首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Two well‐ordered 2D ‐ hexagonal cerium (IV) and erbium (III) embedded functionalized mesoporous MCM ‐ 41(MCM‐41@Serine/Ce and MCM ‐ 41@Serine/Er) have been developed via functionalization of mesoporous MCM ‐ 41. The surface modification method has been used in the preparation of serine‐grafted MCM ‐ 41 and led to the development of MCM‐41@Serine. The reaction of MCM‐41@Serine with Ce (NH4)2(NO3)6·2H2O or ErCl3·6H2O in ethanol under reflux led to the organization of MCM‐41@Serine/Ce and MCM‐41@Serine/Er catalysts. The structures of these catalysts were determined using scanning electron microscopy, mapping, energy‐dispersive X‐ray spectroscopy, Fourier transform‐infrared, thermogravimetric analysis, X‐ray diffraction, inductively coupled plasma, and Brunauer–Emmett–Teller analysis. These MCM‐41@Serine/Ce and MCM‐41@Serine/Er catalysts show outstanding catalytic performance in sulfides oxidation and synthesis of 5‐substituted tetrazoles. These catalysts can be recycled for seven repeated reaction runs without showing a considerable decrease in catalytic performance.  相似文献   

2.
通过NH2-MCM-41与水杨醛反应得到席夫碱配体,然后加入八水氧氯化锆形成络合物,制得Zr(IV)-salen-MCM-41催化剂。采用X射线衍射、N2吸附-脱附、热重、红外光谱、电感耦合等离子体发射光谱和能量散射谱等分析手段对催化剂结构进行了表征。在含有该催化剂的体系中进行了硫化物选择氧化为亚砜以及醛与丙二腈和氰乙酸乙酯的Knoveonagel缩合反应,并考察了催化剂的循环使用性能。  相似文献   

3.
Two highly ordered isonicotinamide (INA)‐functionalized mesoporous MCM‐41 materials supporting indium and thallium (MCM‐41‐INA‐In and MCM‐41‐INA‐Tl) have been developed using a covalent grafting method. A surface functionalization method has been applied to prepare Cl‐modified mesoporous MCM‐41 material. Condensation of this Cl‐functionalized MCM‐41 with INA leads to the formation of MCM‐41‐INA. The reaction of MCM‐41‐INA with In(NO3)3 or Tl(NO3)3 leads to the formation of MCM‐41‐INA‐In and MCM‐41‐INA‐Tl catalysts. The resulting materials were characterized using various techniques. These MCM‐41‐INA‐In and MCM‐41‐INA‐Tl catalysts show excellent catalytic performance in the selective oxidation of sulfides and thiols to their corresponding sulfoxides and disulfides. Finally, it is found that the anchored indium and thallium do not leach out from the surface of the mesoporous catalysts during reaction and the catalysts can be reused for seven repeat reaction runs without considerable loss of catalytic performance.  相似文献   

4.
Zirconium oxide complex‐functionalized mesoporous MCM‐41 (Zr‐oxide@MCM‐41) as an efficient and reusable catalyst is reported for the oxidation of sulfides into sulfoxides using hydrogen peroxide (H2O2) as the oxidant, with short reaction times in good to excellent yields at room temperature under solvent‐free conditions. Also, a simple and efficient method is reported for the oxidative coupling of thiols into corresponding disulfides in good to high yields using H2O2 as oxidant in the presence of Zr‐oxide@MCM‐41 as recoverable catalyst in ethanol at room temperature. A series of sulfides and thiols possessing functional groups was successfully converted into corresponding products. After completion of reactions the catalyst was easily separated with simple filtration from the reaction mixture and reused for several consecutive runs without significant loss of catalytic efficiency. The mesoporous catalyst was characterized using Fourier transform infrared spectroscopy, Brunauer–Emmett–Teller surface area measurements, X‐ray diffraction, transmission and scanning electron microscopies, energy‐dispersive X‐ray spectroscopy and thermogravimetric analysis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A copper(II)–vanillin complex was immobilized onto MCM‐41 nanostructure and was used as an inexpensive, non‐toxic and heterogeneous catalyst in the synthesis of symmetric aryl sulfides by the cross‐coupling of aromatic halides with S8 as an effective sulfur source, in the oxidation of sulfides to sulfoxides using 30% H2O2 as a green oxidant and in the synthesis of 5‐substituted 1H –tetrazoles from a smooth (3 + 2) cycloaddition of organic nitriles with sodium azide (NaN3). The products were obtained in good to excellent yields. This catalyst could be reused several times without loss of activity. Characterization of the catalyst was performed using Fourier transform infrared, energy‐dispersive X‐ray and atomic absorption spectroscopies, X‐ray diffraction, thermogravimetric analysis, and scanning and transmission electron microscopies.  相似文献   

