首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In most graphene‐based electrochemical applications, graphene nanoplatelets (GNPs) have been applied. Now, for the first time, electrochemical properties of GNPs, namely, its electrochemical activity, potential window, and double‐layer capacitance, have been investigated. These properties are compared with those of carbon nanotubes (CNTs). GNP‐ and CNT‐coated electrodes were then applied for electrochemical oxidation of endocrine‐disrupting chemicals. The GNP‐coated electrode was characterized by atomic force microscopy and electrochemical techniques. Compared with the CNT‐coated electrode, higher peak current for the oxidation of 4‐nonylphenol is achieved on the GNP‐coated electrode, together with lower capacitive current. Electrochemical oxidation of 2,4‐dichlorophenol, bisphenol A, and octylphenol in the absence or presence of 4‐nonylphenol was studied on the GNP‐coated electrode. The results suggest that GNPs have better electrochemical performance than CNTs and are thus more promising for electrochemical applications, for example, electrochemical detection and removal of endocrine‐disrupting chemicals.  相似文献   

2.
Stretchable electrochemical sensors are conceivably a powerful technique that provides important chemical information to unravel elastic and curvilinear living body. However, no breakthrough was made in stretchable electrochemical device for biological detection. Herein, we synthesized Au nanotubes (NTs) with large aspect ratio to construct an effective stretchable electrochemical sensor. Interlacing network of Au NTs endows the sensor with desirable stability against mechanical deformation, and Au nanostructure provides excellent electrochemical performance and biocompatibility. This allows for the first time, real‐time electrochemical monitoring of mechanically sensitive cells on the sensor both in their stretching‐free and stretching states as well as sensing of the inner lining of blood vessels. The results demonstrate the great potential of this sensor in electrochemical detection of living body, opening a new window for stretchable electrochemical sensor in biological exploration.  相似文献   

3.
A rapid and user‐friendly approach is here presented for assembling smart and versatile platforms for simultaneous electrochemical and spectrophotometric measurements. They consist of an optically transparent pencil‐drawn electrochemical cell, including reference, counter and working carbon electrodes, assembled on flexible PVC supports, exploiting a commercial desktop digitally controlled plotter/cutter. This cell is installed on a U shaped 3D printed polylactic frame where a second transparent window consisting of an unmodified PVC layer was also applied. After optimization of the fabrication procedure, the electrochemical and optical characterization of the assembled miniaturized platforms was performed by using aqueous electrolytes and potassium hexacyanoferrate(II) as redox probe. These devices were then tested by a proof‐of‐concept direct and simultaneous electrochemical and spectrophotometric quantification of a commonly used food dye (Brilliant Blue, E‐133) in soft‐drinks and candies. Spectrophotometric and electrochemical determinations can be performed at the same time, providing simultaneous information and enabling a concomitant comparison and validation of the results obtained.  相似文献   

4.
Nitrogenous amorphous carbon (a‐CNx) thin films were deposited by radio‐frequency cathodic magnetron sputtering (13.56 MHz) on polished and etched titanium disks. While these films are cheaper to prepare than commonly reported carbon‐based electrodes, the usable electrochemical window in aqueous solution is within the same range and spans from ?1.5 to +1.8 V vs. SCE. The electrochemical reactivity was tested using the ferri‐ferrocyanide redox couple as a function of the thin films preparation parameters. The obtained electrochemical properties allow the use of these a‐CNx thin films for stripping electroanalysis of cations in water, minimizing potential solvent reactivity. Cadmium and copper were used to test these detection abilities. Better analytical properties (notably sensitivity and linearity) were obtained as compared to a commercial boron doped diamond electrode. Preliminary competition/interaction experiments for these two cations were performed.  相似文献   

