首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The role of negative hyperconjugation and anomeric and polar effects in stabilizing the XZHCbetaCalphaYY'- intermediates in SNV reactions was studied computationally by DFT methods. Destabilizing steric effects are also discussed. The following ions were studied: X = CH3O, CH3S, CF3CH2O and Y = Y' = Z = H (7b-7d), Y = Y' = H, Z = CH3O, CH3S, CF3CH2O (7e-7i), YY' = Meldrum's acid-like moiety (Mu), Z = H, (8b-8d), and YY' = Mu, Z = CH3O, CH3S, CF3CH2O (8e-8i). The electron-withdrawing Mu substituent at Calpha stabilizes considerably the intermediates and allows their accumulation. The hyperconjugation ability (HCA) (i.e., the stabilization due to 2p(Calpha) --> sigma*(Cbeta-X) interaction) in 8b-8d follows the order (for X, kcal/mol) CH3S (8.5) > CF3CH2O (7.6) approximately CH3O (7.5). The HCA in 8b-8d is significantly smaller than that in 7b-7d due to charge delocalization in Mu in the former. The calculated solvent (1:1 DMSO/H2O) effect is small. The stability of disubstituted ions (7e-7i and 8e-8i) is larger than that of monosubstituted ions due to additional stabilization by negative hyperconjugation and an anomeric effect. However, steric repulsion between the geminal Cbeta substituents destabilizes these ions. The steric effects are larger when one or both substituents are CH3S. The anomeric stabilization (the energy difference between the anti,anti and gauche,gauche conformers) in the disubstituted anions contributes only a small fraction to their total stabilization. Its order (for the following X/Z pairs, kcal/mol) is CF3CH2O/CH3S (8i, 4.9) > CF3CH2O/CH3O (8h, 3.9) > CH3O/CH3S (8g, 3.3) > CH3S/CH3S (8f, 2.9) > CH3O/CH3O (8e, 2.4). Significantly larger anomeric effects of ca. 8-9 kcal/mol are calculated for the corresponding conjugate acids.  相似文献   

2.
The conformational preferences of six model compounds for the N-C-N anomeric unit (methanediamine, 2,2-propanediamine, N,N,N',N'-tetramethyl-methanediamine, 1,3-dizacyclohexane, 1,3,5-triazacyclohexane, and 2-aminopiperidine) were analyzed within the framework of the Quantum Theory of Atoms in Molecules. The relative stabilization of the conformers is related to two factors: (i) the reduction of the electron population experienced by the hydrogens of the central methylene when they display more gauche arrangements to lone pairs (lp) and (ii) the reduction of the electron population of aminic hydrogens when the corresponding N-H bond is in a parallel arrangement to the lone pair of another N. The former depletion takes place in lp-N-C-N antiperiplanar dispositions, whereas the latter is shown in lp-N-C-N gauche arrangements. Therefore, we can say that the electron density removed from the central hydrogens is moved to an aminic one on going from an antiperiplanar to a gauche disposition of a lp-N-C-N unit. The relative energies of aminic and central hydrogens in the conformer series is the main factor determining the conformational preference. In contrast to what happens in O-C-O containing compounds (where both N(H) depletions take place in the O-C-O-H gauche dispositions), the stabilization gained by N and C atoms plays a secondary role. This is in line with a general trend exhibited by hydrogens as the most available (less energy cost) atomic basins for receiving or providing electron density along a chemical change. It also explains why the anomeric conformational stabilization due to the N-C-N units is significantly less than that of the O-C-O- units. Moreover, the variations of electron population due to conformational changes are not in keeping with the stereoelectronic model of the anomeric effect, as was previously found for diverse molecules containing the O-C-O anomeric unit.  相似文献   

3.
Many natural products of biological interest contain [6,5]- and [6,6]-spiroketal moieties that can adopt various configurations, benefiting or not from anomeric conformation stabilizing effects. The spiroketal fragments are often important for the biological activity of the compounds containing them. Most stable spiroketal stereoisomers, including those benefiting from conformational anomeric effects (gauche conformers can be more stable than anti conformers because of a contra-steric stabilizing effect), are obtained easily under acidic conditions that permit acetal heterolysis (formation of tertiary oxycarbenium ion intermediates). The synthesis of less stable stereoisomers requires stereoselective acetal forming reactions that do not permit their equilibration with their most stable stereoisomers or, in the case of suitably substituted derivatives, concomitant reactions generating tricyclic products that quench the less stable spiroketal conformers. Ingenuous approaches have been recently developed for the synthesis of naturally occurring [6,6]- and [5,6]-nonanomeric spiroketals and analogues. The identification of several parameters that can influence the stereochemical outcome of spirocyclization processes has led to seminal improvements in the selective preparation of the non-anomeric isomers that are discussed herein. This review also gives an up-dated view of conformational anomeric effect which represents a small fraction of the enthalpic anomeric effect that makes gem-dioxy substituted compounds much more stable that their 1,n-dioxy substituted isomers (n > 1). Although models assuming sp3-hybridized oxygen atoms have been very popular (rabbit ears for the two non-bonding electron pairs of oxygen atom), sp2-hybridized oxygen atoms are used to describe the conformational anomeric effect.  相似文献   

