首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N-Thioamide thiosemicarbazone derived of 2-chloro-4-hydroxy-benzaldehyde (R = H, HL1; R = Me, HL2 and R = Ph, HL3) have been prepared and their reaction with fac-[ReX(CO)3(CH3CN)2] (X = Br, Cl) in chloroform gave the adducts [ReX(CO)3(HL)] (1a X = Cl, R = H; 1a′ X = Br, R = H; 1b X = Cl, R = CH3; 1b′ X = Br, R = CH3; 1c X = Cl, R = Ph; 1c′ X = Br, R = Ph) in good yield. Complexes 1a′ and 1b’ were also obtained by the reaction of HL1 and HL3 with [ReBr(CO)5] in toluene.All the compounds have been characterized by elemental analysis, mass spectrometry (FAB), IR and 1H NMR spectroscopic methods. Moreover, the structures of HL2, HL3 and 1a·H2O were also established by X-ray diffraction. In 1a, the rhenium atom is coordinated by the sulphur and the azomethine nitrogen atoms, forming a five-membered chelate ring, as well as three carbonyl carbon and chloride atoms. The resulting coordination polyhedron can be described as a distorted octahedron.The study of the crystals obtained by slow evaporation of methanol and DMSO solutions of the adducts 1a′ and 1b, respectively, showed the formation of dimer structures based on rhenium(I) thiosemicarbazonates [Re2(L1)2(CO)6]·3H2O (2a)·3H2O and [Re2(L2)2(CO)6]·(CH3)2SO (2b)·2(CH3)2SO. Amounts of these thiosemicarbazonate complexes [Re2(L)2(CO)6] (2) were obtained by reaction of the corresponding free ligands with [ReCl(CO)5] in dry toluene.In 2a·3H2O and 2b·2(CH3)2SO the dimer structures are established by Re–S–Re bridges, where S is the thiolate sulphur from a N,S-bidentate thiosemicarbazonate ligand. In both structures the rhenium coordination sphere is similar; the dimers are in the same diamond Re2S2 face.  相似文献   

2.
The Ni(II) and Cu(II) complexes of four azo compounds (H2L1–4), namely, 2-(p-X-phenylazo)-4-acetamidophenol (X = OCH3, NO2, Br, and H for H2L1, H2L2, H2L3, and H2L4, respectively) were prepared and characterized on the basis of their analytical, spectroscopic, magnetic, and conductance data. The isolated complexes are found to have the general formulae [M(HL1–4)Cl(H2O)3] (M = Ni(II) and Cu(II)). The chelates are found to have octahedral structure. The infrared spectra show that H2L1–4 ligands are coordinated to the metal ions in a uninegative bidentate manner, with NO donor sites of the azo N and the deprotonated phenolic O. The ligands and their chelates are subjected to thermal analysis. The biological activity of the synthesized ligands and their metal complexes also are screened against the adult Tribolium confusum mortality. They showed remarkable biological activity.  相似文献   

3.
The reactions of silver(I) halides (Cl or Br) with thiophene-2-carbaldehyde N1-methyl thiosemicarbazone (HttscMe) in the presence of Ph3P (1:1:1 molar ratio) yield halogen-bridged dimers, [Ag2(μ-X)21-S-HttsMe)2(PPh3)2] (X = Cl, 1; Br, 2). The use of 2,2′-bipyridine in lieu of Ph3P in the reaction of silver(I) chloride with HttscMe yields the sulfur-bridged dimer, [Ag2(μ-S-HttscMe)21-HttsMe)2] · 2CHCl3 3. The substituents have altered the nature of bridge between the two silver atoms. The Ag···Ag separation (3.4867(5) Å) in complex 3 is less than that in the halogen-bridged dimers (3.734(4) Å 1; 3.746(5) Å 2). Unlike PPh3 the co-ligand 2,2′-bipyridine did not coordinate to the silver center, but was necessary for crystallization in the reaction with the thio-ligand. NMR spectroscopy revealed that the complexes remained unchanged in the solution state (CDCl3).  相似文献   

