首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structure optimizations of the thiophene carbon–sulfur H2(C2S) n C2H2 (n = 1–20) were carried out using density functional theory calculations at the B3LYP/6-31G(d) level. The B3LYP/6-31G(d) geometrical data for heptamer H2(C2S)7C2H2 and undecamer H2(C2S)11C2H2 are in good agreement with the X-ray crystallographic data for the helical (C2S)n β-heptathiophene and β-undecathiophene, respectively. Structural and electronic properties of helical oligothiophenes obtained at the B3LYP/6-311++G(d,p)//B3LYP/6-31G(d) level are reported. The strain energy formula of n oligothiophenes as a linear function of their molecular length was obtained.  相似文献   

2.
The conformational composition of gaseous MTMNB and the molecular structures of the rotational forms have been studied by electron diffraction at 130C aided by results from ab initio and density functional theory calculations. The conformational potential energy surface has been investigated by using the B3LYP/6-31G(d,p) method. As a result, six minimum-energy conformers have been identified. Geometries of all conformers were optimized using MP2/6-31G(d,p), B3LYP/6-31G(d,p), and B3LYP/cc-pVTZ methods. These calculations resulted in accurate geometries, relative energies, and harmonic vibrational frequencies for all conformers. The B3LYP/cc-pVTZ energies were then used to calculate the Boltzmann distribution of conformers. The best fit of the electron diffraction data to calculated values was obtained for the six conformer model, in agreement with the theoretical predictions. Average parameter values (ra in angstroms, angle α in degrees, and estimated total errors given in parentheses) weighted for the mixture of six conformers are r(C–C) = 1.507(5), r(C–C)ring, av = 1.397(3), r(C–S)av = 1.814(4), r(C–N) = 1.495(4), r(N–O)av = 1.223(3), ∠(C–C–C)ring = 116.0–122.5, ∠ C6–C4–C7 = 118.2(4), ∠ C–C–S = 113.6(6), ∠ C–S–C = 98.5(12), ∠ N–C–C4 = 121.9(3), ∠(O–N–C)av = 116.8(3), ∠ O–N–O = 127.0(4). Torsional angles could not be refined. Theoretical B3LYP/cc-pVTZ torsional angles for the rotation about C–N bond, φCN, were found to be 30.5–36.5 for different conformers. As to internal rotation about C–C and C–S bonds, values of φCC = 68–118 and φCS = 66–71 were obtained for the three most stable conformers with gauche orientation with respect to these bonds. Some conclusions of this work were presented in a short communication in Russ. J. Phys. Chem. 2005, 79, 1701.  相似文献   

3.
A combined gas-phase electron diffraction and quantum chemical (B3LYP/6-311+G**, B3LYP/cc-pvtz, MP2/cc-pvtz) study of molecular structure of 2-nitrobenzenesulfonamide (2-NBSA) was carried out. Quantum chemical calculations showed that 2-NBSA has four conformers, two of which are stabilized by intramolecular hydrogen bond. The latter (with the S–N bond in a close to orthogonal position around the phenyl ring and differing from each other by staggered or eclipsed positions of the N–H and S=O bonds in the SO2NH2 group) presented in a saturated vapor over 2-NBSA at T = 433 (3) K in commensurable amounts. Experimental internuclear distances (Ǻ) for the staggered conformer are (?): r h1(C–H)av. = 1.071(9), r h1(C–C)av. = 1.390(4), r h1(C–S) = 1.789(8), r h1(S=O)av. = 1.427(6), r h1(S–N) = 1.644(6), r h1(N–O)av. = 1.221(4), r h1(C′–N) = 1.487(8), r h1(N–H)av. = 1.014. Calculations at B3LYP/cc-pvtz level were performed to determine the structure and the energies of the transition states between conformers. It was shown that the conformer structures of free molecule differ from those of a molecule stabilized by intermolecular hydrogen bonds in a crystal. Influence of a substituent X (X = –CH3, –NO2) on conformational features of the ortho-substituted benzenesulfonamide was established.  相似文献   