5.
A novel polythiophene bearing a pendant terpyridine moiety has been synthesized by electrochemical polymerization of a new thiophene monomer, namely 4′‐(2,2′:5′,2″‐terthien‐3′‐ethynyl)‐2,2′:6′,2″‐terpyridine (TAT). The insertion of a conjugated ethynyl spacer between the terthiophene and the terpyridine fragments provides for an effective extension of the delocalization of electrons within the structural unit and the polymer as a whole. The synthesis and characterization of the relevant monomer, the electrosynthesis of the corresponding polymer and its electrochemical, UV–visible spectroelectrochemical and IR characterization are described. Finally, a comparison between the electrochemical, spectroscopic, and spectroelectrochemical properties of PTAT and the analogue, saturated‐spacer PTTT (TTT = 4′‐[(2,2′:5′,2″‐terthien‐3′‐yl)methoxy]‐2,2′:6′,2″‐terpyridine) polymer is discussed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
《Electroanalysis》2006,18(3):267-274
In this paper, we describe a simple and effective infrared (IR) spectroelectrochemical cell for detecting species generated from an electrochemical system featuring low‐IR‐reflectivity electrodes. The IR detection mode of attenuated total reflection (ATR) was employed to construct the spectroelectrochemical cell. Two kinds of electrodes, platinum (Pt) and screen‐printed carbon (SPC), were used to examine the performance of this new cell in detection of electroactive species generated by cyclic voltammetry. Because data generated from highly reflective electrodes are available in the literature, Pt electrode was used to characterize the performances of the developed spectroelectrochemical cell. Results indicated that species generated electrochemically can be observed readily and their responses were comparable to those described in the literature. The cell volume could be lower than 300 μL, which suggests that this approach may be very useful to obtain chemical information during electrochemistry for biological fluids with limited sample volumes. By examining the electrochemical behavior of several amino acids using both Pt and SPC electrodes, the redox behaviors can be readily observed indicating a new spectroelectrochemical cell was successfully developed for the purpose of using of SPC electrode.  相似文献   

7.
We are constructing a model system to elucidate the molecular structure‐property relationships for attenuation of electron transfer (e.g. electron encapsulation). This information is relevant in bio‐electron transfer schemes and in emerging molecular electronics schemes such as storage of information using individual molecules. Our system consists of an inorganic cluster surrounded by dendritic ligands which act as an organic coating. Although the electrochemical and photophysical properties of a variety of metal clusters have been established, very little has been described on the chemistry on metal clusters.  相似文献   

8.
We report a novel multicomponent mixed‐valence oxyhydroxide‐based electrode synthesized by electrochemical polarization of a de‐alloyed nanoporous NiCuMn alloy. The multicomponent oxyhydroxide has a high specific capacitance larger than 627 F cm?3 (1097±95 F g?1) at a current density of 0.25 A cm?3, originating from multiple redox reactions. More importantly, the oxyhydroxide electrode possesses an extraordinarily wide working‐potential window of 1.8 V in an aqueous electrolyte, which far exceeds the theoretically stable window of water. The realization of both high specific capacitance and high working‐potential windows gives rise to a high energy density, 51 mWh cm?3, of the multicomponent oxyhydroxide‐based supercapacitor for high‐energy and high‐power applications.  相似文献   

9.
Ascorbyl glucoside, i.e., ascorbic acid 2‐glucoside (AA‐2G), is anew type of stable vitamin C derived compound used in many cosmetic skin‐lightening formulations, but rarely studied in the literature. In this study, a screen printed electrode modified with copper‐enriched printed circuit‐board waste (designated as CuPCB/SPE) was applied to study the electrochemical characteristics of AA‐2G. Cyclic voltammogram of the CuPCB/SPE showed an electrocatalytic oxidative feature at ?0.6 V vs. Ag/AgCl in 0.15 M NaOH solution. Flow injection analysis coupled with the CuPCB/SPE was further developed for sensitive AA‐2G determination. The calibration plot was linear in the window of 2.5–160 ppm with slope and regression coefficient of 0.0169 μA/ppm and 0.9971, respectively. The detection limit (S/N = 3) was 0.247 ppm. Real sample analysis was demonstrated for different skin‐lightening cosmetic products with appreciable results.  相似文献   

