1 Cl + CF3CHClOCHF2: k = (1.6 ± 0.2) × 10−11 exp(−2450 ± 250 K/T) cm3 molecule−1 s−1 Cl + CF3CH2OCClF2: k = (9.6 ± 0.4) × 10−12 exp(−2390 ± 190 K/T) cm3 molecule−1 s−1 The results are compared with those obtained previously for the reactions of Cl atoms with other halogenated methyl ethyl ethers. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 165–172, 2001  相似文献   

2.
An analysis of thermochemical and kinetic data on the bromination of the halomethanes CH4–nXn (X = F, Cl, Br; n = 1–3), the two chlorofluoromethanes, CH2FCl and CHFCl2, and CH4, shows that the recently reported heats of formation of the radicals CH2Cl, CHCl2, CHBr2, and CFCl2, and the C? H bond dissociation energies in the matching halomethanes are not compatible with the activation energies for the corresponding reverse reactions. From the observed trends in CH4 and the other halomethanes, the following revised ΔH°f,298 (R) values have been derived: ΔH°f(CH2Cl) = 29.1 ± 1.0, ΔH°f(CHCl2) = 23.5 ± 1.2, ΔHf(CH2Br) = 40.4 ± 1.0, ΔH°f(CHBr2) = 45.0 ± 2.2, and ΔH°f(CFCl2) = ?21.3 ± 2.4 kcal mol?1. The previously unavailable radical heat of formation, ΔH°f(CHFCl) = ?14.5 ± 2.4 kcal mol?1 has also been deduced. These values are used with the heats of formation of the parent compounds from the literature to evaluate C? H and C? X bond dissociation energies in CH3Cl, CH2Cl2, CH3Br, CH2Br2, CH2FCl, and CHFCl2.  相似文献   

3.
The atmospheric chemistry of methyl ethyl ether, CH3CH2OCH3, was examined using FT‐IR/relative‐rate methods. Hydroxyl radical and chlorine atom rate coefficients of k (CH3CH2OCH3+OH) = (7.53 ± 2.86) × 10−12 cm3 molecule−1 s−1 and k (CH3CH2OCH3+Cl) = (2.35 ± 0.43) × 10−10 cm3 molecule−1 s−1 were determined (297 ± 2 K). The Cl rate coefficient determined here is 30% lower than the previous literature value. The atmospheric lifetime for CH3CH2OCH3 is approximately 2 days. The chlorine atom–initiated oxidation of CH3CH2OCH3 gives CH3C(O)H (9 ± 2%), CH3CH2OC(O)H (29 ± 7%), CH3OC(O)H (19 ± 7%), and CH3C(O)OCH3 (17 ± 7%). The IR absorption cross section for CH3CH2OCH3 is (7.97 ± 0.40) × 10−17 cm molecule−1 (1000–3100 cm−1). CH3CH2OCH3 has a negligible impact on the radiative forcing of climate.  相似文献   

4.
The kinetics of the reactions CH3O + Cl → H2CO + HCl (1) and CH3O + ClO → H2CO + HOCl (2) have been studied using the discharge-flow techniques. CH3O was monitored by laser-induced fluorescence, whereas mass spectrometry was used for the detection or titration of other species. The rate constants obtained at 298 K are: k1 = (1.9 ± 0.4) × 10−11 cm3 molecule−1 s−1 and k2 = (2.3 ± 0.3) × 10−11 cm3 molecule−1 s−1. These data are useful to interpret the results of the studies of the reactions of CH3O2 with Cl and ClO which, at least partly, produce CH3O radicals. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
The rate coefficients for the reactions of Cl atoms with CH3Br, (k1) and CH2Br2, (k2) were measured as functions of temperature by generating Cl atoms via 308 nm laser photolysis of Cl2 and measuring their temporal profiles via resonance fluorescence detection. The measured rate coefficients were: k1 = (1.55 ± 0.18) × 10?11 exp{(?1070 ± 50)/T} and k2 = (6.37 ± 0.55) × 10?12 exp{(?810 ± 50)/T} cm3 molecule?1 s?1. The possible interference of the reaction of CH2Br product with Cl2 in the measurement of k1 was assessed from the temporal profiles of Cl at high concentrations of Cl2 at 298 K. The rate coefficient at 298 K for the CH2Br + Cl2 reaction was derived to be (5.36 ± 0.56) × 10?13 cm3 molecule?1 s?1. Based on the values of k1 and k2, it is deduced that global atmospheric lifetimes for CH3Br and CH2Br2 are unlikely to be affected by loss via reaction with Cl atoms. In the marine boundary layer, the loss via reaction (1) may be significant if the Cl concentrations are high. If found to be true, the contribution from oceans to the overall CH3Br budget may be less than what is currently assumed. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
The kinetics of the reactions of Cl atoms with CH3ONO and CH3ONO2 have been studied using relative rate techniques. In 700 Torr of nitrogen diluent at 295 ± 2K, k(Cl + CH3ONO) = (2.1 ± 0.2) × 10−12 and k(Cl + CH3ONO2) = (2.4 ± 0.2) × 10−13 cm3 molecule−1 s−1. The result for k(Cl + CH3ONO2) is in good agreement with the literature data. The result for k(Cl + CH3ONO) is a factor of 4.5 lower than that reported previously. It seems likely that in the previous study most of the loss of CH3ONO which was attributed to reaction with Cl atoms was actually caused by photolysis leading to an overestimate of k(Cl + CH3ONO). © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 357–359, 1999  相似文献   

