首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The d6 metal complexes of thiourea derivatives were synthesized to investigate its cytotoxicity. Treatment of various N‐phenyl‐N´ pyridyl/pyrimidyl thiourea ligands with half‐sandwich d6 metal precursors yielded a series of cationic complexes. Reactions of ligand (L1‐L3) with [(p‐cymene)RuCl2]2 and [Cp*MCl2]2 (M = Rh/Ir) led to the formation of a series of cationic complexes bearing general formula [(arene)M(L1)к2(N,S)Cl]+, [(arene)M(L2)к2(N,S)Cl]+ and [(arene)M(L3)к2(N,S)Cl]+ [arene = p‐cymene, M = Ru ( 1 , 4 , 7 ); Cp*, M = Rh ( 2 , 5 , 8 ); Cp*, Ir ( 3 , 6 , 9 )]. These compounds were isolated as their chloride salts. X‐ray crystallographic studies of the complexes revealed the coordination of the ligands to the metal in a bidentate chelating N,S‐ manner. Further the cytotoxicity studies of the thiourea derivatives and its complexes evaluated against HCT‐116 (human colorectal cancer), MIA‐PaCa‐2 (human pancreatic cancer) and ARPE‐19 (non‐cancer retinal epithelium) cancer cell lines showed that the thiourea ligands displayed no activity. Upon complexation however, the metal compounds possesses cytotoxicity and whilst potency is less than cisplatin, several complexes exhibited greater selectivity for HCT‐116 or MIA‐PaCa‐2 cells compared to ARPE‐19 cells than cisplatin in vitro. Rhodium complexes of thiourea derivatives were found to be more potent as compared to ruthenium and iridium complexes.  相似文献   

2.
Designing co‐catalyst‐free late transition metal complexes for ethylene polymerization is a challenging task at the interface of organometallic and polymer chemistry. Herein, a set of new, co‐catalyst‐free, single‐component catalytic systems for ethylene polymerization have been unraveled. Treatment of anthranilic acid with various aldehydes produced four iminocarboxylate ligands ( L1 – L4 ) in very good to excellent yield (75–92 %). The existence of 2‐((2‐methoxybenzylidene)amino) benzoic acid ( L1 ) has been unambiguously demonstrated using NMR spectroscopy, MS and single‐crystal X‐ray diffraction. A neutral Pd‐iminocarboxylate complex [{N O}PdMe(L1)] (N O=κ2‐N,O‐ArCHNC6H4CO2 with Ar=2‐MeOC6H4) C1 was prepared by treating stoichiometric amount of L1.Na with palladium precursor. The identity of C1 was confirmed by 1–2D NMR spectroscopy and single‐crystal X‐ray diffraction studies. Along the same lines, palladium complexes C2 – C4 were prepared from ligands L2 – L4 respectively. In‐situ high‐pressure NMR investigations revealed that these Pd complexes are amenable to ethylene insertion and undergo facile β‐H elimination to produce propylene. These palladium complexes were then evaluated in ethylene polymerization reaction and various reaction parameters were screened. When C1 – C4 were exposed to ethylene pressures of 10–50 bar, formation of low‐molecular‐weight polyethylene was observed.  相似文献   

3.
A series of neutral binuclear iridium and rhodium complexes were synthesized based on bis‐imine ligands under mild conditions. These half‐sandwich late transition metal complexes were isolated in good yields and characterized by elemental analysis, 1H NMR, 13C NMR, HR‐MS, and FT‐IR spectroscopies, and the solid state structure of complexes 1 and 2 were further confirmed by single‐crystal X‐ray diffraction. Cyclic voltammetry (CV) characterization indicated that the complex 1 has the best catalyst for water oxidation process with TOF of 0.8 s?1 at low overpotential of 0.325 V in methanol‐phosphate buffer. The proposed double‐site water oxidation mechanism had been also speculated .  相似文献   

