首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
By combining DEM (Discrete Element Method) and FEM (Finite Element Method),a model is established to simulate the breakage of two-dimensional sharp-edge particles,in which the simulated particles are assumed to have no cracks.Particles can,however,crush during different stages of the numerical analysis,if stress-based breakage criteria are fulfilled inside the particles.With this model,it is possible to study the influence of particle breakage on macro- and micro-mechanical behavior of simulated angular materials.Two series of tests,with and without breakable particles,are simulated under different confining pressures based on conditions of biaxial tests.The results,presented in terms of micromechanical behavior for different confining pressures,are compared with macroparameters.The influence of particle breakage on microstructure of sharp-edge materials is discussed and the related confining pressure effects are investigated.Breakage of particles in rockfill materials are shown to reduce the anisotropy coefficients of the samples and therefore their strength and dilation behaviors.  相似文献   

2.
 根据电镜断面考察结果,以Gurson模型为本构方程的有限单元 法对包体模型及三维非均匀模型进行了详细分析. 为了评价应力-应变 关系及损伤的主要因素,考虑了基体中SiC粒子的体积率和径比的非均 匀分布. 其结果表明,用这种非均匀模型能很好地仿真铝基体在大量塑 性变形之后所发生的韧窝破坏过程. SiC粒子体积率、径比及其位置的 非均匀性,对局部和整体损伤过程与应力-应变关系的影响相当大. 当 Sic粒子径比为1.0,并在基体中均匀分布时,断裂应变会大幅度增大.  相似文献   

3.
Dilation and breakage energy dissipation of four different granular soils are investigated by using an energy balance equation. Due to particle breakage, the dilation curve does not necessarily pass through the origin of coordinates. Breakage energy dissipation is found to increase significantly at the initial loading stage and then gradually become sta-bilised. The incremental dissipation ratio between breakage energy and plastic work exhibits almost independence of the confining pressure. Accordingly, a plastic flow rule consid-ering the effect of particle breakage is suggested. The critical state friction angle is found to be a combination of the basic friction between particles and the friction contributed by par-ticle breakage.  相似文献   

4.
Discrete Element Methods (DEM) are a useful tool to model the fracture of cohesive granular materials. For this kind of application, simple particle shapes (discs in 2D, spheres in 3D) are usually employed. However, dealing with more general particle shapes allows to account for the natural heterogeneity of grains inside real materials. We present a discrete model allowing to mimic cohesion between contacting or non-contacting particles whatever their shape in 2D and 3D. The cohesive interactions are made of cohesion points placed on interacting particles, with the aim of representing a cohesive phase lying between the grains. Contact situations are solved according to unilateral contact and Coulomb friction laws. In order to test the developed model, 2D uniaxial compression simulations are performed. Numerical results show the ability of the model to mimic the macroscopic behavior of an aggregate grain subject to axial compression, as well as fracture initiation and propagation. A study of the influence of model and sample parameters provides important information on the ability of the model to reproduce various behaviors.  相似文献   

5.
不同尺度分布散粒材料砂堆形成过程的二维离散元模拟   总被引:5,自引:1,他引:4  
用作者开发的离散元程序,模拟不同尺寸分布的砂堆形成过程.把散体颗粒简化为圆形颗粒,模拟过程分三步:首先利用参考网格生成颗粒的松散堆积结构;为了避免颗粒下落的冲击作用对砂堆安息角的影响,先模拟颗粒在重力作用下在圆柱容器内的自由下落与堆积,直至堆积达到稳定;最后,移除容器,只保留一个底部边界,模拟颗粒体系的散落过程,直至形成一个稳定的砂堆.模拟结果表明,在其他参数保持相同的情况下,随着颗粒尺寸的减小,砂堆的安患角逐步减小并趋向于一常值.对模拟中的两组颗粒体系进行相同条件下的砂堆形成实验,结果表明,模拟与实验所得安息角大体相当.  相似文献   

6.
This paper presents a constitutive relation for modelling the inelastic response of sedimentary rocks. The inherent anisotropy of this class of materials is described by employing a second-order microstructure tensor, whose eigenvectors define the principal material triad. Higher-order dyadic products of this tensor are incorporated in the distribution function, which specifies the directional dependence of strength parameters. The mathematical formulation is applied to model the mechanical characteristics of Tournemire shale. Several triaxial tests are simulated, at various initial confining pressures, for samples tested at different orientation relative to the loading direction. The results are compared with the available experimental data.  相似文献   