10.
This paper presents an alternative approach to create low‐cost and patternable carbon electrodes suitable for microfluidic devices. The fabrication and the electrochemical performances of electrodes made of Polydimethylsiloxane doped with commercially available carbon black (C‐PDMS) are described. Conductivity and electrochemical measurements performed on various carbon to PDMS ratios showed that electrodes with suitable electrochemical properties were obtained with a ratio of 25 %.  相似文献   

11.
Novel peralkylated imidazolium ionic liquids bearing alkoxy and/or alkenyl side chains have been synthesized and studied. Different synthetic routes towards the imidazoles and the ionic liquids comprising bromide, iodide, methanesulfonate, bis(trifluoromethylsulfonyl)imide ([NTf2]?), and dicyanamide {[N(CN)2]?} as the anion were evaluated, and this led to a library of analogues, for which the melting points, viscosities, and electrochemical windows were determined. Incorporation of alkenyl moieties hindered solidification, except for cations with high symmetry. The alkoxy‐derivatized ionic liquids are often crystalline; however, room‐temperature ionic liquids (RTILs) were obtained with the weakly coordinating anions [NTf2]? and [N(CN)2]?. For the viscosities of the peralkylated RTILs, an opposite trend was found, that is, the alkoxy derivatives are less viscous than their alkenyl‐substituted analogues. Of the crystalline compounds, X‐ray diffraction data were recorded and related to their molecular properties. Upon alkoxy substitution, the electrochemical cathodic limit potential was found to be more positive, whereas the complete electrochemical window of the alkenyl‐substituted imidazolium salts was shifted to somewhat more positive potentials.  相似文献   

12.
A number of very recently developed electrochemical biosensing strategies are promoting electrochemical biosensing systems into practical point‐of‐care applications. The focus of research endeavors has transferred from detection of a specific analyte to the development of general biosensing strategies that can be applied for a single category of analytes, such as nucleic acids, proteins, and cells. In this Minireview, recent cutting‐edge research on electrochemical biosensing strategies are described. These developments resolved critical challenges regarding the application of electrochemical biosensors to practical point‐of‐care systems, such as rapid readout, simple biosensor fabrication method, ultra‐high detection sensitivity, direct analysis in a complex biological matrix, and multiplexed target analysis. This Minireview provides general guidelines both for scientists in the biosensing research community and for the biosensor industry on development of point‐of‐care system, benefiting global healthcare.  相似文献   

13.
14.
Polyoxometalates have been proposed in the literature as nanoelectronic components, where they could offer key advantages with their structural versatility and rich electrochemistry. Apart from a few studies on their ensemble behaviour (as monolayers or thin films), this potential remains largely unexplored. We synthesised a pyridyl‐capped Anderson–Evans polyoxometalate and used it to fabricate single‐molecule junctions, using the organic termini to chemically “solder” a single cluster to two nanoelectrodes. Operating the device in an electrochemical environment allowed us to probe charge transport through different oxidation states of the polyoxometalate, and we report here an efficient three‐state transistor behaviour. Conductance data fits a quantum tunnelling mechanism with different charge‐transport probabilities through different charge states. Our results show the promise of polyoxometalates in nanoelectronics and give an insight on their single‐entity electrochemical behaviour.  相似文献   

15.
《Chemphyschem》2006,7(1):58-61
In addition to their stability, the advantages of air‐ and water‐stable ionic liquids over chloroaluminate ionic liquids, which were intensively investigated in the past, are that they are easy to dry, purify, and handle. Moreover, some of these ionic liquids have an extremely large electrochemical window of more than 5 V, and hence they give access to the electrodeposition of many metals and semiconductors, such as Ta, Ti, Si, and Ge. The results to date for the electrodeposition of metals and semiconductors in the most popular air‐ and water‐stable ionic liquids are presented.  相似文献   

