首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnesium diboride (MgB2) thin films were deposited on C-plane sapphire substrates by sputtering pure B and Mg targets at different substrate temperatures, and were followed by in situ annealing. A systematic study about the effects of the various growth and annealing parameters on the physical properties of MgB2 thin films showed that the substrate temperature is the most critical factor that determines the superconducting transition temperature (Tc), while annealing plays a minor role. There was no superconducting transition in the thin films grown at room temperature without post-annealing. The highest Tc of the samples grown at room temperature after the optimized annealing was 22 K. As the temperature of the substrate (Ts) increased, Tc rose. However, the maximum Ts was limited due to the low magnesium sticking coefficient and thus the Tc value was limited as well. The highest Tc, 29 K, was obtained for the sample deposited at 180 °C, annealed at 620 °C, and was subsequently annealed a second time at 800 °C. Three-dimensional (3D) AFM images clearly demonstrated that the thin films with no transition, or very low Tc, did not have the well-developed MgB2 grains while the films with higher Tc displayed the well-developed grains and smooth surface. Although the Tc of sputtered MgB2 films in the current work is lower than that for the bulk and ex situ annealed thin films, this work presents an important step towards the fabrication of MgB2 heterostructures using rather simple physical vapor deposition method such as sputtering.  相似文献   

2.
We report on the identification of Fe3O4 (magnetite) and α-Fe2O3 (hematite) in iron oxide thin films grown on α-Al2O3(0 0 0 1) by evaporation of Fe in an O2-atmosphere with a thickness of a few unit cells. The phases were observed by Raman spectroscopy and confirmed by X-ray diffraction (XRD). Magnetite appeared independently from the substrate temperature and could not be completely removed by post-annealing in an oxygen atmosphere as observed by X-ray diffraction. In the temperature range between 400 °C and 500 °C the X-ray diffraction shows that predominantly hematite is formed, the Raman spectrum shows a mixture of magnetite and hematite. At both lower and higher substrate temperatures (300 °C and 600 °C) only magnetite was observed. After post-annealing in an O2-atmosphere of 5 × 10?5 mbar only hematite was detectable in the Raman spectrum.  相似文献   

3.
《Current Applied Physics》2010,10(2):687-692
The effect of rapid thermal annealing on the electrical and structural properties of Ni/Au Schottky contacts on n-InP have been investigated by current–voltage (IV), capacitance–voltage (CV), auger electron spectroscopy (AES) and X-ray diffraction (XRD) techniques. The Au/Ni/n-InP Schottky contacts are rapid thermally annealed in the temperature range of 200–500 °C for a duration of 1 min. The Schottky barrier height of as-deposited Ni/Au Schottky contact has been found to be 0.50 eV (IV) and 0.86 eV (CV), respectively. It has been found that the Schottky barrier height decreased with increasing annealing temperature as compared to as-deposited sample. The barrier height values obtained are 0.43 eV (IV), 0.72 eV (CV) for the samples annealed at 200 °C, 0.45 eV (IV) and 0.73 eV (CV) for those at 400 °C. Further increase in annealing temperature to 500 °C the barrier height slightly increased to 0.46 eV (IV) and 0.78 eV (CV) compared to the values obtained for the samples annealed at 200 °C and 400 °C. AES and XRD studies showed the formation of indium phases at the Ni/Au and InP interface and may be the reason for the increase in barrier height. The AFM results showed that there is no significant degradation in the surface morphology (rms roughness of 1.56 nm) of the contact even after annealing at 500 °C.  相似文献   

4.
Few-layer graphene (FLG) was grown on Al2O3 (0 0 0 1) substrates at different temperatures via direct carbon atoms deposition by using solid source molecular beam epitaxy (SSMBE) method. The structural properties were characterized by reflection high energy electron diffraction (RHEED), Raman spectroscopy and near-edge X-ray absorption fine-structure (NEXAFS). The results showed that the FLG started to form at the substrate temperature of 700 °C. When the substrate temperature increased to 1300 °C, the quality of the FLG was the best and the layer number was estimated to be less than 5. At higher substrate temperature (1400 °C or above), the crystalline quality of the FLG would be deteriorated. Our experiment results demonstrated that the substrate temperature played an important role on the FLG layer formation on Al2O3 (0 0 0 1) substrates and the related growth mechanism was briefly discussed.  相似文献   