4.
Ali Barandov  Ulrich Abram 《Polyhedron》2009,28(6):1155-1159
Reactions of [ReOCl3(PPh3)2] with a potentially tridentate Schiff base derived from (2-formylphenyl)diphenylphosphine and 2-aminophenol, HL1P, (HL1P = Ph2PC6H4-2-HCN(C6H4-2-OH)) result in a rapid decomposition of the Schiff base and the formation of a large number of hitherto non-identified metal-containing species, while from similar reactions with the analogoue phosphine oxide HL1PO, (HL1PO = Ph2P(O)C6H4-2-HCN(C6H4-2-OH)) products of the compositions [ReOCl2(PPh3)(L1PO)] (1) and [Re(NC6H4-2-OH)Cl3(PPh3)2] (2) could be isolated. The structure of 2 is an experimental proof of the preceding, metal-induced cleavage of the C–N double bond. A subsequent reaction of the released 2-aminophenol forms the final phenylimido ligand.Reduction of HL1P with NaBH4 gives the phosphine amine H2L2P (H2L2 = Ph2P(C6H4-2-CH2NH(C6H4-2-OH))) in good yield. Reactions of H2L2P with common oxorhenium(V) complexes result in the formation of the stable rhenium(V) complex [ReOCl2(HL2P)] (3) with a facially coordinated HL2P? ligand.  相似文献   

5.
Picolyl, pyridine, and methyl functionalized N-heterocyclic carbene iridium complexes [Cp1Ir(C^N)Cl]Cl (4, C^N = 3-Methyl-1-picolyimidazol-2-ylidene), [Cp1Ir(C^N)Cl][Cp1IrCl3] (5), [Cp1Ir(C-N)Cl]Cl (6, C-N = 3-Methyl-1-pyridylimidazol-2-ylidene) and [Cp1Ir(L)Cl2] (7, L = 1,3-dimethylimidazol-2-ylidene) have been synthesized by transmetallation from Ag(I) carbene species, and characterized by 1H NMR, 13C NMR spectra and elemental analyses. The molecular structures of 5–7 have been confirmed by X-ray single-crystal analyses. The iridium carbene complexes 4 and 6 show moderate catalytic activities (3.03 × 105 g PNB (mol Ir)?1 h?1 and 1.70 × 106 g PNB (mol Ir)?1 h?1) for the addition polymerization of norbornene in the presence of methylaluminoxane (MAO) as co-catalyst. The produced polynorbornene have been characterized by IR, 1H NMR and 13C NMR spectra, showing it follows the vinyl-addition-type of polymerization.  相似文献   

6.
The redox properties of some largely employed ATRP initiators and copper catalysts (Cu/L/X) were investigated in 1-butyl-3-methylimidazolium trifluoromethanesulfonate (L = amine ligand, X = Br or Cl). Both Cu(II) and Cu(I) complexes are stable in the IL and, as required by ATRP, X stabilizes more Cu(II) than Cu(I). The activation rate constants of initiators by [CuITPMA]+ were measured and a good correlation between kact and the C-X bond dissociation free energy (BDFE) was observed. Overall, the results indicated that [BMIm][OTf] behaves much like organic solvents; the reported data launch the bases for a useful database to select the appropriate catalyst/initiator couple for ATRP in ILs.  相似文献   