6.
The cerium‐containing MCM‐41 (Ce‐MCM‐41) has been synthesized by direct hydrothermal method. The low‐angle XRD patterns revealed the typical five major peaks of MCM‐41 type hexagonal structures. The interplanar spacing d100 = 38.4 Å was obtained that can be indexed on a hexagonal unit cell parameter with ao = 44.3 Å which was larger than that of pure siliceous MCM‐41 (Si‐MCM‐41). Transmission electron micrograph shows the regular hexagonal array of uniform channel characteristics of MCM‐41. The BET surface area of Ce‐MCM‐41 was 840 m2/g, which is much reduced as compared to that of Si‐MCM‐41, with the pore size of 26.9 Å and mesopore volume of 0.78 cm3/g were measured by nitrogen adsorption‐desorption isotherm at 77 K. Along with the results, the synthesized Ce‐MCM‐41 exhibited a well‐ordered MCM‐41‐type mesoporous structure with the incorporation of cerium. Using Ce‐MCM‐41 as a support, the Rh (0.5 wt%) catalyst exhibited very high activity for the NO/CO reactions.  相似文献   

7.
Two samples of mesoporous MCM‐41 have been prepared in acidic and basic conditions with cetyltrimethylammonium bromide (CTAB) as template and characterized by powder X‐ray diffraction and N2 adsorption‐desorption measurement to confirm the ordered mesoporous structure. Sorption of 21 toxic metal ions on these sorbents has been studied and discussed. The results show that distribution coefficient of Ba(II), Fe(III), Th(IV) on the synthesized MCM‐41 in basic condition and Cu(II), Pb(II), Zr(IV) on the synthesized MCM‐41 in acidic condition has been enhanced.  相似文献   

8.
Copper oxide was incorporated into MCM‐41 by a one‐pot synthesis under acidic conditions to prepare a new mesoporous nitrosamines trap for protection of the environment. The resulting composites were characterized by XRD, N2 adsorption–desorption, and H2 temperature‐programmed reduction techniques, and their adsorption capabilities were assessed in the gaseous adsorption of N‐nitrosopyrrolidine (NPYR). The adsorption isotherms were consistent with the Freundlich equation. The copper salt was deposited onto MCM‐41 during the evaporation stage and was fixed on the host in the calcination process that followed. MCM‐41 was able to capture NPYR in air below 373 K but not at 453 K. Loading of copper oxide on MCM‐41 greatly improved its adsorption capability at elevated temperatures. The influence of the incorporation of copper into MCM‐41 samples and the adsorption behavior of these samples are discussed in detail.  相似文献   

9.
MCM‐41‐supported bidentate phosphine rhodium complex (MCM‐41‐2P‐RhCl3) was conveniently synthesized from commercially available and cheapγ‐aminopropyltriethoxysilane via immobilization on MCM‐41, followed by reacting with diphenylphosphinomethanol and rhodium chloride. It was found that the title complex is a highly efficient catalyst for the hydrosilylation of olefins with triethoxysilane and can be recovered and recycled by a simple filtration of the reaction solution and used for at least 10 consecutive trials without any decreases in activity.  相似文献   