5.
In the present work, a special solid phase epitaxy method has been adapted for the preparation of CoSi2 film. This method includes an epitaxial growth of Co films on Si (1 0 0) substrate, and in situ annealing of the Co/Si films in vacuum. It has been found that at the substrate temperature of 360°C, fcc cobalt film grows epitaxially on the Si (1 0 0) surface. The crystallographic orientation relations between fcc Co film and Si substrate determined from the electron diffraction result are: (0 0 1) Co//(0 0 1) Si, [1 0 0] Co//[1 1 0]Si. Upon annealing at temperatures range from 500 to 600°C, Co film reacts with Si substrate and transforms into CoSi2. The CoSi2 films prepared by this way are characterized by XTEM, XPS and AFM.  相似文献   

6.
The characteristics of TiN thin films grown on glass substrates by very low frequency (60 Hz) PECVD were investigated along with the reactive plasma generated using a 60 Hz power source. The TiN film depositions were performed using a gaseous mixture of H2, N2 and TiCl4 onto a substrate positioned between two electrodes using a floating substrate holder with a heating unit. The substrate is electrically floated to avoid sample damages due to ion bombardment. As-grown TiN films showed a NaCl-type fcc structure with a (200) crystallographic plane, low resistivity (~60 μΩ cm) and gold-like color. Crystallinity was improved, impurities such as O and Cl were reduced, and the atomic ratio of N/Ti became stoichiometric with the increase of substrate temperature. Particularly, no chlorine component was detected above 500 °C. Also, the N2 partial pressure strongly affected the deposition rate and ratio of N/Ti. Otherwise, impurities and crystallinity barely changed with the change of N2 pressure. The atomic ratio of N/Ti, impurities, and crystallinity of the films significantly affected the optical and electrical properties. Consequently, we produced stoichiometric Cl-free TiN films with golden color above 500 °C at 60 mTorr. The effects of temperature played an important role in controlling the film properties compared to the N2 partial pressure.  相似文献   

7.
Flame spreading over pure methane hydrate in a laminar boundary layer is investigated experimentally. The free stream velocity (U) was set constant at 0.4 m/s and the surface temperature of the hydrate at the ignition (Ts) was varied between ?10 and ?80 °C. Hydrate particle sizes were smaller than 0.5 mm. Two types of flame spreading were observed; “low speed flame spreading” and “high speed flame spreading”. The low speed flame spreading was observed at low temperature conditions (Ts = ?80 to ?60 °C) and temperatures in which anomalous self-preservation took place (Ts = ?30 to ?10 °C). In this case, the heat transfer from the leading flame edge to the hydrate surface plays a key role for flame spreading. The high speed flame spreading was observed when Ts = ?50 and ?40 °C. At these temperatures, the dissociation of hydrate took place and the methane gas was released from the hydrate to form a thin mixed layer of methane and air with a high concentration gradient over the hydrate. The leading flame edge spread in this premixed gas at a spread speed much higher than laminar burning velocity, mainly due to the effect of burnt gas expansion.  相似文献   

8.
The magnetic properties of uncovered Fe/ZnSe/GaAs(1 0 0) ultrathin films have been determined in situ by magneto-optical Kerr effect (MOKE). Fe films up to 10 monolayers (ML) thick were deposited on c(2×2) Zn-rich ZnSe/GaAs(0 0 1) surfaces at 180 °C. We have studied the thickness dependence of the in-plane lattice parameter of the Fe films and of the MOKE hysteresis loops in the longitudinal geometry, at 150 K, under magnetic fields up to 0.1 T applied along the [1 1 0] and [1-1 0] directions of the ZnSe(0 0 1). Reflection high energy electron diffraction show that in the low thickness regime the Fe films present an in-plane structural anisotropy characterized by an expansion along the [1 1 0] direction. Hysteretic loops were obtained only starting from ∼5 ML Fe. We found the onset of an uniaxial magnetic anisotropy with [1 1 0] magnetic easy axis at 7 ML Fe.  相似文献   