7.
The rate coefficients for the removal of Cl atoms by reaction with three HCFCs, CF3CHCl2 (HCFC-123), CF3CHFCl (HCFC-124), and CH3CFCl2 (HCFC 141b), were measured as a function of temperature between 276 and 397 K. CH3CF2Cl (HCFC-142b) was studied only at 298 K. The Arrhenius expressions obtained are: k1 = (3.94 ± 0.84)× 10?12 exp[?(1740 ± 100)/T] cm3 molecule?1 s?1 for CF3CHCl2 (HCFC 123); k2 = (1.16 ± 0.41) × 10?12 exp[?(1800 ± 150)/T] cm3 molecule?1 s?1 for CF3CHFCl (HCFC 124); and k3 = (1.6 ± 1.1) × 10?12 exp[?(1800 ± 500)/T] cm3 molecule?1 s?1 for CH3CFCl2 (HCFC 141b). In case of HCFC 141b, non-Arrhenius behavior was observed at temperatures above ca. 350 K and is attributed to the thermal decomposition of CH2CFCl2 product into Cl + CH2CFCl. In case of HCFC-142b, only an upper limit for the 298 K value of the rate coefficient was obtained. The atmospheric significance of these results are discussed. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
The reaction of NO with the peroxy radical CFCl2CH2O2, and with CH3CFClO2 was investigated at 8(SINGLEBOND)20 torr and 263(SINGLEBOND)321 K by UV flash photolysis of CFCl2CH3/O2/NO gas mixtures. The kinetics were determined from observations of the growth rate of the CFCl2CH2O radical and the decay rate of NO by time-resolved mass spectrometry. The temperature dependence of the bimolecular rate coefficients, with their statistical uncertainties, can be expressed as (2.9 ± 0.7) e(435±96)/T × 10−12 cm3 molecule −1s−1, or (1.3 ± 0.2) (T/300)&minus(1.5±0.2) × 10−11 cm3 molecule−1 s−1 for NO + CFCl2CH2O2, and (3.3 ± 0.6)e(516±73)/T × 10−12 cm3 molecule−1 s−1, or (2.0 ± 0.3) (T/300)&minus(1.8±0.3) × 10−11 cm3 molecule−1 s−1 for NO + CH3CFClO2. No pressure dependence of the rate coefficients could be detected over the 8(SINGLEBOND)20 torr range investigated. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
The Cl- and Br- initiated oxidations of CHCl(DOUBLEBOND)CCl2 in 700 torr of air at 296 K have been studied using a Fourier transform infrared spectrometer. Rate constants k(Cl+CHCl(DOUBLEBOND)CCl2)=(7.2±0.8)×10−11 and k(Br+CHCl(DOUBLEBOND)CCl2)=(1.1±0.4)×10−13 cm3 molecule−1 s−1 were determined using a relative rate technique with ethane and ethylene as references, respectively. The major products observed were CHXClC(O)Cl, (X=Cl or Br), CHClO, and CCl2O. Combining results obtained for the Cl-initiated oxidation of CHCl2(SINGLEBOND)CHCl2, we deduced that Cl-addition on trichloroethylene occurs via channel 1a, Cl+CHCl(DOUBLEBOND)CCl2→ CHCl2(SINGLEBOND)CCl2, (100±12)%. Self-reaction of the subsequently generated peroxy radicals CHCl2(SINGLEBOND)CCl2O2 leads to CHCl2CCl2O radicals which were found to decompose via channel 8a, CHCl2C(O)Cl+Cl, (91±11)% of the time, and channel 8b, CHCl2+CCl2O, (9±2)%. The reaction Br+CHCl(DOUBLEBOND)CCl2→CHBrCl(SINGLEBOND)CCl2 (17a) accounted for ≥(96±11)% of the total reaction. Decomposition of the CHBrCl(SINGLEBOND)CCl2O radicals proceeds (≥93±11)% via CHBrClC(O)Cl+Cl. As part of this work, k(Cl+CHCl2C(O)Cl)=(3.6±0.6)×10−14 and k(Cl+CHCl2(SINGLEBOND)CHCl2)=(1.9±0.2)×10−13 cm3 molecule−1 s−1 were measured. Errors reported above include statistical uncertainties (2σ) and estimated systematic uncertainties. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet: 29: 695–704, 1997.  相似文献   

