首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A method for the multi-elemental determination of As, Ge, Hg, Pb, Sb, Se and Sn in coal reference materials by slurry sampling chemical vapor generation (CVG) using external calibration and isotopic dilution (ID) calibration and detection by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) is proposed. As, Ge, Sb, Se and Sn were determined using the external calibration, while, Hg, Pb, Se and Sn were determined by isotopic dilution. About 50–250 mg of sample was mixed with an acid solution, containing aqua regia and HCl, in an ultrasonic bath. For the isotopic dilution calibration, the enriched isotopes 201Hg, 206Pb, 77Se and 119Sn were added to the slurry in an adequate amount in order to produce an altered isotopic ratio close to 1. The vapor produced by the reaction of the sample slurry with the reducing agent was transported to the vaporizer and trapped in a Ir-treated graphite tube at 200 °C, before vaporization at 2100 °C and transportation of the vapor to the plasma. The accuracy of the method was assured by the analysis of four certified reference coal samples, using external calibration with aqueous solutions, prepared in the same medium and subjected to the same CVG and trapping procedure as the slurries and also by isotopic dilution calibration. The obtained concentrations were in agreement with the certified values, using the t-Student test for a confidence level of 95%. The detection limits (3 s; n = 5) of isotopic dilution, in ng g− 1, were: 0.4 for Hg, 900 for Pb, 0.3 for Se and 0.2 for Sn. For external calibration, the detection limits, in ng g− 1, were: 1.6 for As, 0.1 for Ge, 0.3 for Sb, 0.9 for Se and 7.5 for Sn. The relative standard deviations generally were lower than 14%, adequate for slurry analysis.  相似文献   

2.
《Analytica chimica acta》2002,460(1):111-122
Direct cold vapour generation from aqueous slurries of environmental (marine sediment, soil, coal) and biological (human hair, seafood) samples have been developed using a batch mode generation system coupled with electrothermal atomic absorption spectroscopy. The effects of several variables affecting the cold vapour generation efficiency from solid particles (hydrochloric acid and sodium tetrahydroborate concentrations, argon flow rate, acid solution volume and mean particle size) have been evaluated using a Plackett-Burman experimental design. In addition, variables affecting cold vapour trapping and atomisation efficiency on Ir-treated graphite tubes (trapping and atomisation temperatures and trapping time) have been also investigated. Atomisation and trapping temperatures, trapping time and hydrochloric acid concentration were the significant variables. The 22+star and 23+star central composite designs have been used to obtain optimum values of the variables selected. The accuracy of methods have been verified by using several certified reference materials (PACS-1, GBW-07410, NIST-1632c, CRM-397 and DORM-2). A characteristic mass of 390 pg were achieved. The detection limits of methods were in the range of 40-600 ng g−1. A particle size less than 50 μm is adequate to obtain total cold vapour generation of Hg content in the aqueous slurry particles.  相似文献   

3.
《Analytica chimica acta》2002,461(2):261-271
Different procedures of tin hydride generation from aqueous and acidified slurries of marine sediment, soil, coal fly ash and coal samples, coupled to electrothermal atomic absorption spectrometry were optimised by using factorial designs. A batch mode generation system and Ir-treated graphite tubes were used for the hydride generation and atomisation, respectively. Eight variables, affecting the hydride generation and hydride transport efficiency (hydrochloric acid and sodium tetrahydroborate concentrations, particle size, acid volume and argon flow rate), the hydride trapping efficiency (trapping temperature and trapping time) and the atomisation efficiency (atomisation temperature) were studied and optimised. In addition, acid pre-treatment procedures assisted by ultrasonic energy were used for soil and coal matrices, to obtain acidified slurries and acid leachates. The involved variables were hydrochloric and nitric acid concentrations, exposure time to ultrasound, particle size and leaching solution volume. Adequate accuracy (41.5±0.8 and 1.4±0.2 mg kg−1, for PACS-1 (sediment marine) and NIST-1633b (coal fly ash), respectively) were obtained by using aqueous slurry reference materials. In addition, values of 6.2±0.6 and 1.2±0.1 mg kg−1 were assessed by analysing GBW-07401 (soil) and NIST-1632c (coal) certified reference materials.  相似文献   