4.
Abstract  The molecular and crystal structure of a 1:1 co-crystal of 4,4′-dimethyl-7,7′-bi([1,2,5]thiadiazolo[3,4-b]pyridylidene)–chloranilic acid, (1), has been determined by X-ray diffraction at the monoclinic space group P21/c with cell parameters of a = 8.422(6), b = 7.343(4), c = 16.112(7) ?, β = 104.988(8)°, V = 962.5(10) ?3 and Z = 2. In the crystal structure, two components connect via the intermolecular O–H···N hydrogen bonds [2.804(4) ?] and S···O heteroatom interaction [2.945(3) ?] with R 2 2(7) couplings to form a unique and infinite one-dimensional supramolecular tape structure. The calculations of (1) at the HF/6-31G(d), MP2/6-31G(d), and B3LYP/6-31G(d) levels can almost reproduce X-ray geometry. In addition, the distances of the intermolecular O–H···N and S···O interactions by MP2/6-31G(d) and B3LYP/6-31G(d) levels agree well with those in the crystal. The calculated binding energies corrected BSSE and ZPE are −4.487 (HF), −7.473 (MP2), and −5.640 (B3LYP) kcal/mol. The results suggest that the complex (1) is very stable and the dispersion interaction is significantly important for the attractive intermolecular interaction in (1). The NBO analysis has revealed that the n(N) → σ*(O–H) interaction gives the strongest stabilization to the system and the major interaction for the intermolecular S···O contact is n(O) → σ*(S–N). Index Abstract  In the crystal structure of the title compound, the molecules are linked by intermolecular O–H···N hydrogen bonds and short S···O heteroatom interactions with R 2 2(7) couplings to construct a unique and infinite one-dimensional supramolecular tape structure.   相似文献   

5.
Ar and Kr matrix effect on the geometry and Cl–H stretching (ν s (Cl–H)) and librational (ν l (Cl–H)) frequencies of the hydrogen-bonded complex Cl–H···NH3 are simulated within the framework of polarizable continuum model with integral equation formalism (IEF-PCM) at B3LYP and MP2 levels of theory with the basis set 6-311++G(2df,2pd). Within the framework of B3LYP and IEF-PCM, the simulated gas phase, Ar, and Kr matrix ν s (Cl–H) of the complex are 2140, 1684, and 1550 cm−1, respectively, which deviate from the experimental values (~2200, 1371, and 1218 cm−1) by −60, 313, and 332 cm−1. Within the framework of MP2 and IEF-PCM, the gas phase, Ar, and Kr matrix ν s (Cl–H) are calculated as 2366, 2037, and 1957 cm−1 by the harmonic approximation, and as 2177, 1876, and 1665 cm−1 by the full-dimensional anharmonic correction. The matrix effect modeling is of greater importance than the anharmonic correction in accounting for the large experimental gas phase to Ar or Kr matrix shift of the ν s (Cl–H) (−829 or −982 cm−1). Our calculations do not support the assignment of the 733.8 and 736.9 cm−1 bands to the Ar and Kr matrix ν l (Cl–H).  相似文献   

6.
Summary The rhodium(I) carbonyl compounds [Rh(CO)L22] [BF4]. 1/2CH2Clnn2 (L = PPh2 or AsPh3) react with the nucleophiles OMe, RCOO (R = Me, Et) under nitrogen to form [Rh(OR)(CO)L2] (1)–(2) and [Rh(OOCR)(CO)L2] (7)–(10), respectively. Addition of [Rh(CO)2(PPh3)2]-[BF 4] to OMe under nitrogen produces [Rh(COOMe)-(CO) (PPh3)2]-MeOH (3), whilst reactions of [Rh(CO)-(PPh3)2] [BF4]·1/2CH2Cl2 and [Rh(CO)2(PPh3)2] [BF4] with OR- (R = Me, Et or n-Pr) in the presence of CO produce [Rh(COOR)(CO)2(PPh3)2] (4)–(6). The products have been characterised by i.r., 1H, 31P, 13Cn.m.r. spectroscopy and elemental analysis.  相似文献   

7.
Geometry of the CO2–H2O complex and reaction barriers leading to the formation of H2CO3were studied at the RHF/6-311++G**, MP2/6-311++G**, B3LYP/AUG-cc-pVDZ, B3LYP/AUG-cc-pVTZ, MP2/AUG-cc-pVDZ and CCD/AUG-cc-pVDZ levels of theory. The rotational barrier of the CO2–H2O complex and the reaction barrier leading to the formation of H2CO3–H2O from CO2–(H2O)2 were studied using the first three of the above-mentioned methods. Microsolvation of CO2 in water clusters having upto eight water molecules was studied using the B3LYP/AUG-cc-pVDZ method. Various methods except MP2/AUG-cc-pVDZ predict the equilibrium structure of the CO2–H2O complex to be symmetric while the MP2/AUG-cc-pVDZ method predicts it to be unsymmetric. Formation of H2CO3 from CO2–H2O is strongly catalyzed by the presence of a second water molecule. Atomic orbitals are strongly rehybridized in going from the equilibrium structures of the CO2–H2O and CO2–(H2O)2 complexes to the transition states involved in the formation of H2CO3 and H2CO3–H2O, respectively, as shown by hybridization displacement charges.  相似文献   

