首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 666 毫秒
1.
Ordered Fe14Ni86 alloy nanowire arrays implanted in anodic alumite template (AAT) have been fabricated by electrodepositing the corresponding material into the nanochannels. The wires are 43 nm in diameter and 50 μm in length. Their aspect ratio (ratio of length to diameter) is more than 1000, which results in distinctive magnetic anisotropy. The easy magnetization axis of this system is perpendicular to the membrane. Enhanced coercivity (about 769 Oe) and remanent magnetization up to 70% of the saturation magnetization have been observed. We also studied angular dependent coercivities of the Fe14Ni86 alloy nanowire arrays and found that they fit well with the chain-of-sphere combined model of uniform rotation and non-symmetric fanning.  相似文献   

2.
Magnetic and structural properties of the arrays of 18 nm diameter nanowires of Co and Co90Fe10 electrodeposited in the pores of anodic alumina are investigated. Arrays of Co and Co90Fe10 nanowires show perpendicular magnetic anisotropy and textured crystallographic behaviour. Coercivity Hc (⊥) and remanence Mr/Ms (⊥) values of 2275 Oe (Co90Fe10); 1188 Oe (Co) and 96% (Co90Fe10), 81% (Co) are observed. The continuous films of Co and Co90Fe10 on Cu substrates show in plane magnetic anisotropy and coercivity values between 109 and 288 Oe.  相似文献   

3.
《Current Applied Physics》2009,9(5):1160-1164
Multi-metallic Prussian blue compound Ni1.125Co0.375[Fe(CN)6] · 6.8H2O has been synthesized. The Mössbauer spectroscopy at room temperature and IR spectra study revealed that the metal ions are bonded through cyanide ligand and the presence of low spin FeIII(S = 1/2) and high spin FeIII(S = 5/2) ions, as showed in these structure: FeIII(S = 1/2)-CN-(CoII/NiII)(96%) and FeIII(S = 5/2)-NC-(CoII/NiII) (4%). The Curie constant of C = 3.00 cm3 K mol−1 and Weiss paramagnetic Curie temperature of θ = 16.43 K were observed in fitting according to Curie–Weiss law. These results indicate that there existed a ferromagnetic exchange interaction in the complexes. The observed value of coercive field (Hc) and remanent magnetization (Mr) at 4 K for the compound are 497 Oe and 1.03 . The presence of spin-glass behaviours in the compound is ascribed mainly to domain mobility or domain growth under different cooling conditions.  相似文献   

4.
《Solid State Ionics》2006,177(13-14):1199-1204
Perovskite oxides of the composition BaxSr1−xCo1−yFeyO3−δ(BSCF) were synthesized via a modified Pechini method and characterized by X-ray diffraction, dilatometry and thermogravimetry. Investigations revealed that single-phase perovskites with cubic structure can be obtained for x  0.6 and 0.2  y  1.0. The as-synthesized BSCF powders can be sintered in several hours to nearly full density at temperatures of over 1180 °C. Thermal expansion curves of dense BSCF samples show nonlinear behavior with sudden increase in thermal expansion rate between about 500 °C and 650 °C, due mainly to the loss of lattice oxygen caused by the reduction of Co4+ and Fe4+ to lower valence states. Thermal expansion coefficients (TECs) of BSCF were measured to be 19.2–22.9 × 10 6 K 1 between 25 °C and 850 °C. Investigations showed further that Ba0.5Sr0.5Co0.8Fe0.2O3−δ is chemically compatible with 8YSZ and 20GDC for temperatures up to 800 °C, above which severe reactions were detected. After being heat-treated with 8YSZ or 20GDC for 5 h above 1000 °C, Ba0.5Sr0.5Co0.8Fe0.2O3−δ was completely converted to phases like SrCoO3−δ, BaCeO3, BaZrO3, etc.  相似文献   