4.
Half‐sandwich ruthenium, rhodium and iridium complexes ( 1 – 12 ) were synthesized with aldoxime ( L1 ), ketoxime ( L2 ) and amidoxime ( L3 ) ligands. Ligands have the general formula [PyC(R)NOH], where R = H ( L1 ), R = CH3 ( L2 ) and R = NH2 ( L3 ). Reaction of [{(arene)MCl2}2] (arene = p ‐cymene, benzene, Cp*; M = Ru, Rh, Ir) with ligands L1 – L3 in 1:2 metal precursor‐to‐ligand ratio yielded complexes such as [{(arene)MLκ2(N∩N)Cl}]PF6. All the ligands act as bidentate chelating nitrogen donors in κ2(N∩N) fashion while forming complexes. In vitro anti‐tumour activity of complexes 2 and 10 against HT‐29 (human colorectal cancer), BE (human colorectal cancer) and MIA PaCa‐2 (human pancreatic cancer) cell lines and non‐cancer cell line ARPE‐19 (human retinal epithelial cells) revealed a comparable activity although complex 2 demonstrated greater selectivity for MIA PaCa‐2 cells than cisplatin. Further studies demonstrated that complexes 3 , 6 , 9 and 12 induced significant apoptosis in Dalton's ascites lymphoma (DL) cells. In vivo anti‐tumour activity of complex 2 on DL‐bearing mice revealed a statistically significant anti‐tumour activity (P  = 0.0052). Complexes 1 – 12 exhibit HOMO–LUMO energy gaps from 3.31 to 3.68 eV. Time‐dependent density functional theory calculations explain the nature of electronic transitions and were in good agreement with experiments.  相似文献   

5.
Research aimed at enhancing the efficacy of organometallic complexes against cancer, has shown that attaching bio‐active molecules to (metallo)drugs often enhances their biological properties. New salicylaldimine and 2‐pyridylimine ligands ( L2 and L3 ), containing a bio‐active acridine scaffold, were synthesized and complexed to Rh(III), Ir(III), Ru(II) and Os(II) metal ion centers. The resulting acridine‐containing half‐sandwich complexes have been characterized fully by elemental analysis, FT‐IR and NMR spectroscopy, HR‐ESI mass spectrometry as well as single crystal X‐ray diffraction, for the Rh(III) N^N bidentate complex [RhCp*Cl( L3 )][BPh4]. The antiproliferative activity of the ligands ( L2 and L3 ) and complexes ( C1 to C9 ) were evaluated in vitro against human promyelocytic leukemia cells (HL60) and normal skin fibroblast cells (FG0). The compounds exhibit good activities against HL60 cells and are consistently selective towards cancerous cells over non‐tumorous cells. This study demonstrates the potential of such hybrid compounds to target cancer cells specifically. The most active complex, [RhCp*Cl( L2 )], exhibited binding to DNA model guanosine‐5’‐monophosphate (5’‐GMP) which suggests a mode of action involving interaction of the complex with 5’‐GMP found on DNA backbone.  相似文献   

6.
C? H activation by acetate‐assisted cyclometallation of a phenyl group with half‐sandwich complexes [{MCl2Cp*}2] (M=Ir, Rh) and [{RuCl2(p‐cymene)}2] can be directed by a wide range of nitrogen donor ligands including pyrazole, oxazoline, oxime, imidazole and triazole, and X‐ray structures of a number of complexes are reported. All the ligands tested cyclometallated at iridium, however ruthenium and rhodium fail to cause cyclometallation in some cases. As a result, the nitrogen donors have been categorised based on their reactivity with the three metals used. The relevance of these cyclometallation reactions to catalytic synthesis of carbocycles and heterocycles is discussed.  相似文献   