7.
Reaction of [Ag(CH3impy)2]PF6, 1, with Au(tht)Cl produces the monometallic Au(I)-species [Au(CH3impy)2]PF6, 2. Treatment of 2 with excess AgBF4 in acetonitrile, benzonitrile or benzylnitrile produces the polymeric species {[AuAg(CH3impy)2(L)](BF4)2}n, (L = CH3CN,3; L = C6H5CN, 4; L = C6H5CH2CN, 5) where the Au(I) centers remain bound to two carbene moieties while the Ag(I) centers are coordinated to two alternating pyridyl groups and a solvent molecule (L). Reaction of 2 with AgNO3 in acetonitrile produces the zig-zag mixed-metal polymer {[AuAg(CH3impy)2(NO3)]NO3}n, 6, that contains a coordinated nitrate ion in place of the coordinated solvent species. All of these polymeric materials are dynamic in solution and dissociate into their respective monometallic components. Compounds 26 are intensely luminescent in the solid-state and in frozen solution. All of these complexes were characterized by 1H, 13C NMR, electronic absorption and emission spectroscopy and elemental analysis.  相似文献   

8.
The metal–metal bond in [M2(CO)9{C(OEt)R}] (M = Mn (1), Re (2), R = 2-thienyl (a), 2-bithienyl (b)) is readily cleaved with halogens to afford cis-[M(CO)4(X){C(OEt)R}] (M = Mn (3), X = I; M = Re (4), X = Br). In the binuclear manganese complex, the carbene ligand is found in an axial position due to steric reasons, whereas the electronically favoured equatorial position is found for the carbene ligands in the corresponding rhenium complexes and in [Mn2(CO)9{C(NH2)thienyl}] (5a), containing a sterically less demanding NH2-substituent.  相似文献   

9.
Novel cis- and trans-bis(imido) uranium disulfonamide derivatives have been prepared from iodide metathesis reactions between two equivalents of K[N(Me)(SO2Ar’)] (Ar’ = 4-Me-C6H4) and U(NtBu)2(I)2(L)x (L = OPPh3, x = 2; Me2bpy, x = 1; Me2bpy = 4,4’-dimethyl-2,2’-bipyridyl). These bis(amide) derivatives serve as useful precursors for the synthesis of the trans-diphenolate complex U(NtBu)2(O-2-tBuC6H4)2(OPPh3)2 (5), cis- and trans-dithiolate complexes U(NtBu)2(SPh)2(L)x (L = OPPh3 (6); Me2bpy (7)), and cis- and trans-dihalide complexes with the general formulas U(NtBu)2(X)2(L)x (X = Cl, L = OPPh3 (8), L = Me2bpy (10); X = Br, L = OPPh3 (9), L = Me2bpy (11)). DFT calculations performed on the trans-dihalide series U(NtBu)2(X)2(L)2 and the UO22+ analogues UO2X2(OPPh3)2 suggest that the uranium centers in the [U(NtBu)2]2+ ions possess more covalent character than analogous UO22+ derivatives but that the U-X bonds in the U(NtBu)2X2L2 complexes possess a more ionic nature.  相似文献   

10.
Mononuclear [Fe(H2LR)2]X2 (R = H, 2-Me, 5-Me, 2-Et-5-Me; X = ClO4, BF4) and dinuclear [Fe2(H2LR)3]X4 complexes containing imidazole-4-carbaldehyde azine (H2LH) and its derivatives prepared by condensation of 4-formylimidazole, 2-methyl- or 5-methyl-4-formylimidazole, or 2-ethyl-4-methyl-5-formylimidazole, with hydrazine in a 2:1 mole ratio in methanol, were prepared and their magnetostructural relationships were studied. In the mononuclear complexes, H2LR acts as an unsymmetrical tridentate ligand with two imidazole nitrogen atoms and one azine nitrogen atom, while in the dinuclear complexes, H2LR acts as a dinucleating ligand employing four nitrogen atoms to form a triple helicate structure. At room temperature, [Fe2(H2LH)3](ClO4)4 and [Fe2(H2L2-Me)3](ClO4)4 were in the high-spin (HS) and low-spin (LS) states, respectively. The results are in accordance with the ligand field strength of H2L2-Me with electron-donating methyl groups being stronger than H2LH, with the order of the ligand field strengths being H2L2-Me > H2LH. However, in the mononuclear [Fe(H2LH)2](ClO4)2 and [Fe(H2L2-Me)2](ClO4)2 complexes, a different order of ligand field strengths, H2LH > H2L2-Me, was observed because [Fe(H2LH)2](ClO4)2 was in the LS state while [Fe(H2L2-Me)2](ClO4)2 was in the HS state at room temperature. X-ray structural studies revealed that the interligand steric repulsion between a methyl group of an H2L2-Me ligand and the other ligand in [Fe(H2L2-Me)2](ClO4)2 is responsible for the observed change in the spin state. The same is true for [Fe(H2L2-Et-5-Me)2](ClO4)2, while [Fe(H2L5-Me)2](ClO4)2 does not involve such a steric congestion and stays in the LS state over the temperature range 5–300 K. Two kinds of crystals (polymorphs) were isolated for [Fe2(H2LH)3](BF4)4 and [Fe2(H2L2-Et-5-Me)3](ClO4)4, and they exhibited different magnetic behaviors.  相似文献   

