首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe ultrasonic‐assisted dispersive solid‐phase extraction based on ion‐imprinted polymer (UA‐DSPE‐IIP) nanoparticles for the selective extraction of silver ions. Ultrasound is a good and robust method to facilitate the extraction of target ions in the sorption step and elution of the target ions in the desorption step. The IIP nanoparticles used in the UA‐DSPE‐IIP were prepared by precipitation polymerization. To prepare the IIP nanoparticles, 2‐vinylpyridine, ethylene glycol dimethacrylate, 2,2′‐azobisisobutyronitrile, 2‐picolinic acid, silver and chloroform–methanol (50:50) solution were used as functional monomer, cross‐linker, initiator, silver‐binding ligand, template ion and porogen, respectively. The IIP nanoparticles were characterized using Fourier transformed infrared spectroscopy, thermogravimetric and differential thermal analysis, X‐ray diffraction and scanning electron microscopy. A Box–Behnken design was used for optimization of sorption and desorption steps in UA‐DSPE‐IIP. In the sorption step: pH of solution, IIP amount (mg), sonication time for sorption (min); in the desorption step: concentration of eluent (mol l−1), volume of eluent (ml), sonication time (min) for desorption were investigated and optimized by Box–Behnken design. The optimum conditions for the method were: pH of solution, 7; sonication time for sorption, 7 min; IIP amount, 17 mg; type and concentration of eluent, HCl 1.5 mol l−1; volume of eluent, 2 ml; sonication time for desorption, 140 s. Under the optimized conditions the limit of detection and relative standard deviation for the detection of silver ions using UA‐DSPE‐IIP were found to be 0.09 μg l−1 and <3%, respectively.  相似文献   

2.
Solid‐phase microextraction (SPME) has been directly coupled to an ion‐trap mass spectrometer (MS) for the determination of the model compound lidocaine in urine, hereby applying MS/MS [fragmentation of [M + H]+ (m/z 235) to a fragment with m/z 86]. The throughput of samples has been increased using non‐equilibrium SPME with polydimethylsiloxane (PDMS) fibers. The effect of temperature on the sorption and the desorption was studied. Elevated temperatures during sorption (65°C) and desorption (55°C) had a considerable influence on the speed of the extraction. The desorption was carried out with a home‐made desorption chamber allowing thermostating. Only 1 min sorption and 1 min desorption were performed, after which MS detection took place, resulting in a total analysis time of 3 min. Detection limits below 1 ng/mL could be obtained despite yields of only 2.1 and 1.5% for a 100‐ and a 30‐μm PDMS‐coated fiber, respectively. Furthermore, the determination of lidocaine in urine had acceptable reproducibilities, i.e., relative standard deviations (RSDs) below 10%. A limit of quantitation (RSD < 15%) of about 1 ng/mL was obtained. No extra wash step of the extraction fiber was required after desorption if a 30‐μm coating was used, whereas not all the analyte was desorbed from the 100‐μm coating in a single desorption. Therefore, the SPME‐MS/MS system with a 30‐μm PDMS‐coated fiber for rapid non‐equilibrium SPME at elevated temperatures has interesting potential for high‐throughput analysis of biological samples.  相似文献   

3.
A solid‐phase extraction (SPE) method has been presented for the selective separation and preconcentration of trace amounts of cadmium using cetyltrimethylammonium bromide (CTAB)‐coated Fe3O4 nanoparticles (NPs). The method is based on the sorption of cadmium as CdI42? complex on the positively charged surface of the CTAB‐coated Fe3O4 NPs. The preconcentrated cadmium is then desorbed from the surface of the sorbent and is determined by flame atomic absorption spectrometry. The influences of the experimental parameters including pH of the solutions, amount of surfactant, iodide concentration, sample volume, eluent type and volume on the recovery of the analyte ions were investigated. Under the optimum conditions by the extraction of 500 mL of aqueous samples, a preconcentration factor of 250 was achieved. The detection limit (3s) was 0.06 μg L?1, and the relative standard deviations at 0.5 and 5 μg L?1 levels of cadmium (n = 10) were 3.2 and 1.9% respectively. The proposed method was successfully applied to the determination of cadmium in water samples. The accuracy was evaluated through the recovery experiments and independent analysis by the graphite furnace atomic absorption spectrometry (GFAAS).  相似文献   