4.
A method for Ge determination in hot spring water and acid extracts from coal fly ash samples involving hydride generation, trapping and atomisation of the hydride generated from Ir-treated graphite tubes (GTs) has been developed. Hydride was generated from hydrochloric acid medium using sodium tetrahydroborate. Several factors affecting the hydride generation, transport, trapping and atomisation efficiency were studied by using a Plackett-Burman design. Results obtained from Plackett-Burman designs suggest that trapping and atomisation temperatures are the significant factors involved on the procedure. The accuracy was studied using NIST-1633a (coal fly ash) reference material. The detection limit of the proposed method was 2.4 μg l−1 and the characteristic mass of 233 pg was achieved. The Ge concentrations in fly ash and hot spring samples were between 6.25-132 μg g−1 and 12.84-36.2 μg l−1.  相似文献   

5.
A novel technique of Moveable Reduction Bed Hydride Generator(MRBHG)was applied tohe hydride generation or cold vapor generation of As,Se,Ge,and Hg existing In TraditionalChinese Medicinal Material(TCM).The simultaneous determination of the multi-elements wasperformed with ICP-MS.A solid reduction system involving the use of potassiumtetraborohydride and tartaric acid was applied to generating metal hydride or cold vaporefficiently.The factors affecting the metal cold vapor generation were studied.The mainadvantage of the technique is that only a 4μL volume of sample was required for the cold vapor  相似文献   

6.
A slurry sampling inductively coupled plasma mass spectrometry (ICP-MS) method has been developed for the determination of Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions using flow injection (FI) vapor generation (VG) as the sample introduction system. A slurry containing 2% m/v lotion, 2% m/v thiourea, 0.05% m/v l-cysteine, 0.5 μg mL−1 Co(II), 0.1% m/v Triton X-100 and 1.2% v/v HCl was injected into a VG-ICP-MS system for the determination of Ge, As, Cd, Sb, Hg and Bi without dissolution and mineralization. Because the sensitivities of the analytes in the slurry and that of aqueous solution were quite different, an isotope dilution method and a standard addition method were used for the determination. This method has been validated by the determination of Ge, As, Cd, Sb, Hg and Bi in GBW09305 Cosmetic (Cream) reference material. The method was also applied for the determination of Ge, As, Cd, Sb, Hg and Bi in three cosmetic lotion samples obtained locally. The analysis results of the reference material agreed with the certified value and/or ETV-ICP-MS results. The detection limit estimated from the standard addition curve was 0.025, 0.1, 0.2, 0.1, 0.15, and 0.03 ng  g−1 for Ge, As, Cd, Sb, Hg and Bi, respectively, in original cosmetic lotion sample.  相似文献   

7.
《Analytica chimica acta》2003,479(2):203-214
A flow injection (FI) method was developed using electrochemical hydride generation (EcHG) as a sample introduction system, coupled to an inductively coupled plasma time-of-flight mass spectrometer (ICP-TOFMS) for rapid and simultaneous determination of six elements forming hydrides (As, Bi, Ge, Hg, Sb and Se). A novel low volume electrolysis cell, especially suited for FI experiments was designed and the conditions for simultaneous electrochemical hydride generation (EcHG; electrolyte concentrations and flow rates, electrolysis voltage and current) as well as the ICP-TOFMS operational parameters (carrier gas flow rate, modulation pulse width (MPW)) for the simultaneous determination of 12 isotopes were optimized. The compromise operation parameters of the electrolysis were found to be 1.4 and 3 ml min−1 for the anolyte and catholyte flow rates, respectively, using 2 M sulphuric acid. An optimum electrolysis current of 0.7 A (16 V) and an argon carrier gas flow rate of 0.91 l min−1 were chosen. A modulation pulse width of 5 μs, which influences the sensitivity through the amount of ions being collected by the MS per single analytical cycle, provided optimum results for the detection of transient signals. The achieved detection limits were compared with those obtained by using FI in combination with conventional nebulization (FI-ICP-TOFMS); values for chemical hydride generation (FI-CHG-ICP-TOFMS) were taken from the literature. By using a 200 μl sample loop absolute detection limits (3σ) in the range of 10-160 pg for As, Bi, Ge, Hg, Sb and 1.1 ng for Se and a precision of 4-8% for seven replicate injections of 20-100 ng ml−1 multielemental sample solutions were achieved. The analysis of a standard reference material (SRM) 1643d (NIST, “Trace Elements in Water”) showed good agreement with the certified values for As and Sb. Se showed a drastic difference, which is probably due to the presence of hydride-inactive Se species in the sample. Recoveries better than 93% for Ge and Hg and 83.9% for Se were achieved on a spiked SRM sample. The developed method was successfully applied to the simultaneous multielemental determination of hydride forming elements in spring water samples originating from two different regions in Hungary.  相似文献   