7.
This paper presents validation of a particle impact breakage model i.e. Vogel and Peukert model with a focus on the impact number. The Vogel and Peukert model developed based on mechanical and statistical foundation has been widely used in various fields such as mineral engineering and chemical engineering but is barely studied in the application of repeated impact. The selective breakage data in the literature is collected to provide the database for model validation. It has shown that the Vogel and Peukert model is generally applicable to all the breakage cases considering the impact number. The effect of impact number is further elaborated in the population balance model (PBM) whereas the particle dynamics are provided from Discrete Element Method (DEM) simulation of an impact pin mill. The global system analysis of impact number is carried out with the synergic effect from impact velocity. The successful validation of Vogel and Peukert model incorporating the effect of impact number demonstrates its versatility whilst other key parameters such as impact energy and particle size can be considered in parallel.  相似文献   

8.
Many attempts have been made to find various relationships for different parameters and some kinds of constitutive models for studying the behavior of particulate media. All these models are based on concepts of continuous media. Using a numerical method such as discrete element method, one can figure out what is happening through a discontinuous media where soil particles play the main role in introducing the shear strength and deformation characteristics. The behavior of the media with breakable particles is studied in this paper and compared with that of the assembly with non-breakable particles. In this paper, the hyperbolic elastic model is investigated for the assembly of polygon shaped particles in two different test series. In addition, evolution of different macro parameters of the assembly such as volume strain, angle of friction, angle of dilatancy and elastic modulus is studied during the simulation tests both for non-breakable and breakable soil particles. At the end, a parametric study is performed on the effect of strength of particle breakage on the assembly behavior.  相似文献   

9.
Micro-scale behavior of granular materials during cyclic loading   总被引:1,自引:0,他引:1  
This study presents the micro-scale behavior of granular materials under biaxial cyclic loading for differ- ent confining pressures using the two-dimensional (2D) discrete element method (DEM). Initially, 8450 ovals were generated in a rectangular frame without any overlap. Four dense samples having confining pressures of 15, 25, 50, and 100 kPa were prepared from the initially generated sparse sample. Numeri- cal simulations were performed under biaxial cyclic loading using these isotropically compressed dense samples. The numerical results depict stress-strain-dilatancy behavior that was similar to that observed in experimental studies. The relationship between the stress ratio and dilatancy rate is almost indepen- dent of confining pressures during loading but significantly dependent on the confining pressures during unloading. The evolution of the coordination number, effective coordination number and slip coordina- tion number depends on both the confining pressures and cyclic loading. The cyclic loading significantly affects the microtopology of the granular assembly. The contact fabric and the fabric-related anisotropy are reported, as well. A strong correlation between the stress ratio and the fabric related to contact normals is observed during cyclic loading, irrespective of confining pressures.  相似文献   

10.
The silo discharge of non-spherical particles has been widely practiced in engineering processes, yet the understanding of multi-level mechanisms during solid transportation is still lacking. In this study, a high-fidelity super-ellipsoid Discrete Element Method (DEM) model is established to investigate the discharge behaviors of non-spherical particles with different size distributions. After the comprehensive model validations, we investigated the effects of particle shape (aspect ratio and particle sharpness) on the particle level discharge behaviors. The discharge rates of the ellipsoid particles used in the current work are larger than the spherical particles due to the larger solid fraction. The discharge rates of the cuboid-like particles are determined by the combined effect of the solid fraction and the contact force. Parcel level data show that the translational movements of the ellipsoid particles are more ordered, which is supported by the global level data. Strong correlations exist between the particle level and parcel level data, especially the ellipsoid particles and the large particles in the polydispersed cases.  相似文献   