7.
Synthesis, structure, and reactivity of carboranylamidinate‐based half‐sandwich iridium and rhodium complexes are reported for the first time. Treatment of dimeric metal complexes [{Cp*M(μCl)Cl}2] (M=Ir, Rh; Cp*=η5‐C5Me5) with a solution of one equivalent of nBuLi and a carboranylamidine produces 18‐electron complexes [Cp*IrCl(CabN‐DIC)] ( 1 a ; CabN‐DIC=[iPrN?C(closo‐1,2‐C2B10H10)(NHiPr)]), [Cp*RhCl(CabN‐DIC)] ( 1 b ), and [Cp*RhCl(CabN‐DCC)] ( 1 c ; CabN‐DCC=[CyN?C(closo‐1,2‐C2B10H10)(NHCy)]). A series of 16‐electron half‐sandwich Ir and Rh complexes [Cp*Ir(CabN′‐DIC)] ( 2 a ; CabN′‐DIC=[iPrN?C(closo‐1,2‐C2B10H10)(NiPr)]), [Cp*Ir(CabN′‐DCC)] ( 2 b , CabN′‐DCC=[CyN?C(closo‐1,2‐C2B10H10)(NCy)]), and [Cp*Rh(CabN′‐DIC)] ( 2 c ) is also obtained when an excess of nBuLi is used. The unexpected products [Cp*M(CabN,S‐DIC)], [Cp*M(CabN,S‐DCC)] (M=Ir 3 a , 3 b ; Rh 3 c , 3 d ), formed through BH activation, are obtained by reaction of [{Cp*MCl2}2] with carboranylamidinate sulfides [RN?C(closo‐1,2‐C2B10H10)(NHR)]S? (R=iPr, Cy), which can be prepared by inserting sulfur into the C? Li bond of lithium carboranylamidinates. Iridium complex 1 a shows catalytic activities of up to 2.69×106 gPNB ${{\rm{mol}}_{{\rm{Ir}}}^{ - {\rm{1}}} }Synthesis, structure, and reactivity of carboranylamidinate-based half-sandwich iridium and rhodium complexes are reported for the first time. Treatment of dimeric metal complexes [{Cp*M(μ-Cl)Cl}(2)] (M = Ir, Rh; Cp* = η(5)-C(5)Me(5)) with a solution of one equivalent of nBuLi and a carboranylamidine produces 18-electron complexes [Cp*IrCl(Cab(N)-DIC)] (1?a; Cab(N)-DIC = [iPrN=C(closo-1,2-C(2)B(10)H(10))(NHiPr)]), [Cp*RhCl(Cab(N)-DIC)] (1?b), and [Cp*RhCl(Cab(N)-DCC)] (1?c; Cab(N)-DCC = [CyN=C(closo-1,2-C(2)B(10)H(10))(NHCy)]). A series of 16-electron half-sandwich Ir and Rh complexes [Cp*Ir(Cab(N')-DIC)] (2?a; Cab(N')-DIC = [iPrN=C(closo-1,2-C(2)B(10)H(10))(NiPr)]), [Cp*Ir(Cab(N')-DCC)] (2?b, Cab(N')-DCC = [CyN=C(closo-1,2-C(2)B(10)H(10)(NCy)]), and [Cp*Rh(Cab(N')-DIC)] (2?c) is also obtained when an excess of nBuLi is used. The unexpected products [Cp*M(Cab(N,S)-DIC)], [Cp*M(Cab(N,S)-DCC)] (M = Ir 3?a, 3?b; Rh 3?c, 3?d), formed through BH activation, are obtained by reaction of [{Cp*MCl(2)}(2)] with carboranylamidinate sulfides [RN=C(closo-1,2-C(2)B(10)H(10))(NHR)]S(-) (R = iPr, Cy), which can be prepared by inserting sulfur into the C-Li bond of lithium carboranylamidinates. Iridium complex 1?a shows catalytic activities of up to 2.69×10(6) g(PNB) mol(Ir)(-1) h(-1) for the polymerization of norbornene in the presence of methylaluminoxane (MAO) as cocatalyst. Catalytic activities and the molecular weight of polynorbornene (PNB) were investigated under various reaction conditions. All complexes were fully characterized by elemental analysis and IR and NMR spectroscopy; the structures of 1?a-c, 2?a, b; and 3?a, b, d were further confirmed by single crystal X-ray diffraction.  相似文献   

8.
A series of zinc benzylalkoxide complexes, [LnZn(μ‐OBn)]2 (L = L 1 H – L 5 H ), supported by NNO‐tridentate ketiminate ligands with various electron withdrawing‐donating subsituents have been synthesized and characterized. X‐ray crystal structural studies revealed that complexes 2b and 4b are dinuclear bridging through the benzylalkoxy oxygen atoms with penta‐coordinated metal centers. All the metal complexes have acted as efficient initiators for the ring‐opening polymerization of L ‐lactide (within 12 min, 0 °C). Remarkably, a molecular weight of PLLA up to 580,000 can be achieved using [(L5Zn(μ‐OBn)]2 ( 5b ) as an initiator. The kinetic studies for the polymerization of L ‐lactide with complex 3b at ?10 °C corresponded to first‐order reactions in the monomer. The ring‐opening polymerization (ROP) of ε‐caprolactone, ε‐decalactone, β‐butyrolactone and their copolymer with complex 3b was investigated. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