8.
A slurry sampling method for the simultaneous determination of hydride forming (As, Bi, Ge, Sb, Se, Sn) and Hg and non-hydride forming (Ca, Fe, Mg, Mn, Zn) elements, without total sample digestion has been developed using the commercial dual-mode sample introduction system (MSIS) coupled with microwave induced plasma optical emission spectrometry (MIP-OES) from biological and environmental reference materials and real samples. The main advantage of this system is its simultaneous determination of elements that form volatile vapor species and elements that do not, without any instrumental changes. Optimization of reaction, nebulization and instrumental conditions was performed to characterize the new system. Slurry concentration up to 4% m/v (particles < 100 μm) prepared in 10% HNO3 containing 100 μL of decanol, by application of ultrasonic agitation, was used with calibration by the standard addition technique. An ultrasonic probe was used to homogenize the slurry in the quartz cup just before its introduction into the reaction/nebulization system; the multimode sample introduction system (MSIS) combines the benefits of nebulization and vapor generation in a single device. Detection limits (LOD, 3σblank, peak area) of 0.07, 0.29, 0.25, 0.10, 0.12, 0.14, 0.11, 0.28, 0.42, 0.02, 0.21 and 0.34 μg g− 1 were obtained for As, Bi, Ge, Sb, Se, Sn, Hg, Ca, Fe, Mg, Mn and Zn, respectively. The relative standard deviations were ca. 10%, adequate for slurry analysis. To test the accuracy, six certified reference materials were analyzed with the analyte concentrations mostly in the μg g− 1 level. Measured concentrations are in satisfactory agreement with certified values for the biological reference materials (LUTS-1, DOLT-2) and environmental reference materials (PACS-1, GWB 07302, NIST 2710, NBS 1633b), all adequate for slurry sampling. The method was successfully applied to the determination of the elements in real samples (coal fly ash, lake sediment, sewage). The method requires small amounts of reagents and reduces contamination and losses.  相似文献   

9.
A slurry sampling hydride generation (SS-HG) method for the simultaneous determination of hydride forming elements (As, Sb, Se, Sn) and Hg, without total sample digestion, has been developed using batch mode generation system coupled with microwave induced plasma optical emission spectrometry (MIP-OES) from certified biological and environmental reference materials. Slurry concentration up to 3.6% m/v (particles < 80 μm) prepared in 10% HCl containing 100 μl of decanol, by the application of ultrasonic agitation, was used with calibration by the standard addition technique. Harsh conditions were used in the slurry preparation in order to reduce the hydride forming elements to their lower oxidation states, As(III), Sb(III), Se(IV) and Sn(II) and Hg, being reduced to mercury vapor, before reacting with sodium tetrahydroborate. An ultrasonic probe was used to homogenize the slurry in the quartz cup just before its introduction into the reaction vessel. For 10 ml of slurry sample, detection limits (LOD, 3σblank, peak area) of 0.06, 0.08, 0.15, 0.12 and 0.10 μg g− 1 were obtained for As, Sb, Se, Sn and Hg, respectively. The method offers relatively good precision (RSD ranged from 9 to 12%) for slurry analysis. To test the accuracy, three certified reference materials were analyzed with the analyte concentrations mostly in the μg g− 1 level. Measured concentrations are in satisfactory agreement with certified values for the biological reference materials: NRCC LUTS-1 (lobster hepatopancreas), NRCC DOLT-2 (Dogfish Liver) and environmental reference material: NRCC PACS-1 (Marine Sediment), all adequate for slurry sampling. The method requires small amounts of reagents and reduces contamination and losses.  相似文献   

10.
《Microchemical Journal》2010,94(2):180-187
The determinations of As, Bi, Ge, Sb and Se were performed by atomic fluorescence spectrometry following their electrochemical hydride generation. An electrochemical hydride generator based on a screw-thread seal arrangement, working in a continuous flow mode was used. The effects of cathode material, shape and area of material, catholyte, sample flow rate, applied current, catholyte solution concentration and interference of transition metals on signal intensity were studied. Five kinds of materials including lead, graphite, copper, tungsten and platinum with different shapes were tested as cathode materials. The signal obtained from a 3-dimensional electrode was higher than that from a 2-dimensional electrode under the same conditions. The signal intensity of Ge in HNO3 medium within a narrow concentration range of 0.05–0.10 mol L 1 was stronger than that in other acidic medium, such as HCl and H2SO4. However, the signal intensity of Ge was rapidly decreased with HNO3, HCl and H2SO4 concentration increasing, and then reached approximately zero. In general, limits of detection and a precision were improved using a graphite cathode in H3PO4 medium. The analysis of the reference materials showed good agreement with the certified values for As, Bi, Ge, Sb and Se. The method was successfully applied in the determination of As, Bi, Ge, Sb and Se in traditional Chinese medicine samples.  相似文献   