16.
Iodized salts are widely used as mediators to promote C—H functionalization. Solvents and additives have been described as significant roles in these reactions. However, the further electrochemical investigations have rarely been reported. Herein, a KI mediated electrochemical annulation between acetophenones and 2-amniopyridines was developed. We revealed the effect of acids and solvents by cyclic voltammetry(CV), differential pulse voltammetry(DPV), and square wave voltammetry(SWV). The oxidation of 2-aminopyridine is inhibited at the potential window with the addition of strong acids, and the lowest oxidation potential difference of KI was obtained by utilizing EtOH as solvent. The experimental studies also show that the mixture solvent of EtOH/DMSO(9/1, volume ratio) facilitates the electrochemical cyclization due to the solubility improvement of KI. CF3SO3H has been screened as the optimal acid. A range of Imidazo[1,2-a]- pyridines have been synthesized in yields of 42% to 96%. Electrochemical investigations present that the KI mediated electro- chemical reaction is probably solvent-dependence.  相似文献   

17.
We demonstrate that in neutral electrolytes, a polyelectrolyte‐based (ω‐mercaptoacid/poly‐L ‐lysine) immobilisation strategy for as‐prepared electrostatically stabilised metal nanoparticles is a powerful alternative to often difficult to control dithiol approaches. Our data confirm straightforward preparation of high‐coverage nanoparticle electrodes with fast kinetics and an electrochemical window of up to 1.5 V even in unbuffered solutions, under both stationary and hydrodynamic conditions. The stability region is limited by reductive desorption of the mercaptocarboxylic acid at negative potentials, and by nanoparticle oxidation at positive potentials. The electrostatic immobilisation is valuable for the study of electroanalytical and electrocatalytic processes using nanoparticulate electrode materials.  相似文献   

18.
Scanning electrochemical microscopy (SECM), is a recent analytical technique in electrochemistry, which was developed in the 1990s and uses microelectrodes to probe various surfaces. Even with the well‐known disc microelectrodes, the system geometry is not as simple as in regular electrochemistry. As a consequence even the simplest experiments, the so‐called positive and negative feedback approach curves, cannot be described with exact analytical expressions. This review gathers all the analytical expressions available in the SECM literature in steady‐state feedback experiments. Some of them are claimed as general expressions, other are presented as approximate. Their validity is discussed in the light of the current understanding and computer facilities.  相似文献   

19.
《Electroanalysis》2004,16(18):1487-1496
The advantageous characteristics of gold not only for its electrochemical behavior but also for the unique adsorptive protein characteristics are the basis of this paper. 3‐Indoxyl phosphate (3‐IP) has previously been demonstrated to be a very convenient substrate for the electrochemical detection, using carbon‐based electrodes, of enzymeimmunoassays (EIAs) that employ not only alkaline phosphatase (AP) but also horseradish peroxidase (HRP) as label. Combination of both: gold electrodes and 3‐IP has not been studied and it produces a very suitable detection for EIAs. The electrochemical behavior of indigo, product of the enzymatic hydrolisis of 3‐IP, has been thoroughly studied for the first time on disk and band gold electrodes. The possibility of electrodepositing gold on the bands and automation has also been considered. The detection has been applied for the determination of osteocalcin with an HRP‐based ELISA (enzyme‐linked immunosorbent assay).  相似文献   

20.
A new carbon composite electrode material, based on mixing glassy carbon (GC) microparticles with an organic pasting liquid is described. The resulting glassy carbon paste electrode (GCPE) combines the electrochemical properties of GC with the various advantages of composite electrodes. Glassy carbon pastes (GCPs) offer high electrochemical reactivity, a wide accessible potential window, a low background current, and are inexpensive, easy to prepare, modify, and renew. The new material has a lower double-layer capacitance and a higher heterogeneous rate constant (for ferricyanide) compared to conventional carbon pastes (CPs). Scanning electron microscopy (SEM) images indicate significant differences in the structure of GCPE and carbon paste electrode (CPE). Factors influencing the electrode kinetics of GCPE surfaces are discussed. The electrochemical properties and advantages of GCPE should be of broad utility in electroanalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号