4.
Ulrich Burkert 《Tetrahedron》1979,35(16):1945-1951
Van der Waals and electrostatic interactions are found to be insufficient for the calculation of conformational energies of ethers by molecular mechanics. Low order torsional potential functions must be added for the potential about C-O bonds. A onefold term necessary for the CCOC-fragment is interpreted to be a substitute for gauche interactions present in CCCC-, but missing in CCOC-fragments. For the COCO fragment the anomeric effect must be included explicitly as another torsional energy term, but no such term is required to stabilize the gauche conformation for OCCO. With the resulting ether force field the geometries and energies of model compounds, many of them 1,3-dioxanes, are calculated with good accuracy.  相似文献   

5.
The conformational preferences of two model compounds for the O--CH2--O anomeric unit: methanediol and dimethoxymethane analyzed within the framework of the QTAIM theory provide a new interpretation of the anomeric effect. The characteristic stabilization of the gauche conformers of these compounds is accompanied by a progressive reduction of the electron population of the hydrogens of the central methylene as the number of their gauche interactions to lone pairs rises. The electron population removed from these atoms during the conformational change is gained in the gauche conformers by atoms of larger atomic number, which results in a more negative molecular energy. Also, the variations displayed by atomic populations and the QTAIM delocalization indexes are not keeping in line with the hyperconjugative model of the anomeric effect.  相似文献   

6.
The structure and torsional properties of oxalyl chloride fluoride in the gas phase have been measured by electron diffraction at temperatures of 22, 81, 158, and 310 °C. The molecule may be regarded as a hybrid of oxalyl chloride and oxalyl fluoride. Since the former exists as a more stable periplanar anti form (? = 180°) in equilibrium with a less stable gauche form (? ? 60°) and the latter as an equilibrium between two periplanar forms, anti and syn, the second form of oxalyl chloride fluoride is an interesting question. It was found to be gauche. The system was modeled as two rotational conformers related by a potential of the form 2V = V(1)(1 + cos??) - V(2)(1 - cos?2?) + V(3)(1 + cos?3?). The anti/gauche bond distances and bond angles (r(g)/Angstroms, ∠(α)/degrees) with estimated 2σ uncertainties at 22 °C are = 1.183(2)/1.182(2), Δr(C═O) = 0.003(6)/0.002(6) (assumed from theory), r(C-F) = 1.329(3)/1.335(3), r(C-Cl) = 1.738(2)/1.753(2), ∠(C-C-Cl) = 112.0(3)/111.9(3), ∠(C-C═O3) = 123.0(4)/123.2(4), ∠(O═C-Cl) = 125.0(2)/1.249(2), ∠(O═C-F) = 123.0(3)/125.1(3), and ∠(Cl-C-C-F) = 180.0/59.8. The variation of composition with temperature afforded a determination of the standard enthalpy and entropy of the reaction anti → gauche. The results are ΔH° = 2.5(12) kcal/mol and ΔS° = -6.5(33) cal/(mol·K). The structures and equilibria are discussed.  相似文献   

7.
运用电化学循环伏安法(CV)和原位傅立叶变换红外(FTIR)反射光谱, 研究了不同pH值溶液中二甲醚(DME)在Pt电极上的解离吸附和氧化过程. 稳态CV结果给出, 在0.1 mol·L-1 H2SO4溶液中, 当电位处于0.05-0.35 V (vs RHE)区间, 约70%的Pt表面位被DME的解离吸附产物占据. DME电氧化反应的活性随pH值增加而下降, 在0.1 mol·L-1 NaOH溶液中, 氢的吸脱附几乎不受抑制且观察不到明显的氧化电流, 表明DME醚键上氧原子的质子化是其发生解离吸附和氧化的必要条件. 原位FTIR光谱研究给出DME解离吸附和氧化过程的分子水平信息, 指出DME在低电位区间解离生成线型吸附态CO(COL)毒性中间体. 当电位高于0.55 V(vs RHE)时, COL开始氧化为CO2; 在0.75-1.00 V(vs RHE)的电位区间则可同时发生经活性中间体(HCOOH)的氧化过程.  相似文献   