4.
Dispersive liquid–liquid microextraction (DLLME) technique was successfully used as a sample preparation method for graphite furnace atomic absorption spectrometry (GF AAS). In this extraction method, 500 μL methanol (disperser solvent) containing 34 μL carbon tetrachloride (extraction solvent) and 0.00010 g Salen(N,N′‐bis(salicylidene)ethylenediamine) (chelating agent) was rapidly injected by syringe into the water sample containing cadmium ions (interest analyte). Thereby, a cloudy solution formed. The cloudy state resulted from the formation of fine droplets of carbon tetrachloride, which have been dispersed, in bulk aqueous sample. At this stage, cadmium reacts with Salen(N,N′‐bis(salicylidene)‐ethylenediamine), and therefore, hydrophobic complex forms which is extracted into the fine droplets of carbon tetrachloride. After centrifugation (2 min at 5000 rpm), these droplets were sedimented at the bottom of the conical test tube (25 ± 1 μL). Then a 20 μL of sedimented phase containing enriched analyte was determined by GF AAS. Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of the chelating agent have been optimized. Under the optimum conditions, the enrichment factor 122 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the range of 2‐21 ng L?1 with a detection limit of 0.5 ng L?1. The relative standard deviation (R.S.D.s) for ten replicate measurements of 20 ng L?1 of cadmium was 2.9%. The relative recoveries of cadmium in tap, sea and rain water samples at a spiking level of 5 and 10 ng L?1 are 99, 94, 97 and 96%, respectively. The characteristics of the proposed method have been compared with cloud point extraction (CPE), on‐line liquid‐liquid extraction, single drop microextraction (SDME), on‐line solid phase extraction (SPE) and co‐precipitation based on bibliographic data. Therefore, DLLME combined with GF AAS is a very simple, rapid and sensitive method, which requires low volume of sample (5.00 mL).  相似文献   

5.
For the first time, a new mode of dispersive solid‐phase extraction is presented as a simple, rapid, adsorbent‐free and environmentally friendly method for the simultaneous microextraction and preconcentration of trace amounts of two metal ions (Pb2+ and Cr3+) and two anionic azo dyes (reactive yellow 15 (RY15) and reactive black 5 (RB5)). This method is based upon the in situ formation of a layered double hydroxide (LDH) nanosorbent through an electrostatic induction process. In this method, extraction of the analytes is performed simultaneously with the formation of the nanosorbent only by adding hydroxide ions. After extraction and separation of the sorbent from the sample solution through a syringe nanofilter, the analytes are eluted by dissolving the LDHs in an acidic solution. Finally, the extracted metal cations and anionic azo dyes are directly determined by micro‐sampling flame atomic absorption spectrometry and micro‐volume UV–visible spectrophotometry, respectively. Under the optimal experimental conditions including 20 μmol of hydroxide ions, 248.4:20.8 μg l?1 of M2+:M3+ ions, 12 cycles of air agitation and 200 μl of CF3COOH (2 M), good linearities were obtained for Pb2+, Cr3+, RY15 and RB5 in the concentration ranges 50–600, 5.0–280, 30–2500 and 30–2000 ng ml?1, respectively, with correlation of determinations higher than 0.995. The preconcentration factor for the target analytes was 50 in a 10 ml sample solution. The limits of detection were found to be 15, 1.5, 10 and 10 μg l?1 for Pb2+, Cr3+, RY15 and RB5, respectively. The intra‐day and inter‐day precisions were in the ranges 4.3–6.1 and 5.5–6.8%, respectively. Additionally, the presented method is applicable for the analysis of the target analytes in different water samples with reasonable recoveries (>87%).  相似文献   

6.
A simple and efficient approach for preparing modified magnetic multi-walled carbon nanotubes (MMWCNT) with 8-hydroxyquinoline was developed. This short-cut method has reduced the contact time of modification from 2 days to 10 hours. The properties of MMWCNT modified 8-hydroxyquinoline were characterised by scanning electron microscopy (SEM), vibrating sample magnetometer (VSM) and Fourier transform infrared spectrophotometer (FT-IR). This adsorbent was found to be a new, selective, low-cost and high capacitance for enrichment of cadmium in solid-phase extraction (SPE). In addition, based on the easily separated modified MMWCNT from the aqueous solutions with the help of an external magnet, no filtration or centrifugation was needed. The variables of interest in the SPE, such as pH, ionic strength, extraction time, desorption time, type and volume and concentration of eluent, were optimised. The calibration graph was linear over the range of 0.42–127 μg l?1. The limit of detection was 0.12 μg l?1 and the relative standard deviation of 2.25% at 30 ng ml?1 Cd(II) ions was obtained (n = 8). The preconcentration factor and adsorption capacity of the sorbent were 160 and 60.2 mg g?1 respectively. Finally, practical applicability of the developed adsorbent was confirmed by preconcentration of Cd(II) ions from water, vegetable and food samples.  相似文献   