10.
A variety of relative and absolute techniques have been used to measure the reactivity of fluorine atoms with a series of halogenated organic compounds and CO. The following rate constants were derived, in units of cm3 molecule?1 s?1: CH3F, (3.7 ± 0.8) × 10?11, CH3Cl, (3.3 ± 0.7) × 10?11; CH3Br, (3.0 ± 0.7) × 10?11; CF2H2, (4.3 ± 0.9) × 10?12; CO, (5.5 ± 1.0) × 10?13 (in 700 torr total pressure of N2 diluent); CF3H, (1.4 ± 0.4) × 10?13; CF3CCl2H (HCFC-123), (1.2 ± 0.4) × 10?12; CF3CFH2 (HFC-134a), (1.3 ± 0.3) × 10?12, CHF2CHF2 (HFC-134), (1.0 ± 0.3) × 10?12; CF2ClCH3 (HCFC-42b), (3.9 ± 0.9) × 10?12, CF2HCH3 (HFC-152a), (1.7 ± 0.4) × 10?11; and CF3CF2H (HFC-125), (3.5 ± 0.8) × 10?13. Quoted errors are statistical uncertainties (2σ). For rate constants derived using relative rate techniques, an additional uncertainty has been added to account for potential systematic errors in the reference rate constants used. Experiments were performed at 295 ± 2 K. Results are discussed with respect to the previous literature data and to the interpretation of laboratory studies of the atmospheric chemistry of HCFCs and HFCs. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
A low‐pressure discharge‐flow system equipped with laser‐induced fluorescence (LIF) detection of NO2 and resonance‐fluorescence detection of OH has been employed to study the self reactions CH2ClO2 + CH2ClO2 → products (1) and CHCl2O2 + CHCl2O2 → products (2), at T = 298 K and P = 1–3 Torr. Possible secondary reactions involving alkoxy radicals are identified. We report the phenomenological rate constants (kobs) k1obs = (4.1 ± 0.2) × 10−12 cm3 molecule−1 s−1 k2obs = (8.6 ± 0.2) × 10−12 cm3 molecule−1 s−1 and the rate constants derived from modelling the decay profiles for both peroxy radical systems, which takes into account the proposed secondary chemistry involving alkoxy radicals k1 = (3.3 ± 0.7) × 10−12 cm3 molecule−1 s−1 k2 = (7.0 ± 1.8) × 10−12 cm3 molecule−1 s−1 A possible mechanism for these self reactions is proposed and QRRK calculations are performed for reactions (1), (2) and the self‐reaction of CH3O2, CH3O2 + CH3O2 → products (3). These calculations, although only semiquantitative, go some way to explaining why both k1 and k2 are a factor of ten larger than k3 and why, as suggested by the products of reaction (1) and (2), it seems that the favored reaction pathway is different from that followed by reaction (3). The atmospheric fate of the chlorinated peroxy species, and hence the impact of their precursors (CH3Cl and CH2Cl2), in the troposphere are briefly discussed. HC(O)Cl is identified as a potentially important reservoir species produced from the photooxidation of these precursors. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 433–444, 1999  相似文献   

12.
The atmospheric chemistry of CCl2FCH2CF3 (HFCF-234fb) was examined using FT-IR/relative-rate methods. Hydroxyl radical and chlorine atom rate coefficients of k(CCl2FCH2CF3+OH)= (2.9 ± 0.8) × 10−15 cm3 molecule–1 s–1 and k(CCl2FCH2CF3+Cl)= (2.3 ± 0.6) × 10−17 cm3 molecule–1 s–1 were determined at 297 ± 2 K. The OH rate coefficient determined here is two times higher than the previous literature value. The atmospheric lifetime for CCl2FCH2CF3 with respect to reaction with OH radicals is approximately 21 years using the OH rate coefficient determined in this work, estimated Arrhenius parameters and scaling it to the atmospheric lifetime of CH3CCl3. The chlorine atom initiated oxidation of CCl2FCH2CF3 gives C(O)F2 and C(O)ClF as stable secondary products. The halogenated carbon balance is close to 80% in our system. The integrated IR absorption cross-section for CCl2FCH2CF3 is 1.87 × 10−16 cm molecule−1 (600–1600 cm−1) and the radiative efficiency was calculated to 0.26 W m−2 ppb1. A 100-year Global Warming Potential (GWP) of 1460 was determined, accounting for an estimated stratospheric lifetime of 58 years and using a lifetime-corrected radiative efficiency estimation.  相似文献   

