首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The most suitable wavelength intervals were selected for the determination of 4 polycyclic aromatic hydrocarbons (PAHs; benzo[g,h,i]perylene, dibenzo[a,h]anthracene, pyrene, and triphenylene) in very complex mixtures of 11 PAHs: anthracene, benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[g,h,i]perylene, benzo[k]fluoranthene, chrysene, dibenz[a,h]anthracene, phenanthrene, pyrene, and triphenylene. The multiple linear regression algorithm was applied to measurements made in several wavelength intervals previously selected on the basis of sensitivity and minimum number of interfering compounds. Of the different models obtained, those displaying minimum error propagation in the analytical result were selected. By applying the models proposed in this study, we precisely and accurately determined benzo[g,h,i]perylene, dibenz[a,h]anthracene, pyrene, and triphenylene in complex mixtures--a feat that could not be achieved by the use of constant-wavelength spectrofluorimetry in combination with second-derivative techniques.  相似文献   

2.
This paper presents the characterization of polycyclic aromatic hydrocarbons (PAHs) in solid-surface fluorescence as the first step for obtaining new optical sensors for PAHs screening. The fluorescence properties of the EPA-PAHs (naphthalene, acenaphthene, acenaphthylene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene, benzo[a]anthracene, benzo[k]fluoranthene, benzo[b]fluoranthene, benzo[a]pyrene, indeno [1,2,3-cd]pyrene, benzo[g,h,i]perylene and dibenzo[a,h]anthracene) on five types of solid-surfaces were evaluated. The experimental variables (pH and percentage of organic solvent in samples) were studied, obtaining different possibilities for making individual sensors for some of these PAHs and the best conditions for developing sensors for PAH screening were also studied.  相似文献   

3.
The formation of polycyclic aromatic hydrocarbons (PAHs) during pyrolysis process of phenylalanine had been studied. Ten PAHs, including fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene, chrysene, benzo[k]fluoranthene, benzo[e]pyrene, and benzo[a]pyrene were analyzed by gas chromatography-mass spectrometry using selective ion monitoring mode. This technique offers the capability to analyze trace amounts of PAHs in phenylalanine pyrolyzates. The pyrolysis was carried out in a micro-furnace with quartz furnace liner. The injection was conducted with glass pelletizer syringe to avoid metal contamination. Qualitative results were obtained at 900 degrees C and quantitative analysis of 10 PAHs was done for 700 and 900 degrees C.  相似文献   

4.
Supercritical fluid extraction was applied to the determination of naturally contaminated polycyclic aromatic hydrocarbons (PAHs) in bird tissue by liquid chromatography with fluorescence detection (LC-FL). Recoveries (> 90%) and relative standard deviations (< or = 7.7%) were satisfactory. The levels of 10 PAHs were analyzed in 6 classes of tissues (heart, liver, intestine, muscle, lung, and kidney) of 10 buzzards and 2 tawny owls, predatory birds from the Galicia (northwest Spain). The PAHs found most abundantly were pyrene, fluoranthene, benzo[a]anthracene, and anthracene. Chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[ghi]perylene, and indeno[1,2,3-cd]pyrene were not detected. Intestine, kidney, and lung were more polluted than other tissues.  相似文献   

5.
A fast and simple preparation procedure based on the matrix solid-phase dispersion (MSPD) technique is proposed for the first time for the isolation of 16 polycyclic aromatic hydrocarbons (PAHs) from soil samples. Naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[e]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, benzo[g,h,i]perylene, and indeno[1,2,3-c,d]pyrene were considered in the study. Extraction and clean-up of samples were carried out in a single step. The main parameters that affect extraction yield, such as dispersant, type and amount of additives, clean-up co-sorbent and extractive solvent were evaluated and optimized. The addition of an alkali solution in MSPD was required to provide quantitative recoveries. Analytical determinations were carried out by high performance liquid chromatography (HPLC) with fluorescence detection. Quantification limits (between 0.01 and 0.6 ng g(-1) dry mass) were well below the regulatory limits for all the compounds considered. The extraction yields for the different compounds obtained by MSPD were compared with the yields obtained by microwave-assisted extraction (MAE). To test the accuracy of the MSPD technique, the optimized methodology was applied to the analysis of standard reference material BCR-524 (contaminated industrial soil), with excellent results.  相似文献   