9.
A series of half‐sandwich iridium complexes ( 1 – 4 ) with thiosemicarbazone ligands in two types of coordination modes were synthesized and characterized. The molecular structures of compounds 1 , 2 and 3 were determined using single‐crystal X‐ray diffraction analysis. The nature of the complexes was studied using density functional theory calculations. The stability of the complexes was investigated using UV–visible absorption spectroscopy. The compounds were further evaluated for their in vitro antiproliferative activities against HeLa, HepG2, CNE‐2, SGC‐7901, KB and HEK‐293 T cell lines. Compound 2 displays the highest antiproliferative activity among the other analogues and cisplatin.  相似文献   

10.
Iron catalysts were evolved for more active transition metal‐catalyzed living radical polymerization through design of the ligands. In situ introduction of P–N chelate‐ligands, consisting of hetero‐coordinating atoms [phosphine (P) and nitrogene (N)], onto FeBr2 effectively catalyzed living radical polymerization of methyl methacrylate (MMA) in conjunction with a bromide initiator, where the monomer‐conversion reached over 90% without dropping the rates and the molecular weights of obtained PMMAs were well controlled. The benign effects of the “hetero‐chelation” were demonstrated by comparative experiments with homo‐chelate ligands (P–P, N–N), model compounds of the composed coordination site, and the combinations. We successfully achieved an isolation of iron complex with a P–N ligand [FeBr2(DMDPE); DMDPE: (R)‐N,N‐dimethyl‐1‐(2‐(diphenylphosphino)phenyl)‐ethanamine], which was superior to the conventional catalyst [FeBr2(Pn‐Bu)2] with respect to controllability and activity, especially at the latter stage. The catalyst was almost quantitatively removed by water washing after polymerization. It was also effective for living polymerization of styrene. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6819–6827, 2008  相似文献   

11.
Two 2‐Py‐amidine ligands (2‐Py―NH―C(Ph)═N―Ar, Ar = 2,6‐Me2C6H3 and 2,6‐iPr2C6H3) and the corresponding Ni(II) complexes ( 1 and 2 ) were synthesized and characterized using elemental analysis and FT‐IR, UV–visible, 1H NMR and 13C NMR spectroscopies. X‐ray crystal structures indicate that the chelate ring conformation of the less bulky complex 1 is relatively planar compared with that of the bulky complex 2 . Paramagnetic 1H NMR and 13C NMR studies show that, in solution, the time‐average structures of complexes 1 and 2 have mirror symmetry. Both complexes 1 and 2 were used as catalyst precursors for norbornene polymerization with methylaluminoxane as a co‐catalyst. The effects of Al/Ni ratio, temperature and structure of precursors on the catalytic performance were investigated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The synthesis and photophysical and electrochemical characterisation of new heteroleptic iridium complexes with electron‐withdrawing sulfonyl groups and fluorine atoms bound to phenylpyridine ligands are reported. The emission energy of these materials strongly depends on the position of the sulfonyl groups and on the number of fluorine substituents. A 90 nm wide tuning range of photoluminescence from the blue‐green (λem=468 nm) of iridium(III)bis[2‐(4′‐benzylsulfonyl)phenylpyridinato‐N,C2′][3‐(pentafluorophenyl)‐pyridin‐2‐yl‐1,2,4‐triazolate] to the orange (λem=558 nm) of iridium(III)bis[2‐(3′‐benzylsulfonyl)phenylpyridinato‐N,C2′](2,4‐decanedionate) has been achieved. Emission quantum yields ranging from 47 to 71 % have also been found for degassed solutions of the complexes, and a surprisingly high value of 16 % was recorded for iridium(III)bis[2‐(5′‐benzylsulfonyl‐3′,6′‐difluoro)phenylpyridinato‐N,C2′](2,4‐decanedionate) in air‐equilibrated dichloromethane. A unusual stereochemistry of the benzylsulfonyl‐substituted dimer and heteroleptic complexes has been detected by 1H NMR spectroscopy, and is characterised by the mutual cis disposition of the pyridyl nitrogen atoms of the phenylpyridine ligands, which differs from the most common trans arrangement reported in the literature.  相似文献   

13.
Monomeric copper(II) and nickel(II) complexes with tetradentate two new ligands, 2,2′-[(2E,5E)-hexane-2,5-diylidenedi- nitrilo]dibenzenethiol(H2L) and 2-hydroxybenzaldehyde (2E,5E)-hexane-2,5-diylidenehydrazone(H2L1) have been synthesized and characterized by elemental analyses, magnetic moments, molar conductance, 1H-NMR and 13C-NMR, IR, mass spectral studies, theoretical calculations (MM2 and AM1) molecular methods. The mononuclear metal complexes of H2L and (H2L1) were found to have a 1:1 metal:ligand ratio. Elemental analyses, stoichiometric and spectroscopic data of metal complexes indicated that the metal ions were coordinated to the sulphur (-SH) and/or (-OH) oxygen and imine nitrogen atoms (C = N). All of the data obtained from spectral, and molecular mechanics (MM2) or semi empirical calculations (AM1) studies support the structural properties of ligands and its Cu(II) and Ni(II) metal complexes.  相似文献   

