首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
We consider nonlinear aspects of the flow of an inviscid two-dimensional jet into a second immiscible fluid of different density and unbounded extent. Velocity jumps are supported at the interface, and the flow is susceptible to the Kelvin–Helmholtz instability. We investigate theoretically the effects of horizontal electric fields and surface tension on the nonlinear evolution of the jet. This is accomplished by developing a long-wave matched asymptotic analysis that incorporates the influence of the outer regions on the dynamics of the jet. The result is a coupled system of long-wave nonlinear, nonlocal evolution equations governing the interfacial amplitude and corresponding horizontal velocity, for symmetric interfacial deformations. The theory allows for amplitudes that scale with the undisturbed jet thickness and is therefore capable of predicting singular events such as jet pinching. In the absence of surface tension, a sufficiently strong electric field completely stabilizes (linearly) the Kelvin–Helmholtz instability at all wavelengths by the introduction of a dispersive regularization of a nonlocal origin. The dispersion relation has the same functional form as the destabilizing Kelvin–Helmholtz terms, but is of a different sign. If the electric field is weak or absent, then surface tension is included to regularize Kelvin–Helmholtz instability and to provide a well-posed nonlinear problem. We address the nonlinear problems numerically using spectral methods and establish two distinct dynamical behaviors. In cases where the linear theory predicts dispersive regularization (whether surface tension is present or not), then relatively large initial conditions induce a nonlinear flow that is oscillatory in time (in fact quasi-periodic) with a basic oscillation predicted well by linear theory and a second nonlinearly induced lower frequency that is responsible for quasi-periodic modulations of the spatio-temporal dynamics. If the parameters are chosen so that the linear theory predicts a band of long unstable waves (surface tension now ensures that short waves are dispersively regularized), then the flow generically evolves to a finite-time rupture singularity. This has been established numerically for rather general initial conditions.  相似文献   

2.
We consider nonlinear aspects of the flow of an inviscid two-dimensional jet into a second immiscible fluid of different density and unbounded extent. Velocity jumps are supported at the interface, and the flow is susceptible to the Kelvin–Helmholtz instability. We investigate theoretically the effects of horizontal electric fields and surface tension on the nonlinear evolution of the jet. This is accomplished by developing a long-wave matched asymptotic analysis that incorporates the influence of the outer regions on the dynamics of the jet. The result is a coupled system of long-wave nonlinear, nonlocal evolution equations governing the interfacial amplitude and corresponding horizontal velocity, for symmetric interfacial deformations. The theory allows for amplitudes that scale with the undisturbed jet thickness and is therefore capable of predicting singular events such as jet pinching. In the absence of surface tension, a sufficiently strong electric field completely stabilizes (linearly) the Kelvin–Helmholtz instability at all wavelengths by the introduction of a dispersive regularization of a nonlocal origin. The dispersion relation has the same functional form as the destabilizing Kelvin–Helmholtz terms, but is of a different sign. If the electric field is weak or absent, then surface tension is included to regularize Kelvin–Helmholtz instability and to provide a well-posed nonlinear problem. We address the nonlinear problems numerically using spectral methods and establish two distinct dynamical behaviors. In cases where the linear theory predicts dispersive regularization (whether surface tension is present or not), then relatively large initial conditions induce a nonlinear flow that is oscillatory in time (in fact quasi-periodic) with a basic oscillation predicted well by linear theory and a second nonlinearly induced lower frequency that is responsible for quasi-periodic modulations of the spatio-temporal dynamics. If the parameters are chosen so that the linear theory predicts a band of long unstable waves (surface tension now ensures that short waves are dispersively regularized), then the flow generically evolves to a finite-time rupture singularity. This has been established numerically for rather general initial conditions.  相似文献   

3.
Waves with constant, nonzero linearized frequency form an interesting class of nondispersive waves whose properties differ from those of nondispersive hyperbolic waves. We propose an inviscid Burgers‐Hilbert equation as a model equation for such waves and give a dimensional argument to show that it models Hamiltonian surface waves with constant frequency. Using the method of multiple scales, we derive a cubically nonlinear, quasi‐linear, nonlocal asymptotic equation for weakly nonlinear solutions. We show that the same asymptotic equation describes surface waves on a planar discontinuity in vorticity in two‐dimensional inviscid, incompressible fluid flows. Thus, the Burgers‐Hilbert equation provides an effective equation for these waves. We describe the Hamiltonian structure of the Burgers‐Hilbert and asymptotic equations, and show that the asymptotic equation can also be derived by means of a near‐identity transformation. We derive a semiclassical approximation of the asymptotic equation and show that spatially periodic, harmonic traveling waves are linearly and modulationally stable. Numerical solutions of the Burgers‐Hilbert and asymptotic equations are in excellent agreement in the appropriate regime. In particular, the lifespan of small‐amplitude smooth solutions of the Burgers‐Hilbert equation is given by the cubically nonlinear timescale predicted by the asymptotic equation. © 2009 Wiley Periodicals, Inc.  相似文献   