10.
MCM‐41‐supported tridentate nitrogen palladium(II) complex [MCM‐41‐3 N‐Pd(II)] was conveniently synthesized from commercially available and cheap 3‐(2‐aminoethylamino)propyltrimethoxysilane via immobilization on MCM‐41, followed by reacting with pyridine‐2‐carboxaldehyde and PdCl2. It was found that this palladium complex is an excellent catalyst for the Suzuki–Miyaura coupling reaction of aryl bromides on two points: (i) the use of 5 × 10−4 mol equiv. of MCM‐41‐3 N‐Pd(II) under air afforded the coupling products efficiently after easy workup; (2) the catalyst can be reused many times without loss of catalytic activity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
We present a study on the synthesis, characterization, and application of phthalhydrazide‐functionalized MCM‐41 (P‐MCM‐41) as a novel and efficient heterogeneous basic catalyst. The described catalyst was fully characterized via various techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X‐ray (EDX), X‐ray diffraction (XRD), and Fourier transform infrared (FT‐IR). P‐MCM‐41 efficiently catalyzed the four‐component reaction of arylaldehydes, Meldrum's acid, alkyl isocyanides, and isoquinoline in CHCl3 to prepare pyrrolo[2,1‐a]isoquinolines in good yields.  相似文献   

12.
Oxo‐vanadium(IV) Schiff base complex supported on MCM‐41 as an organic–inorganic hybrid heterogeneous catalyst was synthesized with post‐grafting of MCM‐41 with 3‐aminoropropyltrimethoxysilane and subsequent reaction with 3,4‐dihydroxybenzaldehyde and then complexation with oxo‐vanadium acetylacetonate salt. The catalyst was analysed using a series of characterization techniques such as Fourier transform infrared spectroscopy, small‐angle X‐ray diffraction, nitrogen absorption isotherm, transmission electron microscopy and thermogravimetric analysis. The data collected provided evidence that the vanadium complex was anchored onto MCM‐41. High catalytic activity of this catalyst was observed in the oxidation of various sulfides and thiols (into sulfoxides and disulfides, respectively) with urea hydrogen peroxide as oxidant in high to excellent yields and selectivity under mild conditions. The heterogeneous catalyst could be recovered easily and reused several times without significant loss in catalytic activity and selectivity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
MCM‐41‐SO3H, an ordered mesoporous silica material in which MCM‐41 with covalently anchored sulfonic acid groups was used as an acidic catalyst for the rapid and ‘green’ synthesis of pyrano[3,2‐c]pyridine derivatives under solvent‐free conditions. Reusability of the catalyst, high yields, short reaction times, simplicity and easy workup are advantages of this novel synthetic procedure compared to the conventional methods reported in the literature.  相似文献   

14.
The pure silica mesoporous molecular sieve MCM‐41 was synthesized under hydrothermal conditions. Pd/Si‐MCM‐41 was prepared by the incipient wetness impregnation of pure silica MCM‐41 with mixed solution of PdCl2, ethanol and CH2Cl2. The samples were characterized by x‐ray diffraction (XRD), transmission electron microscopy (TEM), and nitrogen adsorption–desorption isotherms at 77 K. The XRD and TEM results reveal that Pd is actually anchored inside the pores of Si‐MCM‐41 and the Si‐MCM‐41 structure is clearly maintained after impregnation.  相似文献   

15.
Ni‐loaded pure siliceous and aluminosilicate MCM‐41 (Ni/MCM‐41) and nickel‐loaded silica (15Ni/SiO2) were synthesized via wet impregnation and were characterized by various techniques. The H2 consumption in the TPR analysis was found to be proportional to the Ni amount in the calcined samples. After reduction the average Ni particle sizes of 15Ni/MCM‐41 and 15Ni/SiO2 were 9–12 and 16 nm, respectively, by means of XRD and TEM measurements. All catalysts owned weak and intermediate Lewis acid sites that increased slightly with increasing the Ni amount and the Al content. In the liquid phase hydrogenation of t,t,c‐1,5,9‐cyclododecatriene over Ni/MCM‐41, the catalytic activity was parallel to the Ni content and enhanced slightly with the acid amount of the catalysts. Consequently, it was proposed that the Ni metallic sites contributed the major effect to the catalytic activity while the Lewis acid sites promoted a small but significant influence on the catalytic performance. It is noteworthy that all 15Ni/MCM‐41 catalysts exhibited remarkably higher activity than that of the conventional 15Ni/SiO2 catalyst.  相似文献   