7.
The aim of this study was to evaluate the surface adsorption capacity of CrFeO3 nanoparticle‐loaded activated carbon (CrFeO3‐NPs–AC) for the removal of a cationic dye (methyl violet, MV). CrFeO3‐NPs were hydrothermally synthesized and loaded on AC followed by characterization using X‐ray diffraction, field‐emission scanning electron microscopy and energy‐dispersive and Fourier transform infrared spectroscopies. The CrFeO3‐NPs were tested for in vitro antibacterial activities against Gram‐positive (Staphylococcus aureus) and Gram‐negative (Pseudomonas aeruginosa) bacteria. Minimum inhibitory and minimum bactericidal concentrations of CrFeO3‐NPs–AC were obtained to be 50 and 100 μg ml?1, respectively, against S. aureus and 25 and 50 μg ml?1 against P. aeruginosa. These results indicated the antibacterial properties of CrFeO3‐NPs–AC. To investigate the adsorption process, several systematic experiments were designed by varying parameters such as adsorbent mass, pH, initial MV concentration and sonication time. The adsorption process was modelled and the optimal conditions were determined to be 0.013 g, 7.4, 15 mg l?1 and 8 min for adsorbent mass, pH, MV concentration and sonication time, respectively. The real experimental data were found to be efficiently explained by response surface methodology and genetic algorithm model. Kinetic studies for MV adsorption showed rapid sorption dynamics described by a second‐order kinetic model, suggesting a chemisorption mechanism. Then, the experimental equilibrium data obtained at various concentrations of MV and adsorbent masses were fitted to conventional Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. Dye adsorption equilibrium data were fitted well to the Langmuir isotherm. From the Langmuir model, the maximum monolayer capacity was calculated to be 65.67 mg g?1 at optimum adsorbent mass.  相似文献   

8.
A new preconcentration method is presented for lead on TAN‐loaded polyurethane foam (PUF) and its measurement by differential pulse anodic stripping voltammetry (DPASV). The optimum sorption conditions of 1.29 × 10?5 M solution of Pb(II) ions on TAN‐loaded PUF were investigated. The maximum sorption was observed at pH 7 with 20 minutes equilibrated time on 7.25 mg mL?1 of TAN‐loaded foam. The kinetic study indicates that the overall sorption process was controlled by the intra‐particle diffusion process. The validity of Freundlich, Langmuir and Dubinin ‐ Radushkevich adsorption isotherms were tested. The Freundlich constants 1/n and KF are evaluated to be 0.45 ±0.04 and (1.03 +0.61) × 10?3 mol g?1, respectively. The monolayer sorption capacity and adsorption constant related to the Langmuir isotherm are (1.38 ± 0.08) × 10?5 mol g?1 and (1.46 ± 0.27) × 105 L mol?1, respectively. The mean free energy of Pb(II) ions sorption on‐TAN loaded PUF is 11.04 ± 0.28 kJ mol?1 indicating chemisorption phenomena. The effect of temperature on the sorption yields thermodynamics parameters of ΔH, ΔS and ΔG at 298 K that are 15.0 ± 1.4 kJ mol?1, 74 ±5 J mol?1 K?1 and ‐7.37 ± 0.28 kJ mol?1, respectively. The positive values of enthalpy (ΔH) and entropy (ΔS) indicate the endothermic sorption and stability of the sorbed complexes are entropy driven. However, the negative value of Gibb's free energy (ΔG) indicates the spontaneous nature of sorption. On the basis of these data, the sorption mechanism has been postulated. The effect of different foreign ions on the sorption and desorption studies were also carried out. The method was successfully applied for the determination of lead from different water samples at ng levels.  相似文献   

9.
Using commercially available melamine and formaldehyde as the starting materials, a magnetic mesoporous melamine–formaldehyde resin (MMF@Fe3O4) possessing large surface area was prepared via a simple method and could be used as an efficient adsorbent for magnetic solid‐phase extraction. Compared with the traditional synthetic methods of MMF@Fe3O4, this approach is easily operated under mild conditions, is time‐saving and environmentally friendly, and can produce the material in high yields. The as‐prepared MMF@Fe3O4 possesses good adsorption capacity and selectivity for silver ions. The affecting factors such as pH, amount of MMF@Fe3O4, extraction time, desorption solvent, eluent concentration and sample volume were systematically investigated and optimized. Under the optimized conditions, the material exhibited a good response to silver ions at concentrations in the range 2.0–200 μg l?1 with good linearity (r2 = 0.9982), while the limit of detection was found to be 0.12 μg l?1. The material was successfully applied to the determination of silver in a variety of water samples.  相似文献   