4.
The magnetism of a rigid ferromagnet occupying a spatial region Ωis described by a unit vectorfield m on Ω. The total energy of m involves several terms: the anisotropy energy imposed by the lattice structure of the material, the exchange energy discouraging very rapid local changes in m , the applied energy due to external magnetic sources, and the induced magnetic field energy. Here, while incorporating all energy terms, we show that minimizers have at most isolated singularities, usually in the interior of Ω, and that there is nice asymptotic behavior at such singularities. In contrast to related harmonic map problems, the field energy is a nonlocal term, involving a solution of Maxwell's equations with coefficients depending on m  相似文献   

5.
We study asymptotics of the recurrence coefficients of orthogonal polynomials associated to the generalized Jacobi weight, which is a weight function with a finite number of algebraic singularities on [−1,1]. The recurrence coefficients can be written in terms of the solution of the corresponding Riemann–Hilbert (RH) problem for orthogonal polynomials. Using the steepest descent method of Deift and Zhou, we analyze the RH problem, and obtain complete asymptotic expansions of the recurrence coefficients. We will determine explicitly the order 1/n terms in the expansions. A critical step in the analysis of the RH problem will be the local analysis around the algebraic singularities, for which we use Bessel functions of appropriate order. In addition, the RH approach gives us also strong asymptotics of the orthogonal polynomials near the algebraic singularities in terms of Bessel functions.  相似文献   

6.
After a droplet has broken away from a slender thread or jetof liquid, the tip of the thread or jet recoils rapidly. Atthe moment of break-off, the tip of the thread/jet is observedto have the shape of a cone close to the bifurcation point.In this paper, we study the evolution of an ideal fluid whichis initially conical, where the only force acting on the fluidis due to surface tension. We find an asymptotic solution tothe problem in terms of the aspect ratio of the cone which isassumed to be small. Using a similarity transformation, whichis valid for small times after the bifurcation, we identifya rapidly oscillating non-linear wave which propagates awayfrom the tip, as observed in experiments.  相似文献   

7.
Despite important advances in the mathematical analysis of the Euler equations for water waves, especially over the last two decades, it is not yet known whether local singularities can develop from smooth data in well-posed initial value problems. For ideal free-surface flow with zero surface tension and gravity, the authors review existing works that describe ``splash singularities'', singular hyperbolic solutions related to jet formation and ``flip-through'', and a recent construction of a singular free surface by Zubarev and Karabut that however involves unbounded negative pressure. The authors illustrate some of these phenomena with numerical computations of 2D flow based upon a conformal mapping formulation. Numerical tests with a different kind of initial data suggest the possibility that corner singularities may form in an unstable way from specially prepared initial data.  相似文献   

8.
9.
The motion of a three-dimensional viscous, imcompressible fluid is governed by the Navier-Stokes equations. We study the case where the fluid is in an ocean of infinite extent and finite depth with a free surface on top. This gives rise to a nonlinear free boundary problem. The given data are the initial velocity field and the initial free surface. In general, given smooth data, the solution will develop singularities in finite time; however, the effect of viscosity and surface tension tends to prevent the ingulitrities. It was previously known that when both are present, small, appropriately smooth solutions do not develop singularities; that is, smooth solutions exist globally in time. In this paper, we show that viscosity alone will prevent the formation of singularitics, even without surface tension; i.e., small smooth data which satisfy certain natural compatibility conditions, smooth solutions exist for all time. Uniqueness of the solution for any finite time interval is also proved.  相似文献   

10.
In this paper, we consider a mathematical model describing the two‐phase interaction between water and mud in a water canal when the width of the canal is small compared with its depth. The mud is treated as a non‐Newtonian fluid, and the interface between the mud and fluid is allowed to move under the influence of gravity and surface tension. We reduce the mathematical formulation, for small boundary and initial data, to a fully nonlocal and nonlinear problem and prove its local well‐posedness by using abstract parabolic theory. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The formation of microdomains, also called rafts, in biomembranes can be attributed to the surface tension of the membrane. In order to model this phenomenon, a model involving a coupling between the local composition and the local curvature was proposed by Seul and Andelman in 1995. In addition to the familiar Cahn–Hilliard/Modica–Mortola energy, there are additional ‘forces’ that prevent large domains of homogeneous concentration. This is taken into account by the bending energy of the membrane, which is coupled to the value of the order parameter, and reflects the notion that surface tension associated with a slightly curved membrane influences the localization of phases as the geometry of the lipids has an effect on the preferred placement on the membrane. The main result of the paper is the study of the \(\Gamma \)-convergence of this family of energy functionals, involving nonlocal as well as negative terms. Since the minimizers of the limiting energy have minimal interfaces, the physical interpretation is that, within a sufficiently strong interspecies surface tension and a large enough sample size, raft microdomains are not formed.  相似文献   