16.
A series novel composites based on poly(L‐lactide) (PLLA) oligomer modified mesoporous silica (MCM41) homogeneous dispersed into poly(L‐lactide‐co‐trimethylene carbonate‐co‐glycolide) (PLTG) terpolymer has been successfully prepared. The structure of PLTG terpolymer was characterized by 1H NMR. The structure and properties of modified and unmodified MCM41 were attested by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analyzer (TGA), X‐ray diffraction (XRD), N2 adsorption–desorption, scanning electron microscope (SEM), and transmission electron microscope (TEM), which demonstrated that the MCM41 was successfully grafted by the PLLA oligomer. The effect of different concentration of modified MCM41 in PLTG matrix on thermal properties, mechanical properties, and hydrophilicity was investigated by TGA, differential scanning calorimetry (DSC), mechanical testing, contact angle measurement, and SEM. The results of mechanical tests showed that 5 wt% of modified MCM41 nanoparticles gave rise to optimal reinforcing effect. The tensile strength, Young's modulus, and elongation at break of the PLTG/PLLA‐MCM41 (5%) composites were 33.2 Mpa, 1.58 Gpa, and 268.7%, respectively, which were all higher than the PLTG/MCM41 (5%) composites and pristine PLTG matrix, which were due to good interfacial adhesion between the PLTG matrix and MCM41 nanoparticles. TGA and DSC have shown that 5% modified MCM41 in the PLTG increased the temperature of composite degradation and Tg. Water contact angle measurement showed the hydrophilicity of the composites increases with the increase of modified MCM41 content. The live/dead assay showed that the modified MCM41 existing on the PLTG matrix presents very excellent cytocompatibility. Therefore, the novel composite material represents promising way for bone tissue engineering application.  相似文献   

17.
An efficient and practical route to β‐keto sulfones has been developed through heterogeneous oxidative coupling of oxime acetates with sodium sulfinates by using an MCM‐41‐supported Schiff base‐pyridine bidentate copper (II) complex [MCM‐41‐Sb,Py‐Cu (OAc)2] as the catalyst and oxime acetates as an internal oxidant, followed by hydrolysis. The reaction generates a variety of β‐keto sulfones in good to excellent yields. This new heterogeneous copper (II) catalyst can be easily prepared via a simple procedure from readily available and inexpensive reagents and exhibits the same catalytic activity as Cu (OAc)2. MCM‐41‐Sb,Py‐Cu (OAc)2 is also easy to recover and is recyclable up to eight times with almost consistent activity.  相似文献   

18.
DABCO (1,4‐diazabicyclo[2.2.2]octane)‐modified magnetite with silica‐MCM‐41 shell (Fe3O4@silica‐MCM‐41@DABCO) as an effective, magnetic and novel heterogeneous reusable nanocatalyst was synthesized and analysed using various techniques. Evaluation of the catalytic activity of this nanocatalyst was performed in the clean synthesis of substituted 2‐aminodihydropyrano[3,2‐b]pyran‐3‐cyano in high yields via in situ reaction of azido kojic acid, malononitrile and various aldehydes.  相似文献   

19.
Nanosized MCM‐41‐SO3H based on ordered mesoporous silica material with a covalent sulfonic acid group was synthesized and used as acid catalyst for the new, simple, convenient and green synthesis of 2,4,5‐trisubstituted and 1,2,4,5‐tetra‐substituted imidazoles. Also some of synthesis products are new. Echo‐friendly protocol, short reaction times, easy and quick isolation of the products and excellent yields are the main advantages of this procedure.  相似文献   

20.
A complex moiety containing VO(IV) was anchored covalently into organic‐modified Si‐MCM‐41 to prepare a new catalyst. The prepared materials were characterized using various techniques. Several types of aromatic and aliphatic sulfides were successfully oxidized to the corresponding sulfoxides in good to excellent yields using H2O2 in the presence of a catalytic amount of the catalyst under solvent‐free conditions. The results showed that the OH groups of the various compounds such as 2,2‐(phenylthio)ethanol and 2‐(methylthio)ethanol remained intact under similar conditions. Meanwhile the catalyst was stable in the reaction system, and could be reused at least four times without significant loss of its activity and chemoselectivity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号