10.
TiO2 nanoparticles deposited on activated carbon (TiO2–NP–AC) was prepared and characterized by XRD and SEM analysis. Subsequently, simultaneous ultrasound‐assisted adsorption of Cu2+ and Cr3+ ions onto TiO2‐NPs‐AC after complexation via eriochrome cyanine R (ECR) has been investigated with UV–Vis and FAA spectrophotometer. Spectra overlapping of the ECR‐Cu and ECR‐Cr complex was resolve by derivative spectrophotometric technique. The effects of various parameters such as initial Cu2+ (A) and Cr3+ (B) ions concentrations, TiO2‐NPs‐AC mass (C), sonication time (D) and pH (E) on the removal percentage were investigated and optimized by central composite design (CCD). The optimize conditions were set as: 4.21 min, 0.019 mg, 20.02 and 13.22 mg L?1 and 6.63 for sonication time, TiO2–NP–AC mass, initial Cr3+ and Cu2+ ions concentration and pH, respectively. The experimental equilibrium data fitting to Langmuir, Freundlich, Temkin and Dubinin–Radushkevich models show that the Langmuir model is a good and suitable model for evaluation and the actual behavior of adsorption process and maximum adsorption capacity of 105.26 and 93.46 mg g?1 were obtained for Cu2+ and Cr3+ ions, respectively. Kinetic evaluation of experimental data showed that the adsorption processes followed well pseudo second order and intraparticle diffusion models.  相似文献   

11.
A simple and fast method for preconcentration and determination of ultra trace amounts of lead(II), mercury(II) and cadmium(II) in water samples is presented. Lead, mercury and cadmium adsorbed quantitatively during passage of water samples (pH?=?7, flow rate?=?20 mL min?1) through octadecyl silica membrane disks modified with 5,5′-dithiobis(2-nitrobenzoic acid). The retained lead, mercury and cadmium are then stripped from the disk with a minimal amount of 1 M hydrochloric acid solution as eluent, and determined by atomic absorption spectrometry. The influence of flow rates of the eluent and sample solution, the amount of ligand, type and least amount of eluent, pH of sample, effect of other ions and breakthrough volume are determined. The breakthrough volume of the method is greater than 2000 mL for lead and greater than 1500 mL for mercury and cadmium, which results in an enrichment factor of 200 for lead and an enrichment factor of 150 for both mercury and cadmium. The limit of detection of the proposed method is 177, 2 and 13 ng l?1 for lead, mercury and cadmium, respectively.  相似文献   

12.
Jiankuan Duan  Bin Hu  Man He 《Electrophoresis》2012,33(19-20):2953-2960
In this paper, a new method of nanometer‐sized alumina packed microcolumn SPE combined with field‐amplified sample stacking (FASS)–CE‐UV detection was developed for the speciation analysis of inorganic selenium in environmental water samples. Self‐synthesized nanometer‐sized alumina was packed in a microcolumn as the SPE adsorbent to retain Se(IV) and Se(VI) simultaneously at pH 6 and the retained inorganic selenium was eluted by concentrated ammonia. The eluent was used for FASS–CE–UV analysis after NH3 evaporation. The factors affecting the preconcentration of both Se(IV) and Se(VI) by SPE and FASS were studied and the optimal CE separation conditions for Se(IV) and Se(VI) were obtained. Under the optimal conditions, the LODs of 57 ng L?1 (Se(IV)) and 71 ng L?1 (Se(VI)) were obtained, respectively. The developed method was validated by the analysis of a certified reference material of GBW(E)080395 environmental water and the determined value was in a good agreement with the certified value. It was also successfully applied to the speciation analysis of inorganic selenium in environmental water samples, including Yangtze River water, spring water, and tap water.  相似文献   

