首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we consider a two‐dimensional multi‐term time‐fractional Oldroyd‐B equation on a rectangular domain. Its analytical solution is obtained by the method of separation of variables. We employ the finite difference method with a discretization of the Caputo time‐fractional derivative to obtain an implicit difference approximation for the equation. Stability and convergence of the approximation scheme are established in the L ‐norm. Two examples are given to illustrate the theoretical analysis and analytical solution. The results indicate that the present numerical method is effective for this general two‐dimensional multi‐term time‐fractional Oldroyd‐B model.  相似文献   

2.
A second‐order finite difference/pseudospectral scheme is proposed for numerical approximation of multi‐term time fractional diffusion‐wave equation with Neumann boundary conditions. The scheme is based upon the weighted and shifted Grünwald difference operators approximation of the time fractional calculus and Gauss‐Lobatto‐Legendre‐Birkhoff (GLLB) pseudospectral method for spatial discretization. The unconditionally stability and convergence of the scheme are rigorously proved. Numerical examples are carried out to verify theoretical results.  相似文献   

3.
In this work, we present numerical analysis for nonlinear multi‐term time fractional differential equation which involve Caputo‐type fractional derivatives for . The proposed method is based on utilization of fractional B‐spline basics in collocation method. The scheme can be readily obtained efficient and quite accurate with less computational work numerical result. The proposal approach transform nonlinear multi‐term time fractional differential equation into a suitable linear system of algebraic equations which can be solved by a suitable numerical method. The numerical experiments will be verify to demonstrate the effectiveness of our method for solving one‐ and two‐dimensional multi‐term time fractional differential equation.  相似文献   

4.
The numerical solution for the one‐dimensional complex fractional Ginzburg–Landau equation is considered and a linearized high‐order accurate difference scheme is derived. The fractional centered difference formula, combining the compact technique, is applied to discretize fractional Laplacian, while Crank–Nicolson/leap‐frog scheme is used to deal with the temporal discretization. A rigorous analysis of the difference scheme is carried out by the discrete energy method. It is proved that the difference scheme is uniquely solvable and unconditionally convergent, in discrete maximum norm, with the convergence order of two in time and four in space, respectively. Numerical simulations are given to show the efficiency and accuracy of the scheme. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 105–124, 2017  相似文献   

5.
In this paper, we present a novel discrete scheme based on Genocchi polynomials and fractional Laguerre functions to solve multiterm variable‐order time‐fractional partial differential equations (M‐V‐TFPDEs) in the large interval. In this purpose, the accurate modified operational matrices are constructed to reduce the problems into a system of algebraic equations. Also, the computational algorithm based on the method and modified operational matrices in the large interval is easily implemented. Furthermore, we discuss the error estimation of the proposed method. Ultimately, to confirm our theoretical analysis and accuracy of numerical approach, several examples are presented.  相似文献   

6.
This article deals with the problem of synchronization of fractional‐order memristor‐based BAM neural networks (FMBNNs) with time‐delay. We investigate the sufficient conditions for adaptive synchronization of FMBNNs with fractional‐order 0 < α < 1. The analysis is based on suitable Lyapunov functional, differential inclusions theory, and master‐slave synchronization setup. We extend the analysis to provide some useful criteria to ensure the finite‐time synchronization of FMBNNs with fractional‐order 1 < α < 2, using Mittag‐Leffler functions, Laplace transform, and linear feedback control techniques. Numerical simulations with two numerical examples are given to validate our theoretical results. Presence of time‐delay and fractional‐order in the model shows interesting dynamics. © 2016 Wiley Periodicals, Inc. Complexity 21: 412–426, 2016  相似文献   

7.
In this work, we study finite difference scheme for coupled time fractional Klein‐Gordon‐Schrödinger (KGS) equation. We proposed a linearized finite difference scheme to solve the coupled system, in which the fractional derivatives are approximated by some recently established discretization formulas. These formulas approximate the solution with second‐order accuracy at points different form the grid points in time direction. Taking advantage of this property, our proposed linearized scheme evaluates the nonlinear terms on the previous time level. As a result, iterative method is dispensable. The coupled terms in the scheme bring difficulties in analysis. By carefully studying these effects, we proved that the proposed scheme is unconditionally convergent and stable in discrete norm with energy method. Numerical results are included to justify the theoretical statements.  相似文献   

