首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
过渡金属络合物催化的均相不对称氢化反应是合成手性化合物的重要方法之一,目前主要集中于钌、铑、铱和钯等贵重过渡金属催化体系,这些贵重过渡金属催化体系面临着地球储量有限、价格昂贵和重金属污染环境等问题,因而发展地球储量丰富、价格低廉、无毒或低毒且对环境友好的铁、钴、镍和铜的均相不对称氢化反应催化体系符合现代化学可持续发展的要求和趋势.简要综述了近些年来廉价金属镍催化的均相不对称氢化反应研究领域的新进展,基于前手性不饱和化合物双键的不同类型,即碳-氧双键(C=O)、碳-碳双键(C=C)以及碳-氮双键(C=N)等,依次介绍它们的研究现状,目前已经取得了突破和可观的研究成果,系统地分析了镍催化体系中催化氢化不同类型底物的优势与不足,并展望了未来的研究方向.  相似文献   

2.
非官能化烯烃的不对称氢化反应一直是烯烃加氢领域的难点。研究表明,铱-氮膦配体催化剂对此类反应具有很好的催化活性和选择性,因而受到国内外众多学者的关注。本文对近年来利用铱-氮膦配体催化剂对非官能化烯烃进行不对称氢化的研究进展进行了综述,介绍了不对称氢化的历程及背景,着重讨论了铱-氮膦配体催化剂的催化机理(Ir-Ir催化循环机理、Ir-Ir催化循环机理)、铱催化剂的组成以及催化性能的比较,并对铱催化剂在不对称氢化中的发展前景作了展望。  相似文献   

3.
张永敏  林荣辉 《有机化学》1987,7(5):361-364
格氏试剂通常以碳负离子形式对亲电试剂进行加成。但是有催化量的Cp_2TiCl_2存在时,具有β质子的烷基格氏试剂往往能发生还原反应或氢镁化反应。例如,使环氧键、碳氧双键、硅氧键、硅卤键、碳卤键、碳氮双键、碳氮三键、碳碳双键、碳碳三键等还原或氢镁化的反应已有报道。但是,对硫氧双键、氮氧键、磷氧双键和砷氧双键的  相似文献   

4.
亮点介绍     
<正>铱催化具有环外双键的α,β-不饱和环酮的不对称氢化J.Am.Chem.Soc.2010,132,4538~4539手性烯丙醇是一类非常重要的有机合成中间体,在手性药物和天然产物的合成中有着广泛的应用.α,β-不饱烯酮的不对称催化氢化反应是制备手性烯丙醇化合物的最直接方法.然而,目前成功的例子仅限于钌-双膦/双胺络合物  相似文献   

5.
亚磷酰胺化合物,作为一类"优势手性配体",经过近二十年的发展已经被证明可适用于不对称催化氢化、不对称催化烯丙基取代和不对称催化Diels-Alder反应等多种类型的不对称催化反应.以最具工业化前景的不对称催化氢化反应为切入点,综述了亚磷酰胺配体在铱催化烯酰胺及其衍生物、非官能团烯胺、亚胺及芳香杂环化合物的不对称氢化反应中的研究进展.  相似文献   

6.
利用Hartree-Fock(HF)算法和密度泛函理论(DFT)探讨了新型轴手性氮氧酰胺类配体催化亚胺C=N双键不对称硅氢化反应的过渡态.研究发现,H在Si原子上,反应经过渡态TS-2,能垒较低,由此得到产物(-)-N-(1-phenylethyl)aniline的e.e.值与实验结果相吻合.同时,本文还尝试采用合理的简化模型计算反应过渡态,其结果与使用全部分子用于过渡态能量计算的结论一致.  相似文献   

7.
面包酵母在催化不对称合成中的应用   总被引:8,自引:0,他引:8  
介绍了当前国内外在以面包酵母为催化剂不对称催化合成手性化合物的研究情况,重点介绍了面包酵母催化各类潜手性羰基的不对称还原、潜手性碳一碳双键的不对称加成和碳一碳键形成的反应情况,讨论了各种提高酵母催化不对称合成反应立体选择性的方法,对酵母催化不对称合成有关生物学方面的研究进行了简单的介绍。  相似文献   

8.
α,β-不饱和羰基化合物的选择还原研究进展   总被引:1,自引:0,他引:1  
综述了近年来α,β-不饱和羰基化合物α,β-碳碳双键和碳氧双键的选择还原研究进展,讨论了过渡金属催化还原、氢化试剂还原、连二亚硫酸钠还原以及生物还原。  相似文献   