6.
A high-performance liquid chromatographic (HPLC) method with fluorescence detection was developed for the quantification of polycyclic aromatic hydrocarbons (PAHs) in human hair. Fifteen kinds of PAHs classified as priority pollutants by the US EPA were quantified with four perdeuterated PAHs as internal standards. After 50 mg hair samples were washed with n-hexane to remove external contamination of PAHs, the samples were digested in 2.5 M sodium hydroxide. The digests were extracted with n-hexane and then analyzed by HPLC. Eleven kinds of PAHs were identified in hair samples of 20 subjects, and 10 kinds of PAHs were eventually quantified using the internal standards. For anthracene, chrysene and benzo[k]fluoranthene, significant differences were observed between smokers and non-smokers. Although benzo[b]fluoranthene, dibenz[a,h]anthracene, benzo[ghi]perylene and indeno[1,2,3-cd]pyrene were observed in the particulates of indoor and outdoor air, they were not detected in all hair samples. The analysis of PAHs in human hair should be useful as a new biomarker to evaluate the exposure to PAHs.  相似文献   

7.
This paper presents an optosensor for screening of four polycyclic aromatic hydrocarbons: anthracene (ANT), benzo[a]pyrene (BaP), fluoranthene (FLT), and benzo[b]fluoranthene (Bbf) using a photomultiplier device with an artificial neural network as transducer. The optosensor is based on the on-line immobilization on a non-ionic resin (Amberlite XAD-4) solid support in a continuous flow. The determination was performed in 15 mM H2PO4/HPO42− buffer solution at pH 7 and 25% of 1,4-dioxane. Feed forward neural networks (multiplayer perceptron) have been trained to quantify the considered Polycyclic aromatic hydrocarbons (PAHs) in mixtures under optimal conditions. The optosensor proposed was also applied satisfactorily to the determination of the considered PAHs in water samples in presence of the other 12 EPA–PAHs.  相似文献   

8.
The incomplete combustion of biomass is one of the most important sources of emissions of organic compounds into the atmosphere, like polycyclic aromatic hydrocarbons (PAHs) which show genotoxic activity. Since environmental samples generally contain interferents and trace amounts of PAHs of interest, concentration and clean-up procedures are usually required prior to the final chromatographic analysis. This paper discusses the performance of Sep-Pak cartridges (silica gel and RP18) on clean-up of sugar cane soot extract. The best results were obtained with a silica Sep-Pak cartridge. The recoveries ranged from 79% (benzo[b]fluoranthene) to 113% (benzo[e]pyrene).  相似文献   

9.
In the present study, the solid–liquid extraction with low temperature purification was validated for the determination of 16 polycyclic aromatic hydrocarbons from sewage sludge by gas chromatography-mass spectrometry. Recoveries ranged 70–114% for naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene and chrysene, while the compounds benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene, dibenzo[a,h]anthracene and benzo[g,h,i]perylene showed recoveries of between 40 and 70%. The relative standard deviation was less than 13% for all of the compounds. Negative matrix effect was observed on the 10 compounds with less retention time in the chromatographic analysis and positive matrix effect noticed on the others. The limits of quantification were from 2 to 20 μg kg?1, about 30 times less than the maximum residue limit allowed in sludge by the European Union. The validated method produced quantification of 11 PAHs in one sludge sample at concentrations ranging 20–2000 μg kg?1.  相似文献   