13.
The reactions of CCl3 with O(3P) and O2 and those of CCl3O2 with NO have been studied at 295 K using discharge flow methods with helium as the bath gas. The rate coefficient for the reaction of CCl3 with O was found to be (4.2 ± 0.6) × 10?11 cm3/s and that for CCl3O2 with NO was (18.6 ± 2.8) × 10?12 cm3/s with both coefficients independent of [He]. For reaction between CCl3 and O2 the rate coefficient was found to increase from 1.51 7times; 10?14 cm3/s to 7.88 × 10?14 cm3/s as the [He] increased from 3.5 × 1016 cm?3 to 2.7 × 1017 cm?3. There was no evidence for a direct two-body reaction, and it is concluded that the only product of this reaction is CCl3O2. Examination of these results for CCl3 + O2 in terms of current simplified falloff treatment suggests that the high-pressure limit for this reaction is ~ 2.5 × 10?12 cm3/s, which may be compared with a direct measurement of the high-pressure limit of 5 × 10?12 cm3/s. A value of (5.8 ± 0.6) × 10?31 cm6/s has been obtained for k0, the coefficient in the low-pressure region. This value is compared with corresponding values found earlier for the (CH3, O2) and (CF3, O2) systems and with estimates based on unimolecular rate theory.  相似文献   

14.
Smog chamber/Fourier transform infrared (FTIR) techniques were used to measure the kinetics of the reaction of n‐CH3(CH2)xCN (x = 0–3) with Cl atoms and OH radicals: k(CH3CN + Cl) = (1.04 ± 0.25) × 10−14, k(CH3CH2CN + Cl) = (9.20 ± 3.95) × 10−13, k(CH3(CH2)2CN + Cl) = (2.03 ± 0.23) × 10−11, k(CH3(CH2)3CN + Cl) = (6.70 ± 0.67) × 10−11, k(CH3CN + OH) = (4.07 ± 1.21) × 10−14, k(CH3CH2CN + OH) = (1.24 ± 0.27) × 10−13, k(CH3(CH2)2CN + OH) = (4.63 ± 0.99) × 10−13, and k(CH3(CH2)3CN + OH) = (1.58 ± 0.38) × 10−12 cm3 molecule−1 s−1 at a total pressure of 700 Torr of air or N2 diluents at 296 ± 2 K. The atmospheric oxidation of alkyl nitriles proceeds through hydrogen abstraction leading to several carbonyl containing primary oxidation products. HC(O)CN, NCC(O)OONO2, ClC(O)OONO2, and HCN were identified as the main oxidation products from CH3CN, whereas CH3CH2CN gives the products HC(O)CN, CH3C(O)CN, NCC(O)OONO2, and HCN. The oxidation of n‐CH3(CH2)xCN (x = 2–3) leads to a range of oxygenated primary products. Based on the measured OH radical rate constants, the atmospheric lifetimes of n‐CH3(CH2)xCN (x = 0–3) were estimated to be 284, 93, 25, and 7 days for x = 0,1, 2, and 3, respectively.  相似文献   

15.
The rate constant for the reaction of Cl with CHCl3 was measured relative to the Cl reaction with CH4 and CH3Cl using long path FTIR. The measured rate constant at 298 K and 1 atm total pressure was (1.21 ± 0.13) × 10−13 cm3 molecule −1s−1 (2σ) about 60% larger than the currently recommended value (although within the large error bars). The implications of the Cl + CHCl3 reaction for relative rate studies chloromethane reactivity, and tropospheric chemistry are discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
The Cl atom-initiated oxidation of CH2Cl2 and CH3Cl was studied using the FTIR method in the photolysis of mixtures typically containing Cl2 and the chlorinated methanes at 1 torr each in 700 torr air. The results obtained from product analysis were in general agreement with those reported by Sanhueza and Heicklen. The relative rate constant for the Cl atom reactions of CH2Cl2 and CH3Cl was determined to be k(Cl +CH3Cl)/k(Cl + CH2Cl2) = 1.31 ± 0.14 (2σ) at 298 ± 2 K.  相似文献   