5.
Nanostructured nickel ferrites (NiFe2O4) were prepared by doping with Ti4+ ions using solid-state reaction route. Lowest grain size of 55 nm was achieved in the specimens with 20 mole% TiO2 doping. Magnetization in the specimens decreases with decreasing grain sizes. Lower volume fractions of ferrite phase due to dissociation of the magnetic phase into smaller particles by the disruption of super exchange interaction by the titanium substitution results a decrease in magnetizations. Coercivity showed an increasing trend. This was explained as arising due to multidomain/monodomain magnetic behavior of magnetic nanoparticles. Small polaron hopping conduction between Fe2+ and Fe3+ sites controls the dc electrical properties of the specimens. The presence of an interfacial amorphous phase between the sites is evident from Mott's analysis. Specimens containing 10 mole or more TiO2 and sintered at 1350 °C contain NiTiO3 as a secondary phase and show unusual dc conductivity.  相似文献   

6.
We adopt an improved co-precipitation method to prepare the Fe3O4 magnetic nanoparticles (MNPs). Influence factors such as the reaction temperature, the pH value of the solution, and the Fe3+/Fe2+ molar concentration are considered. Via the transmission electronic microscope and X-ray diffractometry, we characterize the dispersibility and size of the products. The reaction temperature and the pH value of the solution have a great influence in the dispersibility and size of MNPs. The diameter of Fe3O4 MNP, produced under Fe3+/Fe2+ molar concentration of 0.25 mole/l and molar ratio of 1.9:1, the reaction temperature is 80 °C, and the pH value reaches 9, is close to 11 nm. Above all, considering the variation of molar concentrations in Fe3+/Fe2+, the linear birefringence and dichroism of the kerosene-based ferrofluids are investigated by a Stokes polarimeter.  相似文献   

7.
Fe3O4 magnetic nanoparticles (Fe3O4 MNPs) with much improved peroxidase-like activity were successfully prepared through an advanced reverse co-precipitation method under the assistance of ultrasound irradiation. The characterizations with XRD, BET and SEM indicated that the ultrasound irradiation in the preparation induced the production of Fe3O4 MNPs possessing smaller particle sizes (16.5 nm), greater BET surface area (82.5 m2 g?1) and much higher dispersibility in water. The particle sizes, BET surface area, chemical composition and then catalytic property of the Fe3O4 MNPs could be tailored by adjusting the initial concentration of ammonia water and the molar ratio of Fe2+/Fe3+ during the preparation process. The H2O2-activating ability of Fe3O4 MNPs was evaluated by using Rhodamine B (RhB) as a model compound of organic pollutants to be degraded. At pH 5.4 and temperature 40 °C, the sonochemically synthesized Fe3O4 MNPs were observed to be able to activate H2O2 and remove ca. 90% of RhB (0.02 mmol L?1) in 60 min with a apparent rate constant of 0.034 min?1 for the RhB degradation, being 12.6 folds of that (0.0027 min?1) over the Fe3O4 MNPs prepared via a conventional reverse co-precipitation method. The mechanisms of the peroxidase-like catalysis with Fe3O4 MNPs were discussed to develop more efficient novel catalysts.  相似文献   

8.
In this report, SrTi(1 ? x)Fe(x)O(3 ? δ) photocatalyst powder was synthesized by a high temperature solid state reaction method. The morphology, crystalline structures of obtained samples, was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscopy (TEM), respectively. The electronic properties and local structure of the perovskite STFx (0  x  1) systems have been probed by extended X-ray absorption fine structure (EXAFS) spectroscopy. The effects of iron doping level x (x = 0–1) on the crystal structure and chemical state of the STFx have been investigated by X-ray photoelectron spectroscopy and the valence band edges for electronic band gaps were obtained for STFx by ultraviolet photoelectron spectroscopy (UPS). A single cubic perovskite phase of STFx oxide was successfully obtained at 1200 °C for 24 h by the solid state reaction method. The XPS results showed that the iron present in the STFx perovskite structure is composed of a mixture of Fe3+ and Fe4+ (SrTi(1 ? x)[Fe3+, Fe4+](x)O(3 ? δ)). When the content x of iron doping was increased, the amount of Fe3+ and Fe4+ increased significantly and the oxygen lattice decreased on the surface of STFx oxide. The UPS data has confirmed that with more substitution of iron, the position of the valence band decreased.  相似文献   