10.
张小涛  张丽  阮艺斌  王维维  姬厚伟  万强  林福呈  刘剑 《色谱》2017,35(10):1105-1110
建立了气相色谱-串联质谱同时检测卷烟滤嘴中15种多环芳烃的方法。卷烟滤嘴用二氯甲烷振荡萃取后,经0.22μm有机相滤膜过滤,采用DB-5MS色谱柱(30 m×0.25 mm,0.25μm)进行分离,电子轰击源、正离子模式下以多反应监测模式进行检测,内标法进行定量。15种多环芳烃(苊烯、苊、芴、菲、蒽、荧蒽、芘、苯并[a]蒽、屈、苯并[b]荧蒽、苯并[k]荧蒽、苯并[a]芘、二苯并[a,h]蒽、苯并[g,h,i]苝和茚并[1,2,3-c,d]芘)的线性关系良好,相关系数(R~2)为0.991 4~0.999 9。15种多环芳烃在低、中、高3个添加水平下的平均回收率为81.6%~111.2%;除了芴在低添加水平时相对标准偏差为19.2%外,其他相对标准偏差均小于16%。15种多环芳烃的检出限为0.02~0.24 ng/滤嘴,定量限为0.04~0.80 ng/滤嘴。方法前处理简便,具有快速、准确、灵敏度高及重复性好的优点,适用于卷烟滤嘴中多环芳烃的分析。  相似文献   

11.
An interpretative strategy (factorial design experimentation+total resolution analysis+chromatogram simulation) was employed to optimize the separation of 16 polycyclic aromatic hydrocarbons (PAHs) (naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene, benzo(a)anthracene, benzo(k)fluoranthene, benzo(b)fluoranthene, benzo(a)pyrene, indeno(1,2,3-c,d)pyrene, dibenzo(a,h)anthracene, benzo(g,h,i)perylene) in temperature-programmed gas chromatography (GC). Also, the retention behavior of PAHs in the same GC system was studied by a feed-forward artificial neural network (ANN). GC separation was investigated as a function of one (linear temperature ramp) or two (linear temperature ramp+the final hold temperature) variables. The applied interpretative approach resulted in rather good agreement between the measured and the predicted retention times for PAHs in both one and two variable modeling. The ANN model, strongly affected by the number of input experiments, was shown to be less effective for one variable used, but quite successful when two input variables were used. All PAHs, including difficult to separate peak pairs (benzo(k)fluoranthene/benzo(b)fluoranthene and indeno(1,2,3-c,d)pyrene/dibenzo(a,h)anthracene), were separated in a standard (5% phenyl-95% dimethylpolysiloxane) capillary column at an optimum temperature ramp of 8.0 degrees C/min and final hold temperature in the range of 260-320 degrees C.  相似文献   

12.
This paper presents the phosphorescence characterization of polycyclic aromatic hydrocarbons (PAHs) on solid-surface for obtaining new flow-through phosphorescence optosensors for PAHs-based on-line, immobilized onto a non-ionic resin solid support coupled to a continuous flow system and the applications for the selective determination of benzo(a)pyrene (BaP). The phosphorescent characterization of 15 PAHs, described as major pollutants by the Environmental Protection Agency (EPA) (naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene, benzo(a)anthracene, benzo(k)fluoranthene, benzo(b)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, benzo(g,h,i)perylene and dibenzo(a,h)anthracene) has been carried out. The experimental variables (heavy atom, deoxygenation and organic solvent in samples) for obtaining different possibilities for developing mono and multi-parameter PAH sensors and the conditions for PAH screening have been carefully studied and the experimental conditions to determination of BaP in presence of other PAHs in water samples have been optimized.  相似文献   