13.
In this article a sensitive differential pulse stripping voltammetry technique on Nafion‐coated bismuth‐film electrode (NCBFE) was studied for the simultaneous determination of zinc, cadmium, and lead ions in blood samples at ultra trace levels. The measurement results were in excellent agreement with those obtained from atomic absorption spectroscopy. Various operational parameters were investigated and discussed in terms of their effect on the measurement signals. Under optimal conditions, calibration curves for the simultaneous determination of zinc, cadmium, and lead ions were achieved, based on three times the standard deviation of the baseline, the limits of detection were 0.09 μg L?1 for Cd(II), 0.13 μg L?1 for Pb(II), and 0.97 μg L?1 for Zn(II) respectively.  相似文献   

14.
A novel mesoporous‐coated stainless steel wire microextraction coupled with the HPLC procedure for quantification of four polycyclic aromatic hydrocarbons in water has been developed, based on the sorption of target analytes on a selectively adsorptive fiber and subsequent desorption of analytes directly into HPLC. Phenyl‐functionalized mesoporous materials (Ph‐SBA‐15) were synthesized and coated on the surfaces of a stainless steel wire. Due to the high porosity and large surface area of the Ph‐SBA‐15, high extraction efficiency is expected. The influence of various parameters on polycyclic aromatic hydrocarbons extraction efficiency were thoroughly studied and optimized (such as the extraction temperature, the extraction time, the desorption time, the stirring rate and the ionic strength of samples). The results showed that each compound for the analysis of real water samples was tested under optimal conditions with the linearity ranging from 1.02×10?3 to 200 μg/ L and the detection limits were found from 0.32 to 2.44 ng/ L, respectively. The RSD of the new method was smaller than 4.10%.  相似文献   

15.
In this work, dual‐column capillary microextraction (CME) system consisting of N‐(2‐aminoethyl)‐3‐aminopropyltrimethoxysilane (AAPTS)‐silica coated capillary (C1) and 3‐mercaptopropyl trimethoxysilane (MPTS)‐silica coated capillary (C2) was developed for sequential separation/preconcentration of arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid [MMA(V)] and dimethylarsinic acid [DMA(V)] in the extracts of human hair followed by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV‐ICP‐MS) detection with iridium as permanent modifier. Various experimental parameters affecting the dual‐column microextraction of different As species had been investigated in detail. It was found that at pH 9, As(V) and MMA could be quantitatively retained by C1 and only As(III) could be quantitatively retained by C2. With the aid of valve switching, As(V)/MMA(V) retained on C1 and As(III) retained on C2 could be sequentially desorbed by 10 µl of 0.01 mol l?1 HNO3 [for As(V)], 0.1 mol l?1 HNO3 [for MMA(V)] and 0.2 mol l?1 HNO3‐3% thiourea (m/v) [for As(III)], respectively, the eluents were immediately introduced into the Ir‐coated graphite tubes for further ETV‐ICP‐MS detection. With two‐step ETV pyrolysis program, Cl? in the sample matrix could be in situ removed, and the total As in the human hair extracts or digested solution could be interference‐free, determined by ETV‐ICP‐MS. DMA(V) in the human hair extracts was obtained by subtraction of total As in the human hair extracts from other three As species. Under the optimized conditions, the detection limits (3 σ) of the method were 3.9 pg ml?1 for As(III), 2.7 pg ml?1 for As(V), 2.6 pg ml?1 for MMA(V) and 124 pg ml?1 for total As with the relative standard deviations less than 7.0% (C = 0.1 ng ml?1, n = 7), and the enrichment factor was 286, 262 and 260 for As(III), As(V) and MMA(V), respectively. The developed method was successfully applied for the speciation of arsenic in the extracts of human hair. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
《Electrophoresis》2017,38(13-14):1685-1692
Macroporous resin has been attracting intensive attention due to its critical role in separation and purification of natural products. Herein, a zeolitic imidazolate framework 8 reinforced macroporous resin D101 was prepared via a room temperature growth method and used for dispersive SPE of 1‐naphthol and 2‐naphthol. The parameters affecting the adsorption and desorption efficiency such as the sample pH, adsorbent amount, extraction time, desorption solvent, and desorption time were investigated. The as‐prepared adsorbent showed selectivity for 1‐naphthol and 2‐naphthol compared to other phenols. Under the optimum dispersive SPE conditions, the detection of 1‐naphthol and 2‐naphthol coupled with a CZE method was conducted and the LODs for 1‐naphthol and 2‐naphthol were 1.37 and 1.43 ng/mL, respectively. Moreover, the results of urine sample analysis showed the spiked recoveries to be in the range of 96.2–106.9%. This study indicated that D101@ZIF‐8 (where ZIF is zeolitic imidazolate framework) is a promising selective adsorbent for the analysis of 1‐naphthol and 2‐naphthol in urine samples.  相似文献   