9.
Baoan Fan  Xiangli Liu 《Solid State Ionics》2009,180(14-16):973-977
A-deficit La0.54Sr0.44Co0.2Fe0.8O3 ? δ cathode material for intermediate temperature solid oxide fuel cells (IT-SOFCs) was synthesized by a citrate complexation (Pechini) route. Using La0.54Sr0.44Co0.2Fe0.8O3 ? δ as cathode material, a superior cell performance with the maximum power density of 309, 470 and 855 mW cm? 2 at 600, 650 and 700 °C was achieved, in contrast with the maximum power density of 266, 354 and 589 mW cm? 2 using conventional La0.6Sr0.4Co0.2Fe0.8O3 ? δ as cathode material at the same temperatures. The reason of this improvement was analyzed on the basis of defect chemistry. Thermal shrinkage experiment testified that the oxygen vacancies in La0.54Sr0.44Co0.2Fe0.8O3 ? δ are more mobile than in La0.6Sr0.4Co0.2Fe0.8O3 ? δ. Furthermore, theoretical calculation in terms of their composition and the shift of peak position in XRD pattern showed that the concentration of oxygen vacancies of La0.54Sr0.44Co0.2Fe0.8O3 ? δ is higher than that of La0.6Sr0.4Co0.2Fe0.8O3 ? δ. Therefore, the oxygen ion conductivity via vacancies transfer mechanism is enhanced, which induces the polarization resistance of La0.54Sr0.44Co0.2Fe0.8O3 ? δ being decreased with a result of cell performance improved.  相似文献   

10.
《Solid State Ionics》2006,177(19-25):1803-1806
Defect chemistry for a mixed conductor, La0.6Sr0.4Co0.2Fe0.8O3−δ was studied. Samples were treated under controlled oxygen partial pressure, P(O2), conditions at 1273 K [10 11.1  P(O2)/atm  1], and cooled to room temperature. Oxygen nonstoichiometry and valences of transition metal ions for the treated samples were evaluated by iodometry and X-ray absorption spectroscopy, respectively. With decreasing P(O2), preferential reduction of Co3+ to Co2+ was observed, while iron preserved its higher valence above 3 under conditions studied. A dependency of its electrical conductivity on P(O2) was discussed along with a change in concentration of oxygen vacancies and mixed valences.  相似文献   

11.
β-FeOOH nanowire arrays with diameters of 50–200 nm have been fabricated by electrochemical deposition using two-step anodic porous alumina templates. The as-prepared nanowires are homogeneous and have large aspect ratios. The selected area electron diffraction photo performed on a single wire was used to confirm the amorphous crystal structure further. The magnetic properties of these nanowire arrays were firstly investigated by using a SQUID magnetometry. The ZFC and FC studies show that these nanowire arrays exhibit spin-freezing phenomena at low temperature. The temperature-dependent magnetization curves show that the Neel transition temperatures are much lower than that of bulk material. Moreover, hysteresis was found at 5 K and the coercivities up to about 1500 Oe. The size-dependent magnetic properties were also investigated. These abnormal magnetic behaviours can be interpreted in terms of the amorphous crystal structure and the low dimensionality of the nanowire arrays.  相似文献   