8.
A high‐accuracy numerical approach for a nonhomogeneous time‐fractional diffusion equation with Neumann and Dirichlet boundary conditions is described in this paper. The time‐fractional derivative is described in the sense of Riemann‐Liouville and discretized by the backward Euler scheme. A fourth‐order optimal cubic B‐spline collocation (OCBSC) method is used to discretize the space variable. The stability analysis with respect to time discretization is carried out, and it is shown that the method is unconditionally stable. Convergence analysis of the method is performed. Two numerical examples are considered to demonstrate the performance of the method and validate the theoretical results. It is shown that the proposed method is of order Ox4 + Δt2 ? α) convergence, where α ∈ (0,1) . Moreover, the impact of fractional‐order derivative on the solution profile is investigated. Numerical results obtained by the present method are compared with those obtained by the method based on standard cubic B‐spline collocation method. The CPU time for present numerical method and the method based on cubic B‐spline collocation method are provided.  相似文献   

9.
Since population behaviors possess the characteristic of history memory, we, in this paper, introduce time fractional‐order derivatives into a diffusive Gause‐type predator‐prey model, which is time fractional‐order reaction‐diffusion equations and a generalized form of its corresponding first‐derivative model. For this kind of model, we prove the existence and uniqueness of a global positive solution by using the theory of evolution equations and the comparison principle of time fractional‐order partial differential equations. Besides, we obtain the stability and Hopf bifurcation of the Gause‐type predator‐prey model in the forms of the time fractional‐order ordinary equations and of the time fractional‐order reaction‐diffusion equations, respectively. Our results show that the stable region of the parameters in these 2 models can be enlarged by the time fractional‐order derivatives. Some numerical simulations are made to verify our results.  相似文献   

10.
In this paper, multi‐switching combination–combination synchronization scheme has been investigated between a class of four non‐identical fractional‐order chaotic systems. The fractional‐order Lorenz and Chen's systems are taken as drive systems. The combination–combination of multi drive systems is then synchronized with the combination of fractional‐order Lü and Rössler chaotic systems. In multi‐switching combination–combination synchronization, the state variables of two drive systems synchronize with different state variables of two response systems simultaneously. Based on the stability of fractional‐order chaotic systems, the multi‐switching combination–combination synchronization of four fractional‐order non‐identical systems has been investigated. For the synchronization of four non‐identical fractional‐order chaotic systems, suitable controllers have been designed. Theoretical analysis and numerical results are presented to demonstrate the validity and feasibility of the applied method. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
Two‐dimensional time‐fractional diffusion equations with given initial condition and homogeneous Dirichlet boundary conditions in a bounded domain are considered. A semidiscrete approximation scheme based on the pseudospectral method to the time‐fractional diffusion equation leads to a system of ordinary fractional differential equations. To preserve the high accuracy of the spectral approximation, an approach based on the evaluation of the Mittag‐Leffler function on matrix arguments is used for the integration along the time variable. Some examples along with numerical experiments illustrate the effectiveness of the proposed approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
In this work, we design and analyze a numerical scheme for solving the generalized time‐fractional Telegraph‐type equation (GTFTTE) which is defined using the generalized time fractional derivative (GTFD) proposed recently by Agrawal. The GTFD involves the scale and the weight functions, and reduces to the traditional Caputo derivative for a particular choice of the weight and the scale functions. The scale and the weight functions play an important role in describing the behavior of real‐life physical systems and thus we study the solution behavior of the GTFTTE by varying the weight and the scale functions in the GTFD. We investigate the solution profile of the GTFTTE under some of these choices. We also provide the stability and the convergence analysis of the proposed numerical scheme for the GTFTTE. We consider two test examples to perform numerical simulations.  相似文献   