17.
A new method for the determination of cadmium and lead in human teeth was developed based on dispersive liquid‐liquid microextraction preconcentration and graphite furnace atomic absorption spectrometry determination. In the proposed approach, O,O‐diethyldithiophosphate (DDTP) was used as a chelating agent, and carbon tetrachloride and methanol were selected as extraction and dispersive solvents. Some factors influencing the extraction efficiency of cadmium and lead and their subsequent determination, including extraction and dispersive solvent type and volume, pH of sample solution, concentration of the chelating agent and extraction time, were studied and optimized. Under the optimum conditions, the enrichment factor of 116 and 68 for cadmium and lead were achieved. The detection limit for cadmium and lead was 5.6 and 45 ng L?1, and the relative standard deviation (R.S.D) was 4.5% and 3.8% (n = 7, c = 1.0 ng mL?1), respectively. Verification of the accuracy of the method was carried out by analysis of a standard reference material (NIST 1486, bone meal). The method was successfully applied to the determination of trace amount of cadmium and lead in human teeth samples with satisfactory results.  相似文献   

18.
This paper report a novel strategy for synthesis and application of CuS@ZnS@Fe3O4‐CNTs composite which has great potentials as artificial receptor for tartrazine trapping due to its ultrahigh surface area and functionality which is related to application of electrochemical route. A durable and economical pipette‐tip CuS@ZnS@Fe3O4‐CNTs nano‐composite miniaturized solid phase extraction coupled with UV‐Vis spectrophotometry was developed for clean‐up and determination of tartrazine from various water samples. Undoubtedly, presence of mild‐intensity/frequency ultrasound irradiation played a key role for reducing consumption of eluent volume by broking hydrogen bonds between retained analyte and sorbent. The influence of factors including pH, sorbent dosage, sonication time and eluent volume were investigated and optimum conditions were obtained using experimental design methodology. Under optimized conditions, good extraction efficiencies for the analyte were obtained with no matrix interference in the subsequent UV‐Vis. Good linearity for tartrazine in the range of 20‐5000 ng mL‐1 with correlation coefficients of R2 ≥ 0.99 and low detection limit close to 4.76 ng mL‐1 reveals high applicability of method for trace analysis.  相似文献   

19.
Using bamboo‐activated charcoal as SPE adsorbent, a novel SPE method was developed for the sensitive determination of tetrabromobisphenol A and bisphenol A in environmental water samples by rapid‐resolution LC‐ESI‐MS/MS. Important parameters influencing extraction efficiency, including type of eluent, eluent volume, sample pH, volume and flow rate, were investigated and optimized. Under the optimal extraction conditions (eluent: 8 mL methanol, pH: 7; flow rate: 4 mL/min; sample volume: 100 mL), low LODs (0.01–0.02 ng/mL), good repeatability (6.2–8.3%) and wide linearity range (0.10–10 ng/mL) were obtained. Satisfied results were achieved when the proposed method was applied to determine the two target compounds in real‐world environmental water samples with spiked recoveries over the range of 80.5–119.8%. All these facts indicate that trace determination of tetrabromobisphenol A and bisphenol A in real‐world environmental water samples can be realized by bamboo‐activated charcoal SPE‐rapid resolution‐LC‐ESI‐MS/MS.  相似文献   

20.
A SBA‐15/polyaniline para‐toluenesulfonic acid nanocomposite supported micro‐solid‐phase extraction procedure has been developed for the extraction of parabens (methylparaben, ethylparaben, and propylparaben) from wastewater and cosmetic products. The variables of interest in the extraction process were pH of sample, sample and eluent volumes, sorbent amount, salting‐out effect, extraction and desorption time, and stirring rate. A Plackett–Burman design was performed for the screening of variables in order to determine the significant variables affecting the extraction efficiency. Then, the significant factors were optimized by using a central composite design. The optimum experimental conditions found at 50 mL sample solution, extraction and desorption times of 40 and 20 min, respectively, 500 μL of 3% v/v acetic acid in methanol as eluent, 0.01 M salt addition, and 10 mg of the sorbent. Under the optimum conditions, the developed method provided detection limits in the range of 0.08–0.4 ng/mL with good repeatability (RSD% < 7) and linearity (r2 = 0.997–0.999) for the three parabens. Finally, this fast and efficient method was employed for the determination of target analytes in cosmetic products and wastewater, and satisfactory results were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号