11.
质砂作为一种建筑材料,近年来广泛应用于我国南海岛礁工程建设中。本文通过建立考虑钙质砂真实颗粒形状和颗粒破碎的胶结钙质砂离散元模型,研究了二维剪切条件下试样的宏微观力学行为,包括应力-应变行为、颗粒破碎、胶结破坏、位移场和裂纹随剪应变的演化规律,讨论了颗粒形状、颗粒粒径范围、颗粒强度和水泥胶结强度对胶结钙质砂力学行为的影响规律。结果表明,钙质砂颗粒粒径区间越宽,胶结钙质砂的强度越高。同一级配条件下,考虑真实颗粒形状的胶结钙质砂试样比圆颗粒试样的强度更高,试样总体颗粒破碎率也更高。钙质砂颗粒的强度越高,胶结钙质砂的性能越好。但是提高水泥的强度对胶结钙质砂力学性能的影响并不显著。本文的研究结果可为实际工程中钙质砂的加固提供理论依据。  相似文献   

12.
颗粒材料破碎演化路径细观热力学机制   总被引:1,自引:2,他引:1  
颗粒材料在高应力环境下会发生颗粒破碎现象,颗粒破碎不仅影响颗粒材料的力学特性,同时与大量工程问题密切相关.目前的相关研究主要集中在唯象地描述颗粒破碎的演化以及破碎对力学特性的影响层面,对颗粒破碎演化路径的物理机制研究较少.本文基于热力学框架,采用细观力学中细观-宏观的均匀化方法推导了颗粒体系弹性能和破碎能量耗散,并在最大能量耗散的假设下,在热力学框架内,建立了理想化的无摩擦球体颗粒等向压缩过程的弹性-破碎模型,阐述了颗粒材料破碎演化路径细观热力学机制.由于模型的推导不依赖任何唯象的经验公式,因此模型中包含的参数均有明确的物理意义.模型预测与前人试验结果对比表明,材料的初始级配对弹性压缩模量和破碎应力的影响并不相同:不同分形维数级配对应的弹性体变模量存在极大值,而破碎应力却随着分形维数的增大单调递增;颗粒破碎的演化符合最大能量耗散原理,且颗粒材料的压缩曲线可以分为弹性-破碎-拟弹性3个机制不同的阶段.   相似文献   

13.
Analysis in the dynamic mechanical behavior of cohesive soils subjected to external forces is very important in designing and optimizing terrain machines. Distinct Element Method (DEM) is an ideal method to analyze large discontinuous deformations of soil, but the conventional DEM model is difficult in simulating the complex behavior of cohesive soil. In order to simulate and analyze the behavior of cohesive soil accurately, the DEM mechanical model of cohesive soil with parallel bonds between particles was established by considering the capillary and the dynamic viscous forces induced by the presence of water between soil particles. During the excavation process by a bulldozing plate, the dynamic behavior of cohesive soil was simulated by DEM software PFC2D. The phenomena that the discrete particles were bonded into clusters initially, and the clusters were broken into smaller clusters or discrete particles during the excavation process, are consistent with the ruptures and separations of the actual cohesive soils subjected to external forces.  相似文献   

14.
Both linear-spring-dashpot (LSD) and non-linear Hertzian-spring-dnshpot (HSD) contact models are commonly used for the calculation of contact forces in Discrete Element Method (DEM) simulations of granular systems.Despite the popularity of these models, determination of suitable values for the contact parameters of the simulated particles such as stiffness, damping coefficient, coefficient of restitution, and simulation time step,is not altogether obvious.In this work the relationships between these contact parameters for a model system where a particle impacts on a flat base are examined.Recommendations are made concerning the determination of these contact parameters for use in DEM simulations.  相似文献   

15.
This study presents the micro-scale behavior of granular materials under biaxial cyclic loading for different confining pressures using the two-dimensional (2D) discrete element method (DEM). Initially, 8450 ovals were generated in a rectangular frame without any overlap. Four dense samples having confining pressures of 15, 25, 50, and 100 kPa were prepared from the initially generated sparse sample. Numerical simulations were performed under biaxial cyclic loading using these isotropically compressed dense samples. The numerical results depict stress–strain–dilatancy behavior that was similar to that observed in experimental studies. The relationship between the stress ratio and dilatancy rate is almost independent of confining pressures during loading but significantly dependent on the confining pressures during unloading. The evolution of the coordination number, effective coordination number and slip coordination number depends on both the confining pressures and cyclic loading. The cyclic loading significantly affects the microtopology of the granular assembly. The contact fabric and the fabric-related anisotropy are reported, as well. A strong correlation between the stress ratio and the fabric related to contact normals is observed during cyclic loading, irrespective of confining pressures.  相似文献   