8.
The crystal structures of an inorganic butane analogue, NH(3)BH(2)NH(2)BH(3) (DDAB), were determined using single crystal X-ray diffraction, revealing both anti and gauche conformations. The anti conformation is stabilized by intermolecular dihydrogen bonds in the crystal whereas two gauche conformations of DDAB observed in its 18-crown-6 adducts are stabilized by an intramolecular dihydrogen bond. The two gauche conformations show rotational isomerization but whether they are a pair of enantiomers is yet to be defined.  相似文献   

9.
The energies of the gauche and anti conformers of 2-fluoroethylamine, 2-fluoroethanol and their protonated analogues are calculated using density functional theory. Unlike the non protonated systems, the protonated systems show a strong gauche effect where the C-F and the C-(+)NH(3) or C-F and C-(+)OH(2) bonds are gauche rather than anti to each other. Single crystal X-ray diffraction studies of 2-fluoroethylammonium compounds identify the same conformational preference.  相似文献   

10.
The infrared (3100-40 cm(-1)) and Raman (3100-20 cm(-1)) spectra of gaseous and solid n-propylsilane, CH(3)CH(2)CH(2)SiH(3) and the Si-d(3) isotopomer, CH(3)CH(2)CH(2)SiD(3), have been recorded. Additionally, the Raman spectra of the liquids have been recorded and qualitative depolarization values obtained. Both the anti and gauche conformers have been identified in the fluid phases but only the anti conformer remains in the solid. Variable temperature (-105 to -150 degrees C) studies of the infrared spectra of n-propylsilane dissolved in liquid krypton have been recorded and the enthalpy difference has been determined to be 220+/-22 cm(-1) (2.63+/-0.26 kJ mol(-1)) with the anti conformer the more stable form. A similar value of 234+/-23 cm(-1) (2.80+/-0.28 kJ mol(-1)) was obtained for deltaH for the Si-d(3) isotopomer. At ambient temperature it is estimated that there is 30+/-2% of the gauche conformer present. The potential function governing the conformation interchange has been estimated from the far infrared spectral data, the enthalpy difference, and the dihedral angle of the gauche conformer, which is compared to the one predicted from ab initio MP2/6-31G(d) calculations. The barriers to conformational interchange are: 942, 970 and 716 cm(-1) for the anti to gauche, gauche to gauche, and gauche to anti conformers, respectively. Relatively complete vibrational assignments are proposed for both the n-propylsilane-d(0) and Si-d(3) molecules based on the relative infrared and Raman spectral intensities, infrared band contours, depolarization ratios, and normal coordinate calculations. The geometrical parameters, harmonic force constants, vibrational frequencies, infrared intensities, Raman activities and depolarization ratios, and energy differences have been obtained for the anti and gauche conformers from ab initio MP2/6-31G(d) calculations. Structural parameters and energy differences have also been obtained utilizing the larger 6-311 + G(d,p) and 6-311 + G(2d,2p) basis sets. From the isolated Si-H stretching frequency from the Si-d(2) isotopomer the r(0) distances of 1.484 and 1.485 A have been determined for the SiH(s) and SiH(a) bonds, respectively, for the anti conformer, and 1.486 A for the SiH bond for the gauche conformer. Utilizing previously reported microwave rotational constants for the anti conformer and the determined SiH distances along with ab initio predicted parameters 'adjusted r(0)' parameters have been obtained for the anti conformer. The results are discussed and compared to those obtained for some similar molecules.  相似文献   

11.
α-Phenylsclenenyl cyclic ethers may be prepared by the reactions of either lactols or lactol acetates with benzeneselenol, or from lactones by the “one-pot” process of reduction and Lewis acid catalyzed selenation. The tetrahydropyranyl phenyl selenides also exhibit a significant anomeric effect and its size has been estimated. The selenenyl ethers are converted to enol ethers through an oxidative elimination process, and an exploration of their reactivity toward amide bases and lithium alkyls has been made.  相似文献   

12.
Gas-phase electron-diffraction data and high-level quantum chemical calculations have been used to study the conformational behaviour of N-azidomethylpyrrolidine. The two most stable conformers with a relative abundance of about 80% at 298 K possess gauche orientation of the azidomethyl group around the C-N(pyr) bond (C-N(azido)gauche with respect to the endocyclic N(pyr)-C bond). This orientation is a strong manifestation of an anomeric effect. The influence of the anomeric effect is also reflected in shortening of the C-N(pyr) bond and lengthening of the C-N(azido) bond as compared to such bonds in other compounds.  相似文献   