12.
In this paper we study a one-dimensional model equation with a nonlocal flux given by the Hilbert transform that is related with the complex inviscid Burgers equation. This equation arises in different contexts to characterize nonlocal and nonlinear behaviors. We show global existence, local existence, blow-up in finite time and ill-posedness depending on the sign of the initial data for classical solutions.  相似文献   

13.
In this note, we study Hele-Shaw flows in the presence of anisotropic surface tension when the fluid domain is bounded. The flows are driven by a sink, by a multipole, or solely by anisotropic surface tension. For a sink flow, we show that if the center of mass of the initial domain is not located at a certain point which is determined by the anisotropic surface tension and intensity of the sink, then either the solution will break down before all the fluid is sucked out or the fluid domain will eventually become unbounded in diameter. For a multipole driven flow, we prove that if the anisotropic surface tension, the order, and intensity of the multipole do not satisfy a certain equality, either the flow will develop finite-time singularities or the fluid domain will become unbounded in diameter as time goes to infinity. For a flow driven purely by anisotropic surface tension, we show that the center of mass of the fluid domain moves in a constant velocity, which is determined explicitly.  相似文献   

14.
The Cauchy problem of Kadomtsev–Petviashvili I (KPI) was reduced to a nonlocal Riemann–Hilbert (RH) problem by the author and Ablowitz in 1983. This formulation was based on the introduction of two spectral functions (nonlinear Fourier transforms, FTs). This formalism was improved by Boiti et al. [ 1 ], where it was shown that the earlier nonlocal RH problem can be formulated in terms of a single spectral function (nonlinear FT). A different formalism was presented by Zhou [ 2 ], where the Cauchy problem was rigorously solved in terms of a linear integral equation involving a nonanalytic eigenfunction. Here, we first revisit the above results and then review some recent results about the derivation of integrable generalizations of KP in 4 + 2 (i.e., in four spatial and two temporal dimensions), as well as in 3 + 1 (i.e., in three spatial and one temporal dimensions).  相似文献   

15.
Inverse problem for an evolution equation with a quadratic nonlinearity in the Hilbert space is considered. The problem is, given the values of certain functionals of the solution, to find at each point in time the right-hand side that is a linear combination of those functionals. Sufficient conditions for the nonlocal (in time) existence of a solution (on the whole time interval) are established. An application to the inverse problems for the three-dimensional thermal convection equations of viscous incompressible fluid is considered. Unique nonlocal (in terms of time) solvability of the problem of determining the density of heat sources under the regularity condition of the initial data and sufficiently large dimension of the observation space is proved.  相似文献   

16.
17.
In this paper we study 1D equations with nonlocal flux. These models have resemblance of the 2D quasi-geostrophic equation. We show the existence of singularities in finite time and construct explicit solutions to the equations where the singularities formed are shocks. For the critical viscosity case we show formation of singularities and global existence of solutions for small initial data.  相似文献   

18.
We study the geometry of Hilbert schemes of points on abelian surfaces and Beauville’s generalized Kummer varieties in positive characteristics. The main result is that, in characteristic two, the addition map from the Hilbert scheme of two points to the abelian surface is a quasifibration such that all fibers are nonsmooth. In particular, the corresponding generalized Kummer surface is nonsmooth, and minimally elliptic singularities occur in the supersingular case. We unravel the structure of the singularities in dependence of p-rank and a-number of the abelian surface. To do so, we establish a McKay Correspondence for Artin’s wild involutions on surfaces. Along the line, we find examples of canonical singularities that are not rational singularities.  相似文献   

19.
In this paper, we present a new approach to solve nonlocal initial-boundary value problems of linear and nonlinear hyperbolic partial differential equations of first-order subject to initial and nonlocal boundary conditions of integral type. We first transform the given nonlocal initial-boundary value problems into local initial-boundary value problems. Then we apply a modified Adomian decomposition method, which permits convenient resolution of these problems. Moreover, we prove this decomposition scheme applied to such nonlocal problems is convergent in a suitable Hilbert space, and then extend our discussion to include systems of first-order linear equations and other related nonlocal initial-boundary value problems.  相似文献   

20.
We perform an asymptotic analysis of models of population dynamics with a fractional Laplacian and local or nonlocal reaction terms. The first part of the paper is devoted to the long time/long range rescaling of the fractional Fisher-KPP equation. This rescaling is based on the exponential speed of propagation of the population. In particular we show that the only role of the fractional Laplacian in determining this speed is at the initial layer where it determines the thickness of the tails of the solutions. Next, we show that such rescaling is also possible for models with non-local reaction terms, as selection-mutation models. However, to obtain a more relevant qualitative behavior for this second case, we introduce, in the second part of the paper, a second rescaling where we assume that the diffusion steps are small. In this way, using a WKB ansatz, we obtain a Hamilton-Jacobi equation in the limit which describes the asymptotic dynamics of the solutions, similarly to the case of selection-mutation models with a classical Laplace term or an integral kernel with thin tails. However, the rescaling introduced here is very different from the latter cases. We extend these results to the multidimensional case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号