14.
6‐Benzimidazolylpyridyl‐2‐carboximidic half‐titanocene complexes, Cp′TiLCl (Cp′ = C5H5, MeC5H4, C5Me5, L = 6‐benzimidazolylpyridine‐2‐carboxylimidic, C1–C13 ), were synthesized and characterized along with single‐crystal X‐ray diffraction. The half‐titanocene chlorides containing substituted cyclopentadienyl groups, especially pentamethylcyclopentadienyl groups were more stable, while those without substituents on the cyclopentadienyl groups were easily transformed into their dimeric oxo‐bridged complexes, (CpTiL)2O ( C14 and C15 ). In the presence of excessive amounts of methylaluminoxane (MAO) or modified methylaluminoxane (MMAO), all half‐titanocene complexes showed high catalytic activities for ethylene polymerization. The substituents on the Cp groups affected the catalytic behaviors of the complexes significantly, with less substituents favoring increased activities and higher molecular weights of the resultant polyethylenes. Effects of reaction conditions on catalytic behaviors were systematically investigated with catalytic systems of mononuclear C1 and dimeric C14 . With C1 /MAO, large MAO amount significantly increases the catalytic activity, while the temperature only has a slight effect on the productivity. In the case of C14 /MAO catalytic system, temperature above 60 °C and Al/Ti value higher than 5000 were necessary to observe good catalytic activities. In both systems, higher reaction temperature and low cocatalyst amount gave the polyethylenes with higher molecular weights. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3396–3410, 2008  相似文献   

15.
A series of iridium complexes ( 1 – 5 ), which consist of two 2‐(2,4‐difluorophenyl)pyridine (dfppy)‐based primary ligands and one pyridinylphosphinate ancillary ligand, have been investigated theoretically for screening highly efficient deep‐blue light‐emitting materials. Compared with the reported dfppy‐based emitter 1 , the designed iridium complexes 3 – 5 with the introduction of a stronger electron‐withdrawing (–CN, –CF3 , or o‐carborane) group and a bulky electron‐donating (tert‐butyl) group in dfppy ligands can be achieved to display the emission peaks at 443, 442, and 447 nm, respectively. The electronic structures, absorption and emission properties, radiative and nonradiative processes of their excited states, and charge injection and transport properties of the iridium complexes are analyzed in detail. The calculated results show that designed iridium complexes have comparable radiative and nonradiative rate constants with 1 , and are expected to have similar quantum efficiency with 1 . Meanwhile, these designed complexes keep the advantages of the charge transport properties of 1 , indicating that they are potential iridium complexes for efficient deep‐blue phosphorescence. This work provides more in‐depth understanding the structure–property relationship of dfppy‐based iridium complexes, and shed lights on molecular design for deep‐blue phosphorescent metal complexes.  相似文献   

16.
A variety of ester‐substituted cyclopentadiene derivatives have been synthesized by one‐pot reactions of 1,4‐dilithio‐1,3‐butadienes, CO, and acid chlorides. Direct deprotonation of the ester‐substituted cyclopentadienes with Ae[N(SiMe3)2]2 (Ae=Ca, Sr, Ba) efficiently generated members of a new class of heavier alkaline earth (Ca, Sr, Ba) metallocenes in good to excellent yields. Single‐crystal X‐ray structural analysis demonstrated that these heavier alkaline earth metallocenes incorporated two intramolecularly coordinated ester pendants and multiply‐substituted cyclopentadienyl ligands. The corresponding transition metal metallocenes, such as ferrocene derivatives and half‐sandwich cyclopentadienyl tricarbonylrhenium complexes, could be generated highly efficiently by metathesis reactions. The multiply‐substituted cyclopentadiene ligands bearing an ester pendant, and the corresponding heavier alkaline earth and transition‐metal metallocenes, may have further applications in coordination chemistry, organometallic chemistry, and organic synthesis.  相似文献   