13.
Syntheses of six new N-(pentopyranosyl)imidazoles have been achieved, and their conformations were observed with and without protonation. A decisive decrease in J(5',4), consistent with stabilization of the 1C4 conformations, was clearly observed for three N-(pentopyranosyl)imidazoles. As well, no reverse anomeric stabilization was observed for N-(2,3,4-tri-O-acetyl-alpha-D-lyxopyranosyl)imidazole upon protonation. It is suggested that the previous observations of the reverse anomeric effect were due to the slight increase in steric bulk of the imidazole aglycone upon protonation, along with favorable dipolar interactions between ring substituents, and not by a reverse of the anomeric effect.  相似文献   

14.
The anomeric effect of the functional groups X = C?N, C?CH, COOH, COO?, O? CH3, NH2, and NH+3 has been studied with ab initio techniques. Geometry effects upon rotation around the central C? O bond in X? CH2? O? CH3 have been compared in the various compounds. The energy differences between the conformers with a gauche and trans (X? C? O? C) arrangement were calculated at the 6-31G* level in the fully optimized 4-21G geometries. Energy differences calculated at the 4-21G level appeared not to be reliable, especially for the groups X that contain non-sp3 hybridized atoms. The 6-31G* energy differences indicate a normal anomeric effect for X = COO?, O? CH3, and NH2(g+) (ca. 13 kJ/mol) and a small anomeric effect for X = COOH, C?N, and C?CH (ca. 6 kJ/mol). For X = NH2(t) and NH+3 a reverse anomeric effect occurs. These observations are in line with experimental results and evidence is given for a competition among various stereoelectronic interactions that occur at the same anomeric center. Geometry variations can be understood in terms of simple rules associated with anomeric orbital interactions. Trends followed when the group X is varied cannot be related in a straightforward way to the energy differences between the trans and the gauche forms in these compounds. Only the variation in the gauche torsion angle X? C? O? C follows roughly the same trend.  相似文献   

15.
Insight into the key factors driving the competition of halogen and hydrogen bonds is obtained by studying the affinity of the Lewis bases trimethylamine (TMA), dimethyl ether (DME), and methyl fluoride (MF) towards difluoroiodomethane (CHF2I). Analysis of the infrared and Raman spectra of solutions in liquid krypton containing mixtures of TMA and CHF2I and of DME and CHF2I reveals that for these Lewis bases hydrogen and halogen‐bonded complexes appear simultaneously. In contrast, only a hydrogen‐bonded complex is formed for the mixtures of CHF2I and MF. The complexation enthalpies for the C?H ??? Y hydrogen‐bonded complexes with TMA, DME, and MF are determined to be ?14.7(2), ?10.5(5) and ?5.1(6) kJ mol?1, respectively. The values for the C?I ??? Y halogen‐bonded isomers are ?19.0(3) kJ mol?1 for TMA and ?9.9(8) kJ mol?1 for DME. Generalization of the observed trends suggests that, at least for the bases studied here, softer Lewis bases such as TMA favor halogen bonding, whereas harder bases such as MF show a substantial preference for hydrogen bonding.  相似文献   

16.
The intrinsic flexibility of the pentoses in RNA allows dynamic transmission of information on the electronic character of the nucleobase to modulate the sugar conformation by an interplay of gauche and anomeric effects. This modulation in turn steers the phosphate backbone conformation by tuning the 3'-O-P-O(ester) anomeric effect, as shown by conformational analysis of EtpGpMe as a function of pD. This tunable transmission is stereoelectronic in nature, and operates by appropriate overlap between donor and acceptor orbitals (see scheme), which causes single-stranded RNA to behave as a molecular wire.  相似文献   