12.
Transparent glass–ceramics containing zinc–aluminum spinel (ZnAl2O4) nanocrystals doped with tetrahedrally coordinated Co2+ ions were obtained by the sol–gel method for the first time. The gels of composition SiO2–Al2O3–ZnO–CoO were prepared at room temperature and heat-treated at temperature ranging 800–950 °C. When the gel samples were heated up to 900 °C, ZnAl2O4 nanocrystals were precipitated. Co2+ ions were located in tetrahedral sites in ZnAl2O4 nanocrystals. X-ray diffraction analysis shows that the crystallite sizes of ZnAl2O4 crystal become large with the heat-treatment temperature and time, and the crystallite diameter is in the range of 10–15 nm. The dependence of the absorption and emission spectra of the samples on heat-treatment temperature were presented. The difference in the luminescence between Co2+ doped glass–ceramic and Co2+ doped bulk crystal was analysed. The crystal field parameter Dq of 423 cm−1 and the Racah parameters B of 773 cm−1 and C of 3478.5 cm−1 were calculated for tetrahedral Co2+ ions.  相似文献   

13.
《Solid State Ionics》2006,177(15-16):1327-1330
X-ray and neutron powder diffraction studies have been made of the single-phase systems LiCoxFe1−xPO4 (x = 0, 0.25, 0.40, 0.60 and 0.75) to establish how Co2+ substitutes into the LiFePO4 olivine structure. Rietveld refinement shows that all four substituted materials have the same olivine structure (space group: Pnma) with lithium occupying octahedral (4a) sites, and Co2+ replacing Fe2+ at the octahedral (4c) sites. The a and b cell parameters decrease while the c parameter increases on the addition of Co2+. There are certain indications of structural instability for high Co-content compositions.  相似文献   

14.
Co-doping B-site of perovskite oxide LaxSr1 ? xCoyFe1 ? yO3 ? δ (LSCFO) with Cr6+ and Mg2+ ions has been attempted in this research for revamping chemical stability and oxygen ionic conductivity of this mixed conducting oxide. It is known that partial substitution for B-site cations of LSCFO by Cr gives rise to a significant improvement on chemical and thermal stability of the perovskite oxide. On the basis of this doped structure, introduction of an immaterial dose of Mg2+ ion into its B-site results in a microstructure consisting of smaller grains with higher density than its precursor. Furthermore, the resulting perovskite oxide La0.19Sr0.8Fe0.69Co0.1Cr0.2 Mg0.01O3 ? δ (LSFCCMO) displays higher O2? conductivity than the solely Cr-doped LSCFO besides the improved chemical stability against reduction in 5% CH4/He stream at 850 °C. A detailed examination of the oxidation states of B-site transition metal ions by XPS has also been conducted as a part of structural characterizations of LSFCCMO. The assessment of relative O2? conductivity shows that the grain boundary area plays a more important role than the bulk phase in facilitating ion transport, but with comparable boundary areas the higher densification level is favorable.  相似文献   

15.
The changes of magnetic properties with annealing temperature were studied in the amorphous Fe86.7Zr3.3B4Ag6 thin film. The thin films were deposited by a DC magnetron sputtering method, annealed at 300–700°C for 1 h in vacuum under a field of 1.5 kOe parallel to the film plane, and then furnace-cooled. As a result, it has been found that the Ag addition to Fe–Zr–B amorphous thin films resulted in the decrease of crystallization temperature to 400°C due to promoted crystallization ability. Also, it gave rise to formation of fine BCC α-Fe crystalline precipitates with a grain size smaller than 10 nm in the amorphous matrix near 400°C, and led to prominent enhancement in the magnetic properties of the Fe86.7Zr3.3B4Ag6 thin films. Significantly, excellent magnetic properties such as a saturation magnetization of 1.7 T, a coercive force of 1 Oe and a permeability of 7800 at 50 MHz were obtained in the amorphous Fe86.7Zr3.3B4Ag6 thin film containing 7.2 nm-size BCC α-Fe, which was annealed at 400°C. Also, core loss of 1.4 W cm−3 (Bm=0.1 T) at 1 MHz in the thin film was obtained, and it is a much lower value than had been obtained in any existing soft magnetic materials. Such excellent properties are inferred to originate from the uniform dispersion of nano-size BCC α-Fe in the amorphous matrix.  相似文献   