9.
Fe3O4 nanoparticles and thin films were prepared on the Au(1 1 1) surface and characterized using X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). Fe3O4 was formed by annealing α-Fe2O3(0 0 0 1) structures on Au(1 1 1) at 750 K in ultrahigh vacuum (UHV) for 60 min. Transformation of the α-Fe2O3(0 0 0 1) structures into Fe3O4 nanoparticles and thin films was supported by XPS. STM images show that during the growth procedure used, Fe3O4 initially appears as nanoparticles at low coverages, and forms thin films at ~2 monolayer equivalents (MLE) of iron. Two types of ordered superstructures were observed on the Fe3O4 particles with periodicities of ~50 and ~42 Å, respectively. As the Fe3O4 particles form more continuous films, the ~50 Å feature was the predominant superstructure observed. The Fe3O4 structures at all coverages show a hexagonal unit cell with a ~3 Å periodicity in the atomically resolved STM images.  相似文献   

10.
《Solid State Ionics》2006,177(9-10):901-906
Crystal structure, thermal expansion coefficient, electrical conductivity and cathodic polarization of compositions in the system Sm0.5Sr0.5Co1  xFexO3  δ with 0  x  0.9 were studied as function of Co / Fe ratio and temperature, in air. Two phases, including an Orthorhombic symmetry for 0  x  0.4 and a cubic symmetry for 0.5  x  0.9, were observed in samples of Sm0.5Sr0.5Co1  xFexO3  δ at room temperature. The adjustment of thermal expansion coefficient (TEC) to electrolyte, which is one of the main problems of SSC, could be achieved to lower TEC values with more Fe substitution. High electrical conductivity above 100 S/cm at 800 °C was obtained for all specimens, so they could be good conductors as cathodes of IT-SOFC. The polarization behavior of SSCF as a function of Fe content was evaluated by means of AC impedance using LSGM electrolyte. It was discovered that the Area Specific Resistance (ASR) of SSCF increased as the amount of substitution of Fe for Co increased. When the amount of Fe reached to 0.4, the highest ASR was obtained and then the resistance started decreasing above that. The electrode with a composition of Sm0.5Sr0.5Co0.2Fe0.8O3  δ showed high catalytic activity for oxygen reduction operating at temperature ranging from 700 to 800 °C.  相似文献   

11.
Electrochromic molybdenum oxide (MoO3) thin films were prepared by electron beam evaporation technique using the dry MoO3 pellets. The films were deposited on glass and fluorine doped tin oxide (SnO2:F or FTO) coated glass substrates at different substrate temperatures like room temperature (RT, 30 °C), 100 °C and 200 °C. The influence of substrate temperature on the structural, surface morphological and optical properties of the films has been studied. The X-ray diffraction analysis showed that the films are having orthorhombic phase MoO3 (α-MoO3) with 〈1 1 0〉 preferred orientation. The laser Raman scattering spectrum shows the polycrystalline nature of MoO3 films deposited at 200 °C. The Raman-active band at 993 cm−1 is corresponding to Mo–O stretching mode that is associated with the unique character of the layered structure of orthorhombic MoO3. Needle—like morphology was observed from the SEM analysis. The energy band gap of MoO3 films was evaluated which lies between 2.8 and 2.3 eV depending on the substrate temperature and substrates. The decrease in band gap value with increasing substrate temperature is owing to the oxygen-ion vacancies. The absorption edge shift shows the coloration effect on the films.  相似文献   

12.
In this work we report on the optical properties of single-crystalline iron thin films. For this, Cr-capped Fe films with thickness, t, in the range 30–300 Å were prepared on MgO (0 0 1) by DC magnetron sputtering, and then studied by optical absorption technique within the range from 1.0 to 3.6 eV. All measurements were carried out at room temperature using a fiber optics spectrophotometer. The intensity of the transmitted light decreases with increasing film thickness. The optical constants of the films are deduced from a model that considers the transmission of light by two absorbing films on an absorbing substrate. The absorption coefficient of the Fe films is also calculated from the transmission data. The absorption spectra show the following characteristics: (i) two large absorption peaks centered at about 1.20 and 2.65 eV; and (ii) a sharp step near 1.40 eV. These structures are associated with conventional interband transitions of the iron film.  相似文献   