11.
The determinations of As, Bi, Ge, Sb and Se were performed by atomic fluorescence spectrometry following their electrochemical hydride generation. An electrochemical hydride generator based on a screw-thread seal arrangement, working in a continuous flow mode was used. The effects of cathode material, shape and area of material, catholyte, sample flow rate, applied current, catholyte solution concentration and interference of transition metals on signal intensity were studied. Five kinds of materials including lead, graphite, copper, tungsten and platinum with different shapes were tested as cathode materials. The signal obtained from a 3-dimensional electrode was higher than that from a 2-dimensional electrode under the same conditions. The signal intensity of Ge in HNO3 medium within a narrow concentration range of 0.05–0.10 mol L− 1 was stronger than that in other acidic medium, such as HCl and H2SO4. However, the signal intensity of Ge was rapidly decreased with HNO3, HCl and H2SO4 concentration increasing, and then reached approximately zero. In general, limits of detection and a precision were improved using a graphite cathode in H3PO4 medium. The analysis of the reference materials showed good agreement with the certified values for As, Bi, Ge, Sb and Se. The method was successfully applied in the determination of As, Bi, Ge, Sb and Se in traditional Chinese medicine samples.  相似文献   

12.
A method for the determination of Cd, Hg, Pb and Se in sediments reference materials by slurry sampling chemical vapor generation (CVG) using isotopic dilution (ID) calibration and detection by inductively coupled plasma mass spectrometry (ICP-MS) is proposed. Two different systems were used for the investigation: an on-line flow injection system (FI-CVG-ICP-MS) and an off-line system with in situ trapping electrothermal vaporization (CVG-ETV-ICP-MS). About 100 mg of the reference material, ground to a particle size ≤50 μm, was mixed with acid solutions (aqua regia, HF and HCl) in an ultrasonic bath. The enriched isotopes 111Cd, 198Hg, 206Pb and 77Se were then added to the slurry in an adequate amount in order to produce an altered isotopic ratio close to 1. For the on-line system, a standing time for the slurry of 12 h before measurement was required, while for the batch system, no standing time is needed to obtain accurate results. The conditions for the formation of the analyte vapor were optimized for the evaluated systems. The following altered isotope ratios were measured: 111Cd/114Cd, 198Hg/199Hg, 206Pb/208Pb e 77Se/82Se. The obtained detection limits in the on-line system, in μg g−1, were: Cd: 0.15; Hg: 0.09; Pb: 6.0 and Se: 0.03. Similar detection limits were obtained with the system that uses the ETV: 0.21 for Hg, 6.0 for Pb and 0.06 μg g−1 for Se. No signal for Cd was obtained in this system. One estuarine, two marine and two river certified sediments were analyzed to check the accuracy. The obtained values by both systems were generally in agreement with the certified concentrations, according to the t-test for a confidence level of 95%, demonstrating that isotope equilibration was attained in the slurries submitted to a chemical vapor generation procedure and detection by ICP-MS. The relative standard deviations were lower than 10%, adequate for slurry analysis. The almost quantitative analytes extractions to the aqueous phase of the slurry must favor equilibration of the added enriched isotope with the isotope in the sample, allowing the use of isotopic dilution calibration for slurry analysis.  相似文献   