17.
Electronic structure calculations have been performed on a model N-phosphorylguanidine, or phosphagen, to understand the stereoelectronic factors contributing to the lability of the "high-energy" N-P bond. The lability of the N-P bond is central to the physiological role of phosphagens involving phosphoryl transfer reactions important in cellular energy buffering and metabolism. Eight protonated forms of N-methyl-N'-phosphorylguanidine have been energy minimized at levels of theory ranging up to B3LYP/6-311++G(d,p) and MP2/6-311++G(d,p) to investigate the correlation between protonation state and N-P bond length. Selected forms have also been minimized using the CCSD/6-311++G(d,p) and QCISD/6-311++G(d,p) levels of theory. Bulk solvation energies using the polarized continuum model (PCM) with B3LYP/6-311++G(d,p) test the influence of the surroundings on computed structures and energies. The N-P bond length depends on the overall protonation state where increased protonation at the phosphoryl group or deprotonation at the unsubstituted N' nitrogen results in shorter, stronger N-P bonds. Natural bond orbital analysis shows that the protonation state affects the N-P bond length by altering the magnitude of stabilizing n(O) --> sigma*(N-P) stereoelectronic interactions and to a lesser extent the sigma(N-P) --> sigma*(C-N') and sigma(N-P) --> sigma*(C-N) interactions. The computations do not provide evidence of a competition between the phosphoryl and guanidinium groups for the same lone pair on the bridging nitrogen, as previously suggested by opposing resonance theory. The computed n(O) --> sigma*(N-P) anomeric effect provides a novel explanation of "high-energy" N-P bond lability. This offers new mechanistic insight into phosphoryl transfer reactions involving both phosphagens and other biochemically important "high-energy" phosphoester bonds.  相似文献   

18.
The stabilities of the gauche and anti conformations of butane, 1,2-dicyanoethane (DCE), and 1,2-dinitroethane (DNE) have been investigated through theoretical calculations. The gauche effect-the tendency of keeping close vicinal electronegative substituents (thetaX-C-C-X approximately 60 degrees ) in an ethane fragment-is expected to drive the conformational equilibrium of DCE and DNE toward the gauche conformation. It was found that, for butane, where the gauche effect is supposed to be poor/null, the hyperconjugation effect contributes mostly to the anti stabilization in opposition to the traditional sense that the methyl groups repel each other, and this should govern its conformational equilibrium. For DCE the equilibrium was shifted to the anti conformer, essentially due to a gauche repulsion, while for DNE, despite the higher electronic delocalization energies, a predominance of the gauche conformer was obtained, and this was attributed mainly to the attractive dipolar interaction between the two nitro groups. A full orbital energy analysis was performed using the natural bond orbital approach, which showed that bond bending and anti-C-H/C-X* hyperconjugation models, usually applied to explain the origin of the gauche effect in fluorinated derivatives, are not adequate to completely explain the conformational behavior of the titled compounds.  相似文献   

19.
Leiming Pan 《Acta Physico》2008,24(10):1739-1744
Dissociative adsorption and electrooxidation of dimethyl ether (DME) on a platinum electrode in different pH solutions were studied using cyclic voltammetry (CV) and in situ FTIR reflection spectroscopy. The coverage of the dissociative adsorbed species was measured about 70% from hydrogen adsorption-desorption region (0.05-0.35 V (vs RHE)) of steady-state voltammogram recorded in 0.1 mol·L−1 H2SO4 solution. It was found that the electrochemical reactivity of DME was pH dependent, i.e., the larger the pH value was, the less the reactivity of DME would be. No perceptible reactivity of DME in 0.1 mol·L−1 NaOH solution could be detected. It was revealed that the protonation of the oxygen atom in the C-O-C bond played a key role in the electrooxidation of DME. In situ FTIR spectroscopic results illustrated that linearly bonded CO (COL) species determined at low potential region were derived from the dissociative adsorption of DME and behaved as ‘poisoning’ intermediate. The COL species could be oxidized to CO2 at potential higher than 0.55 V (vs RHE) and in the potential range from 0.75 to 1.00 V (vs RHE) DME was oxidized simultaneously via HCOOH species that were identified as the reactive intermediates.  相似文献   

20.
The various protonated forms of phenol (1), catechol (2), resorcinol (3), and hydroquinone (4) were explored by ab initio quantum chemical calculations at the MP2/6-31G(d) and B3LYP/6-31G(d) levels. Proton affinities (PA) of 1-4 were calculated by the combined G2(MP2,SVP) method, and their gas-phase basicities were estimated after calculation of the change in entropy on protonation. These theoretical data were compared with the corresponding experimental values determined in a high-pressure mass spectrometer. This comparison confirmed that phenols are essentially carbon bases and that protonation generally occurs in a position para to the hydroxyl group. Resorcinol is the most effective base (PA = 856 kJ mol-1) due to the participation of both oxygen atoms in the stabilization of the protonated form. Since protonation is accompanied by a freezing of the two internal rotations, a significant decrease in entropy is observed. The basicity of catechol (PA = 823 kJ mol-1) is due to the existence of an intramolecular hydrogen bond, which is strengthened upon protonation. The lower basicity of hydroquinone (PA = 808 kJ mol-1) is a consequence of the fact that protonation necessarily occurs in a position ortho to the hydroxyl group. When the previously published data are reconsidered and a corrected protonation entropy is used, a proton affinity value of 820 kJ mol-1 is obtained for phenol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号