9.
综述了近年来过渡金属催化氧(氮)杂二环烯烃与碳负离子型亲核试剂的不对称开环反应研究进展,重点讨论了过渡金属催化剂的种类、碳负离子型亲核试剂的类型、配体、底物结构、溶剂和添加剂等因素对不对称开环反应的影响,并对部分不对称开环反应的可能机理进行了讨论.  相似文献   

10.
季益刚  吴磊  范青华 《化学学报》2014,72(7):798-808
近年来,金属/金属氧化物纳米粒子催化的不对称氢化和氢转移反应已经成为催化领域的前沿和研究热点之一. 金属/金属氧化物纳米粒子的催化模式类似于“纳米反应器”,底物可以通过有机包覆层扩散至催化中心,局部的高催化剂浓度通常可以极大地提高催化反应转换数(TON)和转化频率(TOF). 在以纳米金属为催化活性中心方面,Orito纳米铂体系获得最多的关注,科学家们从手性修饰剂的结构改造、催化剂载体的选择、不同的反应介质、纳米催化剂的形貌和催化反应机理等方面开展了较为系统的研究,并取得重要进展. 此外,纳米钯、铑、钌、铱和铁等金属纳米催化剂也在烯烃、酮和亚胺等化合物的不对称氢化和氢转移反应中表现出良好的催化性能,特别是纳米铱和铁催化剂已获得95%以上的对映选择性. 在金属/金氧化物纳米粒子为催化剂载体方面,其催化不对称氢化及氢转移反应的效率及对映选择性可与均相催化剂相媲美,同时还解决了均相催化剂难于回收再循环的缺陷. 本文简要介绍了近年来手性金属纳米催化剂在不对称氢化和氢转移反应领域的研究进展,讨论了相关反应的催化机理,并对该领域仍存在的问题和未来的发展方向进行了展望.  相似文献   

11.
Xiu-Shuai Chen 《合成通讯》2016,46(11):917-941
Chiral phosphine-phosphoramidite ligands, featuring ready availability, easy modification, and stability towards air and moisture, have recently emerged as a new kind of robust ligands for asymmetric catalysis. They have been found to display wide utilities in various catalytic asymmetric reactions, giving excellent enantioselectivities in the Rh-, Ru-, and Ir-catalyzed asymmetric hydrogenation of C?C, C?O, and C?N double bonds; Rh-catalyzed asymmetric hydroformylation; Pd-catalyzed asymmetric hydrophosphorylation; Pd-catalyzed asymmetric allylic alkylation; Ag-catalyzed asymmetric [3 + 2] cycloaddition; and Cu-catalyzed conjugate addition and reduction. In this review, the progress on the development of chiral phosphine-phosphoramidite ligands in asymmetric catalysis has been summarized.  相似文献   

12.
Asymmetric hydrogenation plays an important role in organic synthesis, but that of the challenging substrates such as N‐unprotected imines, enamines, and N‐heteroaromatic compounds (1H‐indoles, 1H‐pyrroles, pyridines, quinolines, and quinoxalines) has only received increased attention in the past three years. Considering the interaction modes of a Brønsted acid with a Lewis base, Brønsted acids may be used as the ideal activators of C?N bonds. This Minireview summarizes the recent advances in transition‐metal‐catalyzed, Brønsted acid activated asymmetric hydrogenation of these challenging substrates, thus offering a promising substrate activation strategy for transformations involving C?N bonds.  相似文献   

13.
Optically active medium‐sized cyclic carbonyl compounds bearing an α‐chiral carbon center are of interest in pharmaceutical sciences and asymmetric synthesis. Herein, SpinPhox/IrI catalysts have been demonstrated to be highly enantioselective in the asymmetric hydrogenation of the CC bonds in the exocyclic α,β‐unsaturated cyclic carbonyls, including a broad range of α‐alkylidene lactams, unsaturated cyclic ketones, and lactones. It is noteworthy that the procedure can be successfully used in the asymmetric hydrogenation of the challenging α‐alkylidenelactam substrates with six‐ or seven‐membered rings, thus affording the corresponding optically active carbonyl compounds with an α‐chiral carbon center in generally excellent enantiomeric excesses (up to 98 % ee). Synthetic utility of the protocol has also been demonstrated in the asymmetric synthesis of the anti‐inflammatory drug loxoprofen and its analogue, as well as biologically important ε‐aminocaproic acid derivatives.  相似文献   

14.
《中国化学》2017,35(12):1781-1788
The synthesis of fluorine‐containing molecules has received intensive attention in recent years due to the great value of fluorides, however, the transition metal‐catalyzed asymmetric construction of C—F bonds is much less developed. This review presents the recent advancement of transition metal‐catalyzed asymmetric fluorination reactions, in which the final C—F bond is from reductive elimination of organometallic complexes. In addition, the perspective of the field is also provided for the future studies of asymmetric fluorinations and the related transformations, such as trifluoromethylation, trifluoromethylthiolation and trifluoromethoxylation.  相似文献   