17.
The new flowtube reactor employing dissociative electron attachment to produce radicals and high-pressure photoionization in the mass spectrometric detection of radicals is described. The system has been applied to a study of the association reactions of CHCl2 and CCl3 with O2 in a great excess of helium at total densities below 1017 cm?3 over the temperature range 286 to 332 K. Both reactions display a strong negative temperature coefficient. The results can be parameterized in the form k0(CHCl2 + O2) = (4.3 ± 0.2) × 10?31(T/300)?6.7±0.7 cm6 s?1, k0(CCl3 + O2) = (2.7 ± 0.2) × 10?31(T/300)?8.7±1.0 cm6 s?1. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
Real-time kinetic measurements are reported for the Cl + CH3CO → CH2CO + HCl reaction. The experiments utilize infrared spectroscopy to determine the time dependence of the ketene formed via this reaction and of the CO produced from the subsequent rapid reaction between chlorine atoms and ketene. The reaction is investigated over a pressure range of 10–200 torr and a temperature range of 215–353 K. Within experimental error the rate constant under these conditions is k5a = (1.8 ± 0.5) × 10−10 cm3 s−1. We have also examined the Cl + CH2CO reaction and found it to have a rate constant of k6 = (2.5 ± 0.5) × 10−10 cm3 s−1 independent of temperature. © John Wiley & Sons, Inc. Int J Chem Kinet 29: 421–429, 1997.  相似文献   

19.
The rate constant for the reaction of CH3OCH2 radicals with O2 (reaction (1)) and the self reaction of CH3OCH2 radicals (reaction (5)) were measured using pulse radiolysis coupled with time resolved UV absorption spectroscopy. k1 was studied at 296K over the pressure range 0.025–1 bar and in the temperature range 296–473K at 18 bar total pressure. Reaction (1) is known to proceed through the following mechanism: CH3OCH2 + O2 ↔ CH3OCH2O2# → CH2OCH2O2H# → 2HCHO + OH (kprod) CH3OCH2 + O2 ↔ CH3OCH2O2# + M → CH3OCH2O2 + M (kRO2) k = kRO2 + kprod, where kRO2 is the rate constant for peroxy radical production and kprod is the rate constant for formaldehyde production. The k1 values obtained at 296K together with the available literature values for k1 determined at low pressures were fitted using a modified Lindemann mechanism and the following parameters were obtained: kRO2,0 = (9.4 ± 4.2) × 10−30 cm6 molecule−2 s−1, kRO2,∞ = (1.14 ± 0.04) × 10−11 cm3 molecule−1 s−1, and kprod,0 = (6.0 ± 0.5) × 10−12 cm3 molecule−1 s−1, where kRO2,0 and kRO2,∞ are the overall termolecular and bimolecular rate constants for formation of CH3OCH2O2 radicals and kprod,0 represents the bimolecular rate constant for the reaction of CH3OCH2 radicals with O2 to yield formaldehyde in the limit of low pressure. kRO2,∞ = (1.07 ± 0.08) × 10−11 exp(−(46 ± 27)/T) cm3 molecule−1 s−1 was determined at 18 bar total pressure over the temperature range 296–473K. At 1 bar total pressure and 296K, k5 = (4.1 ± 0.5) × 10−11 cm3 molecule−1 s−1 and at 18 bar total pressure over the temperature range 296–523K, k5 = (4.7 ± 0.6) × 10−11 cm3 molecule−1 s−1. As a part of this study the decay rate of CH3OCH2 radicals was used to study the thermal decomposition of CH3OCH2 radicals in the temperature range 573–666K at 18 bar total pressure. The observed decay rates of CH3OCH2 radicals were consistent with the literature value of k2 = 1.6 × 1013exp(−12800/T)s−1. The results are discussed in the context of dimethyl ether as an alternative diesel fuel. © 1997 John Wiley & Sons, Inc.  相似文献   

20.
The technique of laser photolysis of alkyl and perfluoroalkyl iodides at 266 nm followed by time-resolved detection of the 1.3-μm emission from I*(2P1/2) has been used to measure the rate constants for deactivation of I* by CH3I, C2H5I, CF3I, and CH4. The recommended values are (2.76± 0.22) × 10?13, (2.85 ± 0.40) × 10?13, (3.5 ± 0.5) × 10?17, and (7.52 ± 0.12) × 10?14, respectively, in units of cm3 molecule?1 S?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号