13.
In thin layered Fe/Co (0 0 1), grown on MgO (0 0 1), both Fe and Co crystallize in the body-centered cubic (BCC) structure, as seen in a series of superlattices where the layer thickness of the components is varied from two to twelve atomic monolayers. These superlattices have novel magnetic properties as observed by magnetization and polarized neutron reflectivity measurements. There is a significant enhancement of the magnetic moments of both Fe and Co at the interfaces. Furthermore, the easy axis of the system changes from [1 0 0] for films of low cobalt content to [1 1 0] for a Co content exceeding 33%. No indication of a uniaxial anisotropy component is found in any of the samples. The first anisotropy constant (K1) of BCC Co is found to be negative with an estimated magnitude of 110 kJ/m3 at 10 K. In all cases, the magnetic moments of Fe and Co have parallel alignment.  相似文献   

14.
《Solid State Ionics》2006,177(17-18):1395-1403
Solid state sintering has been used to prepare the cubic perovskite structured compounds BaZr1−xInxO3−δ (0.0  x  0.75). Analysis of X-ray powder diffraction (XRPD) data reveals that the unit cell parameter, a, increases linearly with an increased Indium concentration. XRPD data was also used to demonstrate the completion of sample hydration, which was reached when the materials showed a set of single-phase Bragg-peaks. Dynamic thermogravimetric analysis (TGA) data showed that approx. 89% of the total number of available oxygen vacancies can be filled in BaZr1−xInxO3−δ for x = 0.50, and that the maximum water uptake occurs below 300 °C. Rietveld analysis of the room temperature neutron powder diffraction (NPD) data confirmed the average cubic symmetry (space group Pm-3m), and an expansion of the unit cell parameter after the hydration reaction. The strong O–H stretch band, 2500–3500 cm 1, in the infrared absorbance spectrum clearly manifests the presence of protons in the hydrated material. Proton conductivity of hydrated BaZr1−xInxO3−δ, x = 0.75 was investigated during heating and cooling cycles under dry argon atmosphere. The total conductivity during the heating cycle was nearly two orders of magnitude greater than that of cooling cycle at 300 °C, whilst these values were similar at higher temperatures i.e. T > 600 °C.  相似文献   

15.
《Solid State Ionics》2006,177(9-10):863-868
Layered Li(Ni0.5Co0.5)1−yFeyO2 cathodes with 0  y  0.2 have been synthesized by firing the coprecipitated hydroxides of the transition metals and lithium hydroxide at 700 °C and characterized as cathode materials for lithium ion batteries to various cutoff charge voltages (up to 4.5 V). While the y = 0.05 sample shows an improvement in capacity, cyclability, and rate capability, those with y = 0.1 and 0.2 exhibit a decline in electrochemical performance compared to the y = 0 sample. Structural characterization of the chemically delithiated Li1−x(Ni0.5Co0.5)1−yFeyO2 samples indicates that the initial O3 structure is maintained down to a lithium content (1  x)  0.3. For (1  x) < 0.3, while a P3 type phase is formed for the y = 0 sample, an O1 type phase is formed for the y = 0.05, 0.1 and 0.2 samples. Monitoring the average oxidation state of the transition metal ions with lithium contents (1  x) reveals that the system is chemically more stable down to a lower lithium content (1  x)  0.3 compared to the Li1−xCoO2 system. The improved structural and chemical stabilities appear to lead to better cyclability to higher cutoff charge voltages compared to that found before with the LiCoO2 system.  相似文献   

16.
Multilayers composed of Fe and MgF2 with layer thicknesses between 9 Å and 100 Å and of 30 Å, respectively, were prepared with an ultrahigh-vacuum deposition technique. Medium-angle X-ray data show that the Fe layers in the BCC phase have considerable (1 1 0) texture. Periodicity due to multilayered structures was confirmed by a small-angle X-ray diffraction study and cross-section transmission electron microscope for films with Fe layer thicknesses >45 Å. In an Fe/MgF2(9 Å/30 Å) sample, an island structure for the Fe layers was suggested by the existence of superparamagnetism in a film. At 4.2 K, enhancements of both magnetization and hyperfine field were observed in films having Fe layers thinner than 40 Å. The maxima in the magnetization (233 emu/g of Fe) and in the average hyperfine field (390 kOe) at 4.2 K were found in an Fe/MgF2(9 Å/30 Å) film and were approximately 105% and 115% that of the bulk α-Fe, respectively. The thickness dependence suggests a 12% enhancement in the magnetic moment of interface Fe atoms. No exchange bias was found in the films, implying that antiferromagnetic fluorides are not formed at the interface, which is different from the case of Fe/LiF and Fe/CaF2 multilayers.  相似文献   