8.
A combined gas-phase electron diffraction and quantum chemical (B3LYP/cc-pVTZ, MP2/cc-pVDZ) study of molecular structure of 2,4,6-trinitrobenzenesulfonic acid (2,4,6-tri-NBSA) was carried out. Quantum chemical calculations showed that 2,4,6-tri-NBSA possesses six conformers, which form three pairs of enantiomers with the relative energy of 0, 4.4/3.9, and 2.5/2.5 kcal/mol. It was experimentally established that at T = 444(5) K a saturated vapor over 2,4,6-tri-NBSA is, predominantly (up to 93 mol.%), represented by a low-energy enantiomers II and II′ characterized by intramolecular hydrogen bond between an H atom of the hydroxyl group and one of the O atoms of the NO2 group. Experimental internuclear distances for the low-energy enantiomers are (?): r h1(C–C)av. = 1.387(4), r h1(C–S) = 1.811(6), r h1(S=O)av. = 1.424(4), r h1(S–O) = 1.579(4), r h1(N–O)av. = 1.214(3), r h1(C–N)av. = 1.491(5). Geometry of the conformer II points on existance of strong steric interactions between SO2OH group and two ortho-nitro groups. Analysis of the orbital interactions between the substituents and benzene ring was carried out. Geometric parameters and energies of transition states between conformers were calculated (B3LYP).  相似文献   

9.
Two-dimensional cyclic potential energy surface for internal rotation of vinyl and hydroxyl substituents in o-vinylphenol molecule was constructed by the B3LYP/6-311G(d) method. It was shown that o-vinylphenol molecule exists in the gas phase as a mixture of seven rotamers denoted as A (A′), B (B′), C (C′) and D. The B3LYP/cc-pVTZ calculated percentage of the rotamers A and A′ in which OH…π intramolecular interaction occurs, is at most 24%. The height of barriers t interconversions between o-vinylphenol rotamers varies from 0.1 to 5.2 kcal mol−1. According to B3LYP/cc-pVTZ calculations, the inclusion of solvent effect in the framework of the polarizable continuum model for a solution of o-vinylphenol in CCl4 leads to a decrease in theoretical values of ν(OH) frequencies by about 4–9 cm−1 and to an increase in the percentage of the rotamers without intramolecular hydrogen bond by about 4.3% compared to the corresponding gas-phase values. The simulated IR spectral contours of ν(OH) bands are in good agreement with experimental one Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 499–508, March, 2008.  相似文献   

10.
The reaction mechanism of Se + O3 on the singlet potential energy has been investigated at CCSD(T)/6-311++G(2df,2pd) level of theory based on the geometric parameters optimized at the B3LYP/6-311++G(3df,3pd) level of theory. The calculated results show that the reactants are firstly associated into the adduct Se–O3 with any intrinsic barrier. Subsequently, through a variety of transformations of isomer Se–O3, two kinds of products P1(SeO3(D3h)) and P2(SeO + 3O2) are obtained. The breakage and formation of the chemical bonds in the reaction have been studied by the topological analysis of electronic density. The topological analysis results show that the ring transitional structure region does not only occur in cis-OSeOO → SeO3(Cs) process but also occur in SeO3(Cs) → SeO3(D3h).  相似文献   

11.
The Becke3LYP functional of DFT theory was used to investigate molecular structure and sodium affinity of the systems CH3CO2Na (1), CH3–O–SO3Na (2), CH3–NH–SO3Na (3), saccharide_1Na2 (4), saccharide_2Na (5), saccharide_3Na3 (6), saccharide_4Na2 (7), and saccharide_5Na2 (8), respectively, which are models of N- and O-sulfate glycosaminoglycans. Interaction enthalpies, entropies and Gibbs energies of the sodium-coordinated systems in the gas phase were determined with the B3LYP/6-311+G(d,p) and B3LYP/6-31+G(d) methods. The computed Gibbs energies, ΔG o , of model systems 13 are negative and span a rather broad energy interval (from −500 to −1,500 kJ mol−1). Gibbs interaction energies for sodium acetate, sodium sulfate and sodium sulfamate functions of the five saccharides, systems 48 are always lower than those values found for the model compounds 13. The ionization of sodium salts of saccharides studied in gas phase is in most cases connected with considerable conformational rearrangement of the ionic species. This rearrangement causes an additional energetic stabilization of anionic species and is connected with the substantial release of entropy.  相似文献   