17.
Synthesis and deprotonation reactions of half‐sandwich iridium complexes bearing a vicinal dioxime ligand were studied. Treatment of [{Cp*IrCl(μ‐Cl)}2] (Cp*=η5‐C5Me5) with dimethylglyoxime (LH2) at an Ir:LH2 ratio of 1:1 afforded the cationic dioxime iridium complex [Cp*IrCl(LH2)]Cl ( 1 ). The chlorido complex 1 undergoes stepwise and reversible deprotonation with potassium carbonate to give the oxime–oximato complex [Cp*IrCl(LH)] ( 2 ) and the anionic dioximato(2?) complex K[Cp*IrCl(L)] ( 3 ) sequentially. Meanwhile, twofold deprotonation of the sulfato complex [Cp*Ir(SO4)(LH2)] ( 4 ) resulted in the formation of the oximato‐bridged dinuclear complex [{Cp*Ir(μ‐L)}2] ( 5 ). X‐ray analyses disclosed their supramolecular structures with one‐dimensional infinite chain ( 1 and 2 ), hexagonal open channels ( 3 ), and a tetrameric rhomboid ( 4 ) featuring multiple intermolecular hydrogen bonds and electrostatic interactions.  相似文献   

18.
A series of half‐sandwich ruthenium‐based catalysts for both alcohol oxidation and carbonyl compounds hydrogenation have been synthesized through metal‐induced C–H bond activation based on benzothiazole ligands. The neutral ruthenium complexes 1 – 4 were fully characterized by UV–vis, NMR, IR, and elemental analysis. Molecular structures of complexes 1 and 3 were further confirmed by X‐ray diffraction analysis. All complexes exhibited high activity for the catalytic oxidation of a variety of alcohols with tBuOOH as oxidants to give carbonyl compounds with high yields in water. Moreover, these half‐sandwich complexes also showed high efficiency for the catalytic hydrogenation of carbonyl compounds in a methanol–water mixture. The catalyst could be reused for at least five cycles without any loss of activity. The catalytic system also worked well for various kinds of substrates with either electron‐donating or electron‐withdrawing groups.  相似文献   

19.
Abstract

Six new green to yellow-emitting heteroleptic bis-cyclometalated iridium(III) complexes of the type Ir(C?N)2(L?X) (C?N?=?cyclometalating ligand, L?X?=?monoanionic chelating ancillary ligand) bearing two widely used cyclometalating ligands (C?N?=?2-(2-thienyl)pyridine (thpy) and 2-phenylbenzoxazole (bo)) and six different ancillary ligands were prepared. In this study, the complexes include structurally diverse ancillary ligands that allow us to investigate several aspects of structure-property relationships. Ancillary ligands used in this study are small-bite-angle N-phenylacetamidate (paa), N-isopropylbenzamidate (ipba) and N,N′-diisopropylbenzamidinate (dipba), and larger bite-angle β-ketoiminate (acNac), β-diketiminate (NacNac), and β-thioketoiminate (SacNac). The emission color is governed by the choice of the cyclometalating ligand, but the ancillary ligands influence the electrochemical and photophysical properties. Electrochemical analysis shows that the energy of the HOMO varies substantially as the L?X structure is altered, whereas the energy of LUMO remains nearly constant. The emission maxima range from 537?nm to 590?nm, with solution quantum yields between 0.0094 and 0.60 and microsecond lifetimes. The results here reveal the ancillary ligands provide a channel to control redox properties and excited-state dynamics in cyclometalated iridium complexes that luminesce in the middle regions of the visible spectrum.  相似文献   

20.
The coordination chemistry of a series of bis-bidentate ligands with cadmium(II) ions has been investigated. The ligands, containing two N,S-donor chelating (pyrazolyl/thioether) fragments, have afforded complexes of a variety of structural types (dinuclear M2L2 ‘mesocate’ complexes, a one-dimensional chain coordination polymer and a simple mononuclear complex) according to whether the bis-bidentate ligands act as bridges spanning two metal ions, or a tetradentate chelate to a single metal ion. The p-phenylene and m-biphenyl spaced ligands L1 and L3 form dinuclear M2L2 complexes where the ligands are arranged in a ‘side-by-side’ fashion. In contrast the m-phenylene spaced ligand L2 forms a one-dimensional coordination polymer where the ligands adopt a highly folded conformation. The 1,8-naphthalene spaced ligand L4 adopts a tetradendate chelating mode and affords a simple mononuclear complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号