13.
A method for the determination of As, Hg, Sb, Se and Sn in environmental and in geological reference materials, as acidified slurries, by flow injection (FI) coupled to a hydride generation system (HG) and detection by inductively coupled plasma mass spectrometry (ICP-MS) is proposed. The HG unit has a gas liquid separator and a drying unit for the generated vapor. The slurries were prepared by two procedures. Approximately 50 mg of the reference material, ground to a particle size ≤50 μm, was mixed with acid solutions in an ultrasonic bath. In Procedure A, the medium was a hydrochloric acid solution while in Procedure B, the medium was aqua regia plus a hydrochloric acid solution. The conditions for the slurry formation and the instrumental parameters were optimized. Harsh conditions were used in the slurry preparation in order to reduce the hydride forming analytes to their lower oxidation states, As (III), Se(IV), Sb(III) and Sn(II), before reacting with sodium tetrahydroborate. To test the accuracy, 10 certified reference materials were analyzed (four sediments, three coals, one coal fly ash and two sewage sludges), with the analyte concentrations mostly in the μg g−1 level. Good agreements with the certified values were obtained for Hg, Sb and Sn in the sediments using Procedure A and calibration against aqueous standard solutions. Using Procedure B, good results were obtained for Hg, Se and Sn in the sediment samples, for Se in the coal and coal fly ash samples and for Hg in the sewage sludge samples, also using external calibration with aqueous standard solutions. For As in sediments, coals and coal fly ash, Procedure B and the analyte addition calibration was required, indicating matrix effects. The relative standard deviations were lower than 5%, demonstrating a good precision for slurry analysis. The limits of quantification (10 times the standard deviation; n=10), in the samples, in ng g−1, were: 20 for As, 60 for Hg, 80 for Sb, 200 for Se and 90 for Sn. The method requires small amounts of reagents and reduces contamination and losses.  相似文献   

14.
The determination of traces of Se and Te by AAS with generation of volatile hydrides and atomization in a quartz tube, and by AAS with direct electrothermal atomization in a graphite cuvette, is described. The instrumental parameters and the experimental conditions were optimized. For pure acidic solutions it was found best to determine selenium by the hydride technique and tellurium by direct electrothermal atomization. The influence of AIIIBV-matrices, and of other substances which also form volatile hydrides, on the determination of Se and Te was investigated. When the hydride technique was used it was found that the main causes of the depression of the AA signals are the formation of insoluble compounds between the matrix and H2Se or H2Te, and the loss of NaBH4 by reaction with reducible compounds. In the case of the graphite cuvette the formation of stable molecules in the plasma and increased light-scattering are the main causes of interference. The analytical possibilities of the methods are compared and the advantages and disadvantages are described.  相似文献   

15.
A rugged and reliable method for the determination of mercury in coal without sample digestion, based on chemical vapor generation (cold vapor technique) from slurried coal samples has been developed. It involves collection of the mercury vapor in a graphite tube, treated with gold or rhodium as permanent modifier, and determination by electrothermal atomic absorption spectrometry. Mercury quantitatively leached out of the investigated coal reference materials into 1 mol l−1 nitric acid within 48 h when the coal was ground to a particle size of ≤50 μm, except for one sample (BCR 180), which had to be ground to ≤30 μm, or a leaching time of 72 h had to be used. No detectable quantity of mercury was generated directly from the slurry particles, but it was not necessary to filter the solution. The greatest advantage of the method is that only a minimum of reagents and sample handling steps are required, a prerequisite for accurate results in routine analysis. The results were well within the 95% confidence level of the certificate or close to the information value of the reference materials investigated. The characteristic mass of 110 pg obtained with gold as the permanent modifier is close to values reported for direct analysis of solutions, showing close to 100% trapping efficiency for mercury. A limit of detection (LOD) of 90 pg absolute was obtained with this modifier, which corresponds to an LOD of 0.009 μg g−1 Hg in coal. This is based on 1 ml of slurry containing 10 mg of coal, and is an order of magnitude lower than the lowest mercury content in the investigated reference materials.  相似文献   

16.
A highly sensitive and simple method, based on hydride generation and atomic fluorescence detection, has been developed for the determination of As, Bi, Sb, Se(IV) and Te(IV) in aqua regia extracts from atmospheric particulate matter samples. Atmospheric particulates matter was collected on glass fiber filters using a medium volume sampler (PM1 particulate matter). Two-level factorial designs have been used to optimise the hydride generation atomic fluorescence spectrometry (HG-AFS) procedure. The effects of several parameters affecting the hydride generation efficiency (hydrochloric acid, sodium tetrahydroborate and potassium iodide concentrations and flow rates) have been evaluated using a Plackett-Burman experimental design. In addition, parameters affecting the hydride measurement (delay, analysis and memory times) have been also investigated. The significant parameters obtained (sodium tetrahydroborate concentration, sodium tetrahydroborate flow rate and analysis time for As; hydrochloric acid concentration and sodium tetrahydroborate flow rate for Se(IV); and sodium tetrahydroborate concentration and sodium tetrahydroborate flow rate for Te(IV)) have been optimized by using 2n + star central composite design. Hydrochloric acid concentration and sodium tetrahydroborate flow rate were the significant parameters obtained for Sb and Bi determination, respectively. Using a univariate approach these parameters were optimized. The accuracy of methods have been verified by using several certified reference materials: SRM 1648 (urban particulate matter) and SRM 1649a (urban dust). Detection limits in the range of 6 × 10−3 to 0.2 ng m−3 have been achieved. The developed methods were applied to several atmospheric particulate matter samples corresponding to A Coruña city (NW Spain).  相似文献   