13.
This paper presents a trisolvent ultrasonic extraction and HPLC analysis method for the determination of 11 polycyclic aromatic hydrocarbons in air particulate collected on an air filter by a commercial high volume air sampler. A reverse phase column, Vydac 201 TP, and a gradient mobile phase, acetonitrile/water, were used. The 11 PAHs, fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a, h]anthracene, benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, and coronene were completely resolved under experimental conditions. All the PAHs except coronene were monitored by fluorescence with λex=270 nm, λem>389 nm. Coronene was monitored by UV with λ=300 nm. The methodology was evaluated by spiking SRM 1649 with a PAH standard and then going through different extraction procedures and analyzing the PAH concentrations without clean-up. An external standard method was used for quantitation. The recovery yields for fluoranthene, benz[a]anthracene, benzo[a]pyrene, benzo[ghi]perylene and indeno[l,2,3-cd]pyrene were above 90%. The detection limits of PAH with fluorescence at λex=270 nm, λem>389 nm ranged from 5.7 pg to 69.5 pg.  相似文献   

14.
A method capable of determining 13 PAHs (acenaphthene, anthracene, benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, chrysene, dibenzo[ah]anthracene, fluoranthene, fluorene, indene[1,2,3-cd]pyrene, phenanthrene and pyrene) in a mixture of 16 EPA PAHs by second derivative synchronous spectrofluorometry in the constant wavelength mode was developed. It has not been possible to determine the following PAHs in the mixture: acenaphthylene, benzo[ghi]perylene and naphthalene. The approach studied allows the sensitive, rapid and inexpensive identification and quantitation of 13 PAHs in a solution of hexane. The detection limits are <1 microg L(-1) (except for chrysene and phenanthrene).  相似文献   

15.
A study has been made of the effect of additives to the fuel of a turbulent diffusion flame on the formation of soot and polycyclic aromatic hydrocarbons (PAHs). Fuels containing a polystyrene thickener doped with benzene proved to have many advantages over unthickened fuels. Most significant were an increase in the burning time and the flash point. Nevertheless, polystyrene and benzene additives to a considerable extent increased the formation of soot and PAHs. The analysis of PAHs in this study was made by capillary gas chromatography (GC) and capillary gas chromatography/mass spectrometry (GC/MS). A total of 42 individual compounds were characterized by their retention indices and mass spectra.  相似文献   

16.
Manual solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS) is applied for the determination of polycyclic aromatic hydrocarbons (PAHs) from natural matrix through a distilled water medium. Seven of the 16 PAH standards (naphthalene, acenaphthene, fluorene, anthracene, fluoranthene, pyrene, benzo[a]anthracene) are spiked on a marine muddy sediment. The samples, containing PAHs in the range of 10-20 ppm, are then aged at room temperature more than 10 days before analysis. The influence of the matrix, SPME adsorption time, pH, salt content, and SPME adsorption temperature are investigated. The reproducibility of the technique is less than 13% (RDS) for the first 6 considered PAHs and 28% (RDS) for benzo(a)anthracene with a fiber containing a 100-micron poly dimethylsiloxane coating. Linearity extended in the range of 5-50 picograms for PAHs direct injection, 5-70 picograms for PAHs in water, and 1-170 picograms for PAHs in sediment. The detection limit is estimated less than 1 microgram/kg of dry sample for the first 6 considered PAHs in sediment and 1.5 micrograms/kg of dry sample for benzo(a)anthracene using the selected ion monitoring mode in GC-MS. The recoveries of the considered PAHs are evaluated.  相似文献   

17.
Gas chromatography–mass spectrometry was used for the determination of 16 priority polycyclic aromatic hydrocarbons (PAHs) in surface soils from seventeen areas in Southeast Romania, including sites placed in the vicinity of Galati iron and steel plant and Lower Prut Meadow natural reserve in Galati County. The total concentration of PAHs (TPAHs) in the investigated soils ranges from 0.003 mg/kg to 38.524 mg/kg dry weight. According to Romanian legislation for trace organic compounds in soils of different uses, the amounts of PAHs in soils from the industrial zone exceed the normal values for the majority of individual PAHs. The lowest concentrations were found in soils sampled from the protected area of Lower Prut Meadow natural reserve and the highest near a zootechnique farm in the Prut River basin, where the alert levels exceeded for the less sensitive area in the case of TPAHs and benzo[b]fluoranthene and for the sensitive area in the case of chrysene, benz[a]anthracene, benzo[k]fluoranthene and benzo[g,h,i]perylene. The sources of PAH contaminating soils are complex, being of both pyrogenic and petrogenic origins.  相似文献   