12.
The formations of the phosphinidene derivative HPNaF and its insertion reactions with R–H (R=F, OH, NH2, CH3) have been systematically investigated employing the density functional theory (DFT), such as the B3LYP and MPW1PW91 methods. A comparison with the results of MP2 calculations shows that MPW1PW91 underestimates the barrier heights for the four reactions considered. Similarly, the same is also true for the B3LYP method depending on the selected reactions, but by much less than MPW1PW91, where the barrier heights of the four reactions are 25.2, 85.7, 119.0, and 142.4 kJ/mol at the B3LYP/6-311+G* level of theory, respectively. All the mechanisms of the four reactions are identical to each other, i.e., an intermediate has been located during the insertion reaction. Then, the intermediate could dissociate to substituted phosphinidane(H2RP) and NaF with a barrier corresponding to their respective dissociation energies. Correspondingly, the reaction energies for the four reactions are −92.2, −68.1, −57.2, and −44.3 kJ/mol at the B3LYP/6-311+G* level of theory, respectively, where both the B3LYP and MPW1PW91 methods underestimate the reaction energies compared with the MP2 results. The linear correlations between the calculated barrier heights and the reaction energies have also been observed. As a result, the relative reactivity among the four insertion reactions should be as follows: H–F > H–OH > H–NH2 > H–CH3.  相似文献   

13.
 Using 6-31G and 6-311G basis sets to which diffuse and polarization functions were added in a stepwise fashion (a total of 16 basis sets), Hartree–Fock (HF), MP2 and B3LYP geometry optimizations were performed on biphenyl. With the MP2 method, diffuse functions raise the dihedral angle φ, for example, from 46.3° for 6-31G to 54.1° for 6-311++G, while polarization functions lower it, for example, from 54.1° for 6-311++G to 42.1° for 6-311++G(2d,2p). For a single set of polarization functions, φ(MP2) lies close to or above φ(HF) (44–47°), but for a double set it is below φ(HF) and is close to B3LYP values (38–42°) which show little basis set dependence. The most reliable value for φ, 42.1° [MP2/6-311++G(2d,2p)], is expected to increase slightly by adding more diffuse functions. The corresponding best calculated energy barrier at 0° (coplanar conformation) is 2.83 kcal/mol, much higher than the experimental estimate (1.4 ± 0.5 kcal/mol). The barrier at 90° is 1.82 kcal/mol, in line with the experimental estimate (1.6 ± 0.5 kcal/mol) and with previous theoretical results. Received: 9 September 2002 / Accepted: 15 November 2002 / Published online: 1 April 2003 Correspondence to: Friedrich Grein e-mail: fritz@unb.ca Acknowledgement. The author would like to thank NSERC (Canada) for financial support.  相似文献   

14.
The molecular structure of N-methylsuccinimide was studied by the GED method at a nozzle temperature of 69–73°C. Anharmonic vibrational corrections to thermal-average r a bond lengths, Δ(r ar e), were calculated using the quadratic and cubic force constants from B3LYP/6-31G(df, p) calculations. The molecular skeleton was found to be planar within measurement errors. Some structural effects were likely caused by the conjugation of the N atom with two C=O bonds. The equilibrium geometric parameters derived from the experimental data and those from MP2/cc-pVTZ(seg-opt) calculations were in close agreement.  相似文献   

15.
Biologically important bicyclic species, including 6H-, 6H-6-aza-, and 6-oxabenzocycloheptatrienes (in which the benzene moiety is fused meta with respect to the tetrahedral constituents: –CH2–, –NH–, and –O–, respectively), show strong shifts of tautomerizations in favor of the corresponding tricyclic benzonorcaradienes (with ΔH values of −11.49, −14.55, and −19.20 kcal mol−1, respectively), at B3LYP/6-311++G**//B3LYP/6-31G*, and MP2/6-311++G**//MP2/6-31G* levels, and at 298 K. In contrast, such shifts are strongly disfavored by the isomeric bicyclic species in which the benzene moieties are fused ortho or para with respect to –CH2–, –NH–, and –O–, respectively. Hence for species with ortho benzene rings including 5H-, 5H-5-aza- and 5-oxabenzocycloheptatrienes, tautomerization ΔH values are 30.76, 31.89, and 25.27 kcal mol−1, respectively, while for species with para fused benzene moieties including 7H-, 7H-7-aza-, and 7-oxabenzocycloheptatrienes, tautomerization ΔH values are 24.12, 26.00, and 19.55 kcal mol−1, respectively. NICS calculations are successfully used to rationalize these results. The calculated energy barriers for inversion of the seven-membered rings of bicyclic species predict a dynamic nature for all the structures except for the virtually planar 6H-6-aza- and 6-oxabenzocycloheptatrienes. Finally, our theoretical data are compared to the experimental results where available. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
The reaction of 1-amino-5-(4-methylbenzoyl)-4-(4-methylphenyl)pyrimidin-2(1H)-one/-thione (1a,b) with ethyl acetoacetate (EA) afforded moderate to good yields (59–63%) of ethyl 2-methyl-4-(4-methylbenzoyl)-5-(4-methylphenyl)-7-oxo/-thioxo-3,3a-dihydropyrazolo[1,5-c]pyrimidine-3-carboxylate (2a,b). The newly synthesized compounds were characterized by elemental analyses, IR, 1H and 13C NMR spectral data. All were compared with their previous analogues. The reaction mechanism of 1 with EA was studied by means of the B3LYP/6-31G(d,p) method. In addition, for reactants Fukui functions were performed using the data calculated with the Becke3–Lee–Yang–Parr (B3LYP) hybrid function.  相似文献   