17.
The analytical potential of a coupled continuous-microflow ultrasonic nebulizer dual capillary system (µ-USN/DCS)–Ar/He mixed gas microwave induced plasma-optical emission spectrometry (MIP-OES) has been evaluated for the purpose of determination of hydride forming elements (As, Bi, Ge, Sb, Se, Sn) and a vapor element (Hg). A univariate approach and the simplex optimization procedure were used to achieve optimized conditions and derive analytical figures of merit. Analytical performance of the ultrasonic nebulization system was characterized by determination of the limits of detection (LODs) and precision (RSDs) with the µ-USN/DCS observed at a 15 µL min− 1 flow rate. At flows of ≤ 15 µL min− 1, solvent loading in the plasma is sufficiently low to make desolvation unnecessary. The experimental concentration detection limits for simultaneous determination, calculated as the concentration giving a signal equal to three times of the standard deviation of the blank (LOD, 3σblank criterion, peak height) were 1.2, 5.4, 6.3, 1.8, 3.3, 2.4 and 3.0 ng mL− 1 for As, Bi, Ge, Sb, Se, Sn and Hg, respectively. The method offers relatively good precision (RSD ranged from 8 to 11%) for liquid analysis and microsampling capability. Interference effects by transition metals have been shown to be corrected by the addition of thiourea, as a pre-reducing agent and masking agent. The accuracy of the method was verified using certified reference materials (DOLT-2, GBW 07302, SRM 2710, and SRM 1643e) and by the aqueous standard calibration technique. The measured contents of elements in reference materials were in satisfactory agreement with the certified values.  相似文献   

18.
A method has been developed for the determination of arsenic and antimony at sub-ppb level using hydride preconcentration inside the graphite furnace. The influence of the quality of the graphite surface, of its modification with palladium coating and of the ways of introducing hydride into the furnace on the analytical signal is discussed. After optimization of system parameters, detection limits of 25 and 36 pg were obtained for arsenic and antimony. Characteristic masses (for arsenic and antimony, respectively) were 31 and 33 pg/0.0044 A·s for direct injection GFAAS and 69 and 57 pg/0.0044 A·s for hydride in situ preconcentration and atomization in the palladium coated graphite tube. Therefore the overall efficiency of the hydride generation and trapping was estimated to be 45 and 58% for arsenic and antimony, respectively.  相似文献   

19.
Conditions for the simultaneous determination of selenium and arsenic at ng l−1 level were developed. Simultaneous determination of these elements was possible through the multielement capabilities of hydride generation, with in situ trapping and atomization in a graphite tube coated with zirconium and measurements using a dual channel atomic absorption spectrophotometer. The zirconium coating employed in this work was relatively stable; once formed it could stand ≈80 firings without any significant change in the efficiency of hydride collection. This appears to be an advantage over the palladium coating, which is usually formed individually before each measurement because of its thermal instability during the atomization step of the furnace temperature programme. As a result, two determinations of the two elements could be performed in 2.5 min. Under the optimized conditions, concentration detection limits of 17 and 13 ng l−1 for a 7.1 ml sample volume were obtained for selenium and arsenic, respectively (absolute detection limits 120 and 92 pg for Se and As).  相似文献   

20.
The combination of more efficient flow-through electrochemical mercury cold vapor generation with its in-situ trapping in a graphite tube atomizer is described. This coupled technique has been optimized to attain the maximum sensitivity for Hg determination and to minimize the limits of detection and determination. A laboratory constructed thin-layer flow-through cell with a platinum cathode served as the cold vapor generator. Various cathode arrangements with different active surface areas were tested. Automated sampling equipment for the graphite atomizer with an untreated fused silica capillary was used for the introduction of the mercury vapor. The inner surface of the graphite tube was covered with a gold foil placed against the sampling hole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号