16.
基于Lemaitre应变等价性假设理论,假定受水化学-力耦合损伤的岩石微元强度服从Weibull分布,考虑化学腐蚀与围压耦合作用对岩石力学参数的影响,通过核磁共振技术与损伤力学理论,引入细观化学损伤变量与力损伤变量,并认为微元破坏符合SMP准则,建立岩石化学腐蚀-力耦合损伤本构模型,并采用理论推导的方法得出所需的模型参数。同时基于颗粒离散元方法,引入参数半径乘子来改变颗粒间的黏结接触尺寸,从而模拟水化学损伤,采用平直节理模型对水化学作用后的岩石进行三轴压缩模拟,得到了水化学作用和不同围压下的岩石三轴应力-应变模拟曲线。通过对比所构建的岩石化学腐蚀-力耦合损伤本构模型理论曲线、离散元模拟曲线和试验曲线,结果表明三者吻合度较好,能够很好地反映岩石在化学腐蚀和围压耦合作用下的力学特性与破坏特征,并通过离散元方法得到了岩石在三轴压缩过程中裂纹的产生与分布情况。  相似文献   

17.
ROTATIONAL RESISTANCE AND SHEAR-INDUCED ANISOTROPY IN GRANULAR MEDIA   总被引:1,自引:0,他引:1  
This paper presents a micromechanical study on the behavior of granular materials under confined shear using a three-dimensional Discrete Element Method (DEM). We consider rotational resistance among spherical particles in the DEM code as an approximate way to account for the effect of particle shape. Under undrained shear, it is found rotational resistance may help to increase the shear strength of a granular system and to enhance its resistance to liquefaction. The evolution of internal structure and anisotropy in granular systems with different initial conditions depict a clear bimodal character which distinguishes two contact subnetworks. In the presence of rotational resistance, a good correlation is found between an analytical stress-force-fabric relation and the DEM results, in which the normal force anisotropy plays a dominant role. The unique properties of critical state and liquefaction state in relation to granular anisotropy are also explored and discussed.  相似文献   

18.
Both linear-spring-dashpot (LSD) and non-linear Hertzian-spring-dashpot (HSD) contact models are commonly used for the calculation of contact forces in Discrete Element Method (DEM) simulations of granular systems. Despite the popularity of these models, determination of suitable values for the contact parameters of the simulated particles such as stiffness, damping coefficient, coefficient of restitution, and simulation time step, is not altogether obvious. In this work the relationships between these contact parameters for a model system where a particle impacts on a flat base are examined. Recommendations are made concerning the determination of these contact parameters for use in DEM simulations.  相似文献   

19.
20.
《Comptes Rendus Mecanique》2017,345(12):868-889
Due to increasing global energy demands, research is being conducted on the mechanical properties of methane hydrate-bearing soils (MHBSs), from which methane hydrate (MH) will be explored. This paper presents a numerical approach to study the mechanical properties of MHBSs. The relationship between the level of MH saturation and the interparticle bond thickness is first obtained by analyzing the scanning electron microscope images of MHBS samples, in which is the bridge connecting the micromechanical behavior captured by the DEM with the macroscopic properties of MHBSs. A simplified thermal-hydromechanical (THM) bond model that considers the different bond thicknesses is then proposed to describe the contact behavior between the soil particles and those incorporated into the discrete element method (DEM). Finally, a series of biaxial compression tests are carried out with different MH saturations under different effective confining pressures to analyze the mechanical properties of deep-sea MHBSs. The results of the DEM numerical simulation are also compared with the findings from triaxial compression tests. The results show that the macromechanical properties of deep-sea MHBSs can be qualitatively captured by the proposed DEM. The shear strength, cohesion, and volumetric contraction of deep-sea MHBSs increase with increasing MH saturation, although its influence on the internal friction angle is obscure. The shear strength and volumetric contraction increase with increasing effective confining pressure. The peak shear strength and the dilation of MHBSs increase as the critical bond thickness increases, while the residual deviator stress largely remains the same at a larger axial strain. With increasing the axial strain, the percentage of broken bonds increases, along with the expansion of the shear band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号