16.
Sm2Co17 alloy nanoparticles of 10–250 nm in size were prepared by mechanochemical processing involving the co-reduction of Sm2O3 and CoO with Ca. The crystal structure of the nano-sized Sm2Co17 particles was mainly of the ordered Th2Zn17-type. When embedded in the CaO matrix the Sm2Co17 nanoparticles exhibited a high coercivity of 14.2 kOe. The CaO by-product could be removed by a carefully controlled washing process without significant oxidation of the ultrafine alloy particles. After washing, the cold-pressed powder exhibited a coercivity value of 11.8 kOe and a maximum magnetization of 92.0 emu/g under an applied field of 50 kOe.  相似文献   

17.
We present the synthesis of M-type strontium hexaferrite by sonochemistry and annealing. The effects of the sonication time and thermal energy on the crystal structure and magnetic properties of the obtained powders are presented. Strontium hexagonal ferrite (SrFe12O19) was successfully prepared by the ultrasonic cavitation (sonochemistry) of a complexed polyol solution of metallic acetates and diethylene glycol. The obtained materials were subsequently annealed at temperatures from 300 to 900 °C. X-ray diffraction analysis shows that the sonochemical process yields an amorphous phase containing Fe3+, Fe2+ and Sr2+ ions. This amorphous phase transforms into an intermediate phase of maghemite (γ-Fe2O3) at 300 °C. At 500 °C, the intermediate species is converted to hematite (α-Fe2O3) by a topotactic transition. The final product of strontium hexaferrite (SrFe12O19) is generated at 800 °C. The obtained strontium hexaferrite shows a magnetization of 62.3 emu/g, which is consistent with pure hexaferrite obtained by other methods, and a coercivity of 6.25 kOe, which is higher than expected for this hexaferrite. The powder morphology is composed of aggregates of rounded particles with an average particle size of 60 nm.  相似文献   

18.
Magnetic Co–Cu alloy nanowires with low Cu content were prepared by SC electrodeposition in pores of anodic aluminum oxide templates. The as-deposited Co–Cu nanowires, with a diameter of 15 nm, show distinctive magnetic anisotropy as an applied magnetic field parallel to the axis of nanowires. With increase in the molar ratio of Co and Cu, the coercivity along nanowire axis increases and reaches a maximum value of 1977.5 Oe at the Co/Cu molar ratio of 60:1, but the maximum value of coercivity increases to 1743.6 Oe with the decrease of frequency to 2 Hz.  相似文献   

19.
Ordered ferromagnetic-nonmagnetic heterogeneous Fe60Pb40 nanowire arrays were successfully fabricated by alternating current (AC) electrodeposition into nanoporous alumina templates. Transmission electron microscopy (TEM) image and selected-area diffraction (SAED) pattern analysis showed that the Fe60Pb40 nanowires are polycrystalline with an average diameter of 22 nm and lengths up to several micrometers. X-ray diffraction (XRD) observations indicated that α-Fe and fcc Pb phase coexist and do not form metastable alloy phase. The as-deposited samples were annealed at 200, 300, 400 and 500 °C, respectively. Magnetic measurements showed that nanowires have high magnetic anisotropy with their easy axis parallel to the nanowire arrays, and the coercivity of the samples increased with the annealing temperature up to 400 °C and reached a maximum (2650 Oe). The change of magnetic properties associated with the microstructure was discussed.  相似文献   

20.
We report the effect of defects introduced by heavy-ion irradiation with 2.6 GeV uranium ions at several matching fields in single crystalline Ba(Fe0.925Co0.075)2As2. The suppression rate of Tc at lower matching fields is larger than that at higher matching fields. The critical current density calculated from magnetic hysteresis loop is enhanced up to 4.1 × 106 A/cm2 at 2 K. Clear dips in magnetic hysteresis loops near zero field are observed at high matching fields. Field dependence of normalized relaxation rate is suppressed, and the relationship between the dip and the relaxation rate is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号