11.
Results of mass spectrometric studies are reported for the collisional dissociation of Group XI (Cu, Ag, Au) metal ion complexes with fatty acids (palmitic, oleic, linoleic and α-linolenic) and glycerolipids. Remarkably, the formation of M2H+ ions (M = Cu, Ag) is observed as a dissociation product of the ion complexes containing more than one metal cation and only if the lipid in the complex contains a double bond. Ag2H+ is formed as the main dissociation channel for all three of the fatty acids containing double bonds that were investigated while Cu2H+ is formed with one of the fatty acids and, although abundant, is not the dominant dissociation channel. Also, Cu(I) and Ag(I) ion complexes were observed with glycerolipids (including triacylglycerols and glycerophospholipids) containing either saturated or unsaturated fatty acid substituents. Interestingly, Ag2H+ ion is formed in a major fragmentation channel with the lipids that are able to form the complex with two metal cations (triacylglycerols and glycerophosphoglycerols), while lipids containing a fixed positive charge (glycerophospocholines) complex only with a single metal cation. The formation of Ag2H+ ion is a significant dissociation channel from the complex ion [Ag2(L–H)]+ where L = Glycerophospholipid (GP) (18:1/18:1). Cu(I) also forms complexes of two metal cations with glycerophospholipids but these do not produce Cu2H+ upon dissociation. Rather organic fragments, not containing Cu(I), are formed, perhaps due to different interactions of these metal cations with lipids resulting from the much smaller ionic radius of Cu(I) compared to Ag(I).  相似文献   

12.
Coordination compounds with general formula [Ln(L1)3phen], where Ln = Nd, Eu, Er, Yb, HL1 = N,N′-dipyrrolidine-N′′-trichloracetylphosphortriamide, phen = 1,10-phenanthroline; [Ln(L1)3bpm], where Ln = La, Nd, Eu, Gd, Er, Y, bpm = 2,2′-bipyrimidine and [{Ln(L2)3}2(μ-bpm)], where Ln = La, Nd, Eu, Gd, Er, Y, HL2 = dimethyl-N-trichloracetylamidophosphate have been synthesized and characterized by means of IR and UV–Vis spectroscopy. Crystal structures of [Nd(L1)3phen] (1), [Nd(L1)3bpm] (2) and [{Nd(L2)3}2(μ-bpm)] (3) have been determined. It was found, that in the deprotonated form the phosphoryl ligands (L1)? and (L2)? are coordinated to the neodymium atoms in a bidentate manner via the oxygen atoms of the phosphoryl and the carbonyl groups with formation of six-membered metallocycles. In the case of compounds 1 and 2 the 1,10-phenanthroline (or 2,2′-bipyrimidine) molecules are coordinated to the metals in a bidentate manner via the nitrogen atoms. In contrast 2,2′-bipyrimidine acts in the bidentate-bridge mode forming binuclear complex 3. Variable-temperature magnetic susceptibility measurements of 3 and [{Gd(L2)3}2(μ-bpm)] (4) reveal a weak antiferromagnetic interaction between the two magnetic centres, whereas in the case of [{Eu(L2)3}2(μ-bpm)] (5) the presence of spin–orbit coupling leads to a deviation from the Curie and Curie–Weiss laws.  相似文献   