13.
This article deals with the design, analysis, and implementation of a robust numerical scheme when applied to time‐fractional reaction‐diffusion system. Stability analysis and numerical treatment of chaotic fractional differential system in Riemann‐Liouville sense are considered in this article. Simulation results show that chaotic phenomena can only occur if the reaction or local dynamics of such system is coupled or nonlinear in nature. Illustrative examples that are still of current and recurring interest to economists, engineers, mathematicians and physicists are chosen, to describe the points and queries that may arise. Numerical results presented agree with the theoretical findings.  相似文献   

14.
In this article, an implicit fully discrete local discontinuous Galerkin (LDG) finite element method, on the basis of finite difference method in time and LDG method in space, is applied to solve the time‐fractional Kawahara equation, which is introduced by replacing the integer‐order time derivatives with fractional derivatives. We prove that our scheme is unconditional stable and convergent through analysis. Extensive numerical results are provided to demonstrate the performance of the present method. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

15.
In this paper, we apply the dual reciprocity boundary elements method for the numerical solution of two‐dimensional linear and nonlinear time‐fractional modified anomalous subdiffusion equations and time‐fractional convection–diffusion equation. The fractional derivative of problems is described in the Riemann–Liouville and Caputo senses. We employ the linear radial basis function for interpolation of the nonlinear, inhomogeneous and time derivative terms. This method is improved by using a predictor–corrector scheme to overcome the nonlinearity which appears in the nonlinear problems under consideration. The accuracy and efficiency of the proposed schemes are checked by five test problems. The proposed method is employed for solving some examples in two dimensions on unit square and also in complex regions to demonstrate the efficiency of the new technique. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, time‐splitting spectral approximation technique has been proposed for Chen‐Lee‐Liu (CLL) equation involving Riesz fractional derivative. The proposed numerical technique is efficient, unconditionally stable, and of second‐order accuracy in time and of spectral accuracy in space. Moreover, it conserves the total density in the discretized level. In order to examine the results, with the aid of weighted shifted Grünwald‐Letnikov formula for approximating Riesz fractional derivative, Crank‐Nicolson weighted and shifted Grünwald difference (CN‐WSGD) method has been applied for Riesz fractional CLL equation. The comparison of results reveals that the proposed time‐splitting spectral method is very effective and simple for obtaining single soliton numerical solution of Riesz fractional CLL equation.  相似文献   

17.
This article is concerned with ?‐methods for delay parabolic partial differential equations. The methodology is extended to time‐fractional‐order parabolic partial differential equations in the sense of Caputo. The fully implicit scheme preserves delay‐independent asymptotic stability and the solution continuously depends on the time‐fractional order. Several numerical examples of interest are included to demonstrate the effectiveness of the method. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

18.
In this paper, we develop a high‐order finite difference scheme for the solution of a time fractional partial integro‐differential equation with a weakly singular kernel. The fractional derivative is used in the Riemann‐Liouville sense. We prove the unconditional stability and convergence of scheme using energy method and show that the convergence order is . We provide some numerical experiments to confirm the efficiency of suggested scheme. The results of numerical experiments are compared with analytical solutions to show the efficiency of proposed scheme. It is illustrated that the numerical results are in good agreement with theoretical ones.  相似文献   

19.
This paper is devoted to discuss a multidimensional backward heat conduction problem for time‐fractional diffusion equation with inhomogeneous source. This problem is ill‐posed. We use quasi‐reversibility regularization method to solve this inverse problem. Moreover, the convergence estimates between regularization solution and the exact solution are obtained under the a priori and the a posteriori choice rules. Finally, the numerical examples for one‐dimensional and two‐dimensional cases are presented to show that our method is feasible and effective.  相似文献   

20.
The object of this paper is to present the numerical solution of the time‐space fractional telegraph equation. The proposed method is based on the finite difference scheme in temporal direction and Fourier spectral method in spatial direction. The fast Fourier transform (FFT) technique is applied to practical computation. The stability and convergence analysis are strictly proven, which shows that this method is stable and convergent with (2?α) order accuracy in time and spectral accuracy in space. Moreover, the Levenberg‐Marquardt (L‐M) iterative method is employed for the parameter estimation. Finally, some numerical examples are given to confirm the theoretical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号