15.
The progress made in the field of homogeneous catalysis during the last five to six years has led, inter alia, to the development of highly selective catalysts for asymmetric syntheses. Homogeneous asymmetric hydrogenation, using well defined transition metal catalysts, may be achieved with optical yields of 85 to 90% or more. Catalytic reactions, in which the chiral centers are generated by C? C bond formation, can result in optical yields of 70 to 80%. The hydrogenation catalysts consist primarily of rhodium(I) complexes containing “Homer phosphanes”, phosphanes with chiral C atoms, or optically active amides. Catalysts which induce optical activity through the formation of C? C bonds have been developed from π-allylnickel halides, Lewis acids, and phosphanes containing chiral C atoms. The results obtained signify a breakthrough in an area of catalysis previously restricted to syntheses involving enzymes.  相似文献   

16.
[reaction: see text] It was found that the chemoselectivity could be completely switched from C=O to C=C bonds in the transfer hydrogenation of activated alpha,beta-unsaturated ketones catalyzed by diamine-ruthenium complex. Moreover, this addition via metal hydride had been applied to the reduction of various activated olefins. The electron-withdrawing ability of functional groups substituted on C=C bonds at the alpha- or beta-position had strong influence on the reactivity. In addition, a wide variety of chiral diamine-Ru(II)-(arene) systems was investigated to explore the asymmetric transfer hydrogenation of prochiral alpha,alpha-dicyanoolefins. Two parameters had been systematically studied, (i) the structure of the N-sulfonylated chiral diamine ligands, in which several chiral diamines substituted on the benzene ring of DPEN were first reported, and (ii) the structure of the metal precursors, and high enantioselectivitiy (up to 89% ee) at the beta-carbon was obtained.  相似文献   

17.
A highly chemoselective earth-abundant transition metal copper catalyzed asymmetric hydrogenation of C=O bonds of exocyclic α,β-unsaturated pentanones was realized using H2. The desired products were obtained with up to 99 % yield and 96 % ee (enantiomeric excess) (99 % ee, after recrystallization). The corresponding chiral exocyclic allylic pentanol products can be converted into several bioactive molecules. The hydrogenation mechanism was investigated via deuterium-labelling experiments and control experiments, which indicate that the keto-enol isomerization rate of the substrate is faster than that of the hydrogenation and also show that the Cu−H complex can only catalyze chemoselectively the asymmetric reduction of the carbonyl group. Computational results indicate that the multiple attractive dispersion interactions (MADI effect) between the catalyst with bulky substituents and substrate play important roles which stabilize the transition states and reduce the generation of by-products.  相似文献   

18.
《中国化学》2018,36(5):443-454
The asymmetric transfer and pressure hydrogenation of various unsaturated substrates provides a succinct pathway to important chiral intermediates and products such as chiral alcohols, amines, and alkanes. The use of earth‐abundant transition metals such as Fe, Co, Ni, and Cu in hydrogenation reactions provides an attractive alternative to traditionally used metals such as Ru, Rh, Ir, and Pd because they are comparatively inexpensive, less toxic, and as their name suggests, more abundant in nature. Earth‐abundant transition metal‐catalyzed asymmetric hydrogenation is rapidly becoming an important area of research. This review summarizes advances in the asymmetric hydrogenation of unsaturated bonds (ketones, imines, and alkenes) with earth‐abundant transition metals.  相似文献   

19.
A new family of ferrocenylphosphane ligands has been prepared. Their flexible synthesis allows many structural modifications. The asymmetric induction of these ligands was examined in the hydrogenation of functionalized C=C, C=O, and C=N bonds. The enantioselectivity of the reaction was strongly dependent on the substituent R at the position alpha to the ferrocene moiety. In many cases, both enantiomeric beta-hydroxyesters of the reduction product can be obtained by simply replacing a dimethylamino group in the ligand with a methyl group.  相似文献   

20.
An efficient cobalt‐catalyzed asymmetric hydrogenation of C=N bonds has been realized. Chiral hydrazines were obtained in high yields and with excellent enantioselectivities (95–98 % ee). The hydrogenation went smoothly at up to 2000 substrate/catalyst and on a gram scale. The success of this reaction relies on the presence of an NHBz group in the substrates, with the reactivity and enantioselectivity improved by an assisted coordination to the cobalt atom and a nonbonding interaction with the ligand. Furthermore, this reaction has practical applications for the synthesis of several useful chiral nitrogen‐containing compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号