17.
Conformational analysis of cumene hydroperoxide PhCMe2OOH (1) has been carried out using the density functional methods B3LYP/6-31G(d,p) and B3LYP/6-311+G(3df,2p). Ignoring rotation of methyl groups, molecule 1 has seven conformers differing in orientation of the — CMe2OOH fragment relative to the benzene ring and in mutual position of atoms in this fragment. The molecular structures, relative energies, and statistical distribution of the conformers were determined, and intramolecular rotational barriers were estimated. The enthalpies of formation of all conformers of molecule 1 were calculated using two approximations with inclusion of zero-point vibrational energy and temperature correction. Calculations using the isodesmic reaction (IDR) scheme made it possible to reduce the systematic error of the determination of the enthalpy of reactions. The total enthalpy of formation of compound 1 calculated with inclusion of statistical distribution of rotamers equals −19.7±3.6 kcal mol−1. The combination of the B3LYP/6-31G(d,p) approximation and the IDR scheme gives fairly accurate results (relative error is ±0.4 kcal mol−1) as compared to those obtained with the extended basis set 6-311+G(3df,2p). Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1157–1164, June, 2008.  相似文献   

18.
A density functional theory (DFT) investigation on novel sandwich-type D 5 [C5Li5]Mg n [C5Li5] (n = 2–8) complexes containing –Mg–Mg– chain has been performed in this work. The equilibrium geometries, electronic structures, vibrational frequencies, and stabilities of these complexes are researched by B3LYP and BP86 methods at 6-311+G(d) levels of theory. The Mg n 2+ sandwich complexes with D 5 symmetry are all true minima on the potential energy surface. NBO analyses for the series of complexes reveal that the Mg–Mg bond is a weak σ covalent bond. There are mainly electrostatic interactions between C5Li5 ligands and Mg n 2+(n = 2–8) nuclear in these complexes. The NICS and NICSzz computed with GIAO-B3LYP/6-311+G(d) indicates that the C5Li5 rings in the series of complexes are aromatic. These novel complexes turn out to be strongly thermodynamically favored in the gas phases and may be targeted in future experiments to expand the structural domain of sandwich-type complexes.  相似文献   

19.
The mechanisms of the reaction of NCCO with molecular oxygen are investigated at the G3MP2//B3LYP/6-311G(d,p) levels for the first time. The calculation results show that two mechanisms are involved, namely, O attack on α atom mechanism and O attack on β atom mechanism, with six products yielded. The most feasible channel is the addition of O2 to β atom in NCCO radical leading to the energy-rich intermediate IM1, NCC(O)OO, which can isomerize to a four-center-structure IM3, and then undergoes C–C and O–C bond fission to form P1(NCO + CO2) finally. The barriers are 27.3 and 25.4 kcal/mol, respectively. For other channels involved in the two mechanisms, with less stable initial adducts and higher barrier, they are less conceivable dynamically and thermochemically.  相似文献   

20.
In this work, we theoretically study Diels-Alder reactions between cyclohexadiene and a series of 2-aryl-4,6-dinitrobenzotriazole 1-oxides (5a-d). Based on various calculation methods such as SCF/6–31G* and DFT/B3LYP with the 6–31G* standard basis set, we discuss the thermodynamic possibility of these reactions. The reactions between a series of 6-nitrobenzotriazole 1-oxides(5aa 1 -ab 1 ) and cyclohexadiene are also studied. The text was submitted by the authors in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号