13.
Two new copper(II) complexes, [Cu2(L1)2](ClO4)2 (1) and [Cu(L2)(ClO4)] (2), of the highly unsymmetrical tetradentate (N3O) Schiff base ligands HL1 and HL2 (where HL1 = N-(2-hydroxyacetophenone)-bis-3-aminopropylamine and HL2 = N-(salicyldehydine)-bis-3-aminopropylamine) have been synthesised using a template method. Their single crystal X-ray structures show that in complex 1 two independent copper(II) centers are doubly bridged through phenoxo-O atoms (O1A and O1B) of the two ligands and each copper atom is five-coordinated with a distorted square pyramidal geometry. The asymmetric unit of complex 2 consists of two crystallographically independent N-(salicylidene)-bis(aminopropyl)amine-copper(II) molecules, A and B, with similar square pyramidal geometries. Cryomagnetic susceptibility measurements (5–300 K) on complex 1 reveal a distinct antiferromagnetic interaction with J = ?23.6 cm?1, which is substantiated by a DFT calculation (J = ?27.6 cm?1) using the B3LYP functional. Complex 1, immobilized over highly ordered hexagonal mesoporous silica, shows moderate catalytic activity for the epoxidation of cyclohexene and styrene in the presence of TBHP as an oxidant.  相似文献   

14.
Treatment of the amino acid derivative Bz-His-OMe with excess n-propyl bromide gave the corresponding histidinium salt [Bz-His(n-propyl)2-OMe+Br]. It features a melting point of 39 °C and may serve as a useful readily available optically active ionic liquid. Its subsequent treatment with silver oxide gave the corresponding l-histidine derived chiral N-heterocyclic carbene complex [“(carbene)2Ag · AgBr2”]. Transmetallation by treatment with Pd(CH3CN)2Cl2 or [Rh(cod)Cl]2 led to the formation of the respective chiral late metal imidazol-2-ylidene complexes [“(carbene)2PdCl2”] and [“(carbene)RhCl(cod)”], respectively. Four diastereomers of the square planar palladium system were observed. Due to the additional chirality center in the l-histidine-derived “Arduengo-carbene ligand” two diastereomers of the rhodium carbene complex were formed.  相似文献   

15.
Six organophosphine/phosphite stabilized N-silver(I) succinimide complexes of the type Ln · AgNC4H4O2 (L = PPh3; n = 1, 2a; n = 2, 2b; n = 3, 2c; L = P(OEt)3; n = 1, 2d; n = 2, 2e; n = 3, 2f) have been prepared by reacting [AgNC4H4O2], which can be synthesized from succinimide and excessive Ag2O in boiling water, with triphenylphosphine or triethylphosphite in dichloromethane under a nitrogen atmosphere. These complexes were obtained in high yields and characterized by elemental analysis, 1H, 13C{H} NMR, IR spectroscopy and thermal analysis (TG and DSC). The molecular structure of 2c has been determined by X-ray single crystal analysis, in which the silver atom is in a distorted tetrahedral geometry.  相似文献   

16.
A sensitive electrochemical method for H2O2 determination was proposed with carboxyl functionalized graphene oxide (GO-COOH) as mimetic peroxidase and 3,3′,5,5′-tetramethylbenzidine (TMB) as substrate. GO-COOH exhibited intrinsic peroxidase-like activity that could catalyze the oxidation of TMB with H2O2. The generated product exhibited a sensitive second order derivative linear sweep voltammetric reduction peak at − 0.93 V (vs. Ag/AgCl) in Britton–Robinson buffer. Under the optimal conditions the reduction peak current was proportional to H2O2 concentration in the linear range from 0.006 to 0.8 μmol L 1 with the detection limit of 1.0 nmol L 1 (3σ). This proposed method was further applied to determine H2O2 content in fresh milk samples with satisfactory results.  相似文献   