18.
An extraction/clean-up procedure by SFE was developed for isolating PAHs from liver samples for subsequent HPLC-FL determination of ten PAHs in the enriched extract. Recoveries (90-115%) and RSD % (< or =7.7) were satisfactory. When applied to 11 samples of bird of prey (Tyto alba) protected species and classified of special interest, from the Galicia (Northwest to Spain), benzo[ghi]perylene and indeno[1,2,3-cd]pyrene were undetectable; chrysene and benzo[a]pyrene are only detected in one sample; benzo[a]anthracene and benzo[k]fluoranthene are only quantified in one sample and benzo[b]fluoranthene in two samples. The other PAHs, anthracene, fluoranthene and pyrene are present in almost all the samples.  相似文献   

19.
戴雪伟  卫碧文  望秀丽  于文佳  徐永威 《色谱》2015,33(10):1059-1064
建立了一种超高效合相色谱-二极管阵列检测器快速分析塑料制品中萘、苊烯、苊、芴、菲、蒽、荧蒽、芘、苯并(a)蒽、(屈艹) 、苯并(b)荧蒽、苯并(k)荧蒽、苯并(j)荧蒽、苯并(e)芘、苯并(a)芘、茚并(1,2,3-cd)芘、二苯并(a,h)蒽、苯并(g,h,i)苝(二萘嵌苯)的方法。以甲苯为溶剂,超声萃取实际塑料制品中的多环芳烃,经超高效合相色谱分析。采用Daicel IB-3手性色谱柱,以CO2为流动相,甲醇/乙腈(25:75, v/v)为流动相助溶剂,在柱温为40 ℃,背压为15.17 MPa的条件下,18种多环芳烃在8.5 min之内实现基线分离。18种多环芳烃的线性范围为0.05~50 mg/L(r≥0.9995),定量限(S/N> 10)为0.05 mg/L。加标回收率为78.3%~117.6%,相对标准偏差(RSD, n=5)小于5%。该方法具有分析速度快、分离效率高、节约有机溶剂的优点。  相似文献   

20.
In the presented study, comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC?×?GC-TOFMS) was shown to be a powerful tool for the simultaneous determination of various groups of contaminants including 18 polychlorinated biphenyls (PCBs), seven polybrominated diphenyl ethers (PBDEs), and 16 polycyclic aromatic hydrocarbons (PAHs). Since different groups of analytes (traditionally analyzed separately) were included into one instrumental method, significant time savings were achieved. Following the development of an integrated sample preparation procedure for an effective and rapid isolation of several groups of contaminants from fish tissue, the GC?×?GC-TOFMS instrumental method was optimized to obtain the best chromatographic resolution and low quantification limits (LOQs) of all target analytes in a complex mixture. Using large-volume programmable temperature vaporization, the following LOQs were achieved-PCBs, 0.01-0.25 μg/kg; PBDEs, 0.025-5 μg/kg; PAHs 0.025-0.5 μg/kg. Furthermore, several capillary column combinations (BPX5, BPX50, and Rxi-17Sil-ms in the first dimension and BPX5, BPX50, Rt-LC35, and HT8 in the second dimension) were tested during the experiments, and the optimal separation of all target analytes even of critical groups of PAHs (group (a): benz[a]anthracene, cyclopenta[cd]pyrene and chrysene; group (b): benzo[b]fluoranthene, benzo[j]fluoranthene and benzo[k]fluoranthene; group (c): dibenz[ah]anthracene, indeno[1,2,3-cd]pyrene and benzo[ghi]perylene) was observed on BPX5?×?BPX50 column setup. Moreover, since the determination of target analytes was performed using TOFMS detector, further identification of other non-target compounds in real life samples was also feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号