17.
We have investigated the magnetic properties of a (1 0 0)-oriented unequal trilayer, Fe(45 Å)/Cr(30 Å)/Fe(15 Å), by means of Brillouin light scattering and magnetization measurements. The experimental results show that this sample highlights the effect of biquadratic coupling which aligns the magnetization of the Fe layers at 90° to each other. We extracted the bilinear and biquadratic coupling strengths by fitting the experimental results with a theory that treats the static and dynamic responses on an equal footing. Our results confirm that the model describes both the static and dynamic properties even when the magnetization of the layers is aligned at 90°. The coupling strengths, and their temperature dependence, are discussed and compared with other results reported in the literature.  相似文献   

18.
《Solid State Ionics》2006,177(7-8):691-695
Single crystals of the lithium-rich lithium manganese oxide spinels Li1 + xMn2  xO4 with x = 0.10 and 0.14 have been successfully synthesized in high-temperature molten chlorides at 1023 K. The single-crystal X-ray diffraction study confirmed the cubic Fd3¯m space group and the lattice parameters of a = 8.2401(9) Å for x = 0.10 and a = 8.2273(10) Å for x = 0.14 at 300 K, respectively. The crystal structures have been refined to the conventional values R = 3.7% for x = 0.10 and R = 3.1% for x = 0.14, respectively. Low-temperature single-crystal X-ray diffraction experiments revealed that these single crystal samples showed no phase transition between 100 and 300 K. The electron-density distribution images in these compounds by the single-crystal MEM analysis clearly showed strong covalent bonding features between the Mn and O atoms due to the Mn–3d and O–2p interaction.  相似文献   

19.
《Solid State Ionics》2006,177(19-25):1879-1881
The double ordered perovskites NdBaCo2O5 and NdBaCo2O6 were prepared by soft chemistry. The samples were characterized from a structural and chemical point of view, concomitantly with their physical properties. Upon reduction, NdBaCo2O5 is formed with a tetragonal unit cell (a = b = 3.94 Å, c = 7.57 Å) and presents an antiferromagnetic behavior. Upon oxidation, a complete stoichiometric ordered phase NdBaCo2O6 with a tetragonal unit cell (a = b = 3.88 Å, c = 7.63 Å) could be obtained with a ferromagnetic and a metallic behavior. Finally it is shown that these phases are able to reversibly catch and release oxygen, suggesting a high anionic conductivity.  相似文献   

20.
In the present paper, the effects of nitridation on the quality of GaN epitaxial films grown on Si(1 1 1) substrates by metal–organic chemical vapor phase deposition (MOCVD) are discussed. A series of GaN layers were grown on Si(1 1 1) under various conditions and characterized by Nomarski microscopy (NM), atomic force microscopy (AFM), high resolution X-ray diffraction (HRXRD), and room temperature (RT) photoluminescence (PL) measurements. Firstly, we optimized LT-AlN/HT-AlN/Si(1 1 1) templates and graded AlGaN intermediate layers thicknesses. In order to prevent stress relaxation, step-graded AlGaN layers were introduced along with a crack-free GaN layer of thickness exceeding 2.2 μm. Secondly, the effect of in situ substrate nitridation and the insertion of an SixNy intermediate layer on the GaN crystalline quality was investigated. Our measurements show that the nitridation position greatly influences the surface morphology and PL and XRD spectra of GaN grown atop the SixNy layer. The X-ray diffraction and PL measurements results confirmed that the single-crystalline wurtzite GaN was successfully grown in samples A (without SixNy layer) and B (with SixNy layer on Si(1 1 1)). The resulting GaN film surfaces were flat, mirror-like, and crack-free. The full-width-at-half maximum (FWHM) of the X-ray rocking curve for (0 0 0 2) diffraction from the GaN epilayer of the sample B in ω-scan was 492 arcsec. The PL spectrum at room temperature showed that the GaN epilayer had a light emission at a wavelength of 365 nm with a FWHM of 6.6 nm (33.2 meV). In sample B, the insertion of a SixNy intermediate layer significantly improved the optical and structural properties. In sample C (with SixNy layer on Al0.11Ga0.89N interlayer). The in situ depositing of the, however, we did not obtain any improvements in the optical or structural properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号