17.
Two hexanuclear zinc(II) complexes, [Zn6(L1)22-OH)22-CH3COO)8] · CH3CN (1 · CH3CN) and [Zn6(L2)22-OH)22-CH3COO)8] · 4CH3CN (2 · 4CH3CN), where HL1 = 4-methyl-2,6-bis(cyclohexylmethyliminomethyl)-phenol and HL2 = 4-methyl-2,6-bis(1-naphthalylmethyliminomethyl)-phenol, have been synthesized and characterized by elemental analysis, FT-IR and fluorescence spectroscopic methods, and by X-ray diffraction analysis. In the asymmetric unit of complex 1, two of the three zinc atoms have pentacoordinate geometries and the other is tetrahedrally coordinated, whereas the three distinct Zn atoms in complex 2 adopt three different coordination environments, namely distorted octahedral, trigonal bipyramidal and tetrahedral. The fluorescence properties of the ligands and complexes have been investigated.  相似文献   

18.
A series of mono- and dicarbene gold(I) complexes of types Au(CAAC)(Cl) [CAAC = cyclic (alkyl)(amino)carbene] (1) and [Au(CAAC)2]+[X]? (X = Cl, AuCl2) (2) have been prepared through reaction of AuCl(SMe2) with free carbenes ae, and structurally characterized by single X-ray diffraction studies (1a, 1b, 2d, 2e). In addition two new free cyclic (alkyl)(amino)carbenes (c and e) have been synthesized.  相似文献   

19.
《Polyhedron》2005,24(3):451-461
Reaction of 2,9-dioxo-1,4,7,10-tetraazabicyclo[1.10.1]hexadeca-1(11),13,15-triene-4,7-diacetic acid (H2L1) with CuCl2 · 2H2O in ethanol at pH 6 led to the monomeric benzodioxochlorocomplex [Cu(L1)Cl] (1) (HL1 = monoethylesther of H2L1). X-ray structural analysis has shown that in complex 1 the Cu is five-coordinated by two nitrogen and two oxygen atoms of the macrocycle and by a chloride, displaying a square pyramidal coordination geometry. One of the acetate arms does not coordinate to the Cu and has suffered an in situ ethanolic esterification reaction. The protonation constants of H2L1 and the stability constants of its complexes with Cu2+, Ni2+, Zn2+, Cd2+ and Pb2+ were determined by potentiometric methods and in some cases by 1H NMR spectroscopy. The stability constants of the complexes follow the trend [Ni(H1L1)] > [Cu(H1L1)]  [Pb(H1L1)] > [Zn(H1L1)] > [Cd(H1L1)], probably due to steric requirements. Spectroscopic measurements (absorption and EPR) at different pH values have shown the effect of the pH on the coordination sphere of the Cu complexes.  相似文献   

20.
A series of cationic Rh(I) carbonyl complexes of the form [Rh(CO)(L)]PF6 (where L = 2,6-bis (alkylimidazol-2-ylidene)-pyridine; alkyl = Me (1a), Et (1b), CH2Ph (1c)) have been prepared by the reactions of [Rh(CO)2(OAc)]2 with diimidazolium pyridine salts in the presence of NEt3. The ν(CO) values for 1 are ca. 1982 cm−1, indicating that the N-heterocyclic carbene ligands impart high electron density on the Rh(I) centres, despite the overall cationic charge. Each of the Rh(I) complexes reacts with MeI to form two isomeric Rh(III) methyl species, and a third unidentified species. Kinetic measurements on the MeI oxidative addition reactions give second-order rate constants (MeCN, 25 °C) of 0.0927, 0.0633 and 0.0277 M−1 s−1 for 1a, 1b and 1c, respectively. Comparison of these data with those for related Rh(I) carbonyl complexes shows that 1 have remarkably high nucleophilicity for cationic species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号