首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A series of Co(II), Cu(II), Y(III), Zr(IV), La(III), and U(VI) complexes derived from 2-(2-hydroxybenzylidinemine)-benzoic acid (L) ligand were synthesized. The mode of bonding of L and the structure of its metal complexes were investigated using different analytical and spectral tools (FT-IR, UV–Vis, 1H NMR, mass, and XRD). The ligand chelated with the metal ions as a neutral bidentate through oxygen and azomethine nitrogen atoms. All metal complexes adopted octahedral geometry with characteristic color for metal ions. The results of magnetic moment measurements supported paramagnetic for some complexes (Co(II) and Cu(II)) and diamagnetic phenomena for the other complexes. The thermal decomposition of the ligand along with its metal complexes was explained. The molar conductance values of all complexes in (DMF) were found in the range 154.50 to 250.20 S cm2 mol−1 at room temperature. The activation thermodynamic parameters, such as E*, ΔH*, ΔS* and ΔG*, were calculated from the DTG curves using Coats–Redfern (CR) and Horowitz–Metzeger (HM) methods at n = 1 or n ≠ 1. The nematicidal activity of the synthesized L and their metal complexes was screened.  相似文献   

2.
A series of five l ‐di‐p‐toluoyl‐tartaric acid (l ‐DTTA) lanthanide coordination polymers, namely {[Ln4K4 L6(H2O)x]?yH2O}n, [Ln=Dy ( 1 ), x=24, y=12; Ln=Ho ( 2 ), x=23, y=12; Ln=Er ( 3 ), x=24, y=12; Ln=Yb ( 4 ), x=24, y=11; Ln=Lu ( 5 ), x=24, y=12] have been isolated by simple reactions of H2L (H2L= L ‐DTTA) with LnCl3?6 H2O at ambient temperature. X‐ray crystallographic analysis reveals that complexes 1 – 5 feature two‐dimensional (2D) network structures in which the Ln3+ ions are bridged by carboxylate groups of ligands in two unique coordinated modes. Luminescent spectra demonstrate that complex 1 realizes single‐component white‐light emission, while complexes 2 – 4 exhibit a characteristic near‐infrared (NIR) luminescence in the solid state at room temperature.  相似文献   

3.
The composition of mixed-ligand complexes of cerium (III) and europium (III) acetates and pivalates with monoethanolamine (MEA) depends on the synthesis conditions and the nature of carboxylate ligand. We prepared solid complexes [Ln(Piv)3(MEA) x ], where Ln = Ce, Eu; HPiv-2,2-dimethylpropionic (pivalic) acid; x = 1, 1.5, and gel-like hydroxocomplexes [Ln(Carb) nxy ,(NO3) x (OH) y (MEA) w (H2O) z ], where Ln = Ce, n = 4; Ln = Eu, n = 3; HCarb is acetic acid (HAcet) or HPiv. The values of the coefficients x, y, w, and z depend on the synthesis conditions and heat treatment. Prepared compounds were characterized by IR and 1H NMR spectroscopies, elemental and thermal analyses, and MALDI-MS. The ESI-MS method was used to characterize the processes occurring in the solutions.  相似文献   

4.
Metal complexes of omeprazole (OPZ) are prepared and characterized based on elemental analyses, IR, diffuse reflectance, magnetic moment, molar conductance and thermal analyses (TGA and DTA) techniques. From the elemental analyses, the complexes have the general formula [M(L)2]X n [where M = Cr(III) (X = Cl, n = 3), Ni(II) (X = ClO4, n = 2) and Zn(II) (X = Cl, n = 2)], and [M(L)2(H2O)2]X n · yH2O (where M = Fe(III) (X = Cl, n = 3, y = 0), Co(II) (X = Cl or ClO4, n = 2, y = 0–4) and Ni(II) (X = Cl, n = 2, y = 4) and [Cu(L)2]Cl2 · H2O. The molar conductance data reveal that all the metal chelates are 3 : 1 electrolytes (for Cr(III) and Fe(III) complexes) and 2 : 1 (for the remaining complexes). IR spectra show that OPZ coordinates to the metal ions as neutral bidentate with ON donor sites of the pyridine–N and sulphone-O. The magnetic and solid reflectance spectra indicate octahedral (FeCl3, CoCl2, CoClO4 and NiCl2), square planar [Cu(II)] and tetrahedral [Mn(II), Cr(III), NiClO4 and Zn(II)] structures. The thermal behavior of these chelates using thermogravimetric and differential thermal analyses (TGA and DTA) techniques indicate the hydrated complexes lose water of hydration followed immediately by decomposition of the anions and ligand molecules in the successive overlapping OPZ and its metal complexes are screened for antibacterial activity against Escherichia coli, Staphylococcus aureus, Aspergillus flavus and fungi (Candida albicans). The activity data show the metal complexes to be more potent/antibacterial than the parent OPZ ligand against one or more bacterial species.  相似文献   

5.
A series of new complexes with mixed ligands of the type RuL m (DMSO) n Cl3·xH2O ((1) L: oxolinic acid (oxo), m = 1, n = 0, x = 4; (2) L: pipemidic acid (pip), m = 2, n = 1, x = 2; (3) L: enoxacin (enx), m = 2, n = 1, x = 0; (4) L: levofloxacin (levofx), m = 2, n = 2, x = 8; DMSO: dimethylsulfoxide) were synthesized and characterized by chemical analysis, IR and electronic data. Except oxolinic acid that behaves as bidentate, the other ligands (quinolone derivatives and DMSO) act as unidentate. Electronic spectra are in accordance with an octahedral stereochemistry. The thermal analysis (TG, DTA) in synthetic air flow elucidated the composition and also the number and nature of both water and DMSO molecules. The TG curves show 3–5 well-separated thermal steps. The first corresponds to the water and/or DMSO loss at lower temperatures followed either by quinolone thermal decomposition or pyrolisys at higher temperatures. The final product is ruthenium(IV) oxide.  相似文献   

6.
Interaction of asymmetrical Schiff base ligands H3Ln [where H3Ln are substituted 3–aza–4–(2–hydroxyphenyl)–N– (2–hydroxyphenyl)but–3–enamide] with Mn(acac)3 (acac = acetylacetonate) has been investigated. Two different type of manganese(III) complexes have been obtained depending on the nature of the substituents on the ligand. We have found that ligands containing donor substituents drives to the formation of two different kinds of complexes from the same reaction: Mn(Ln)(H2O)x ( 1a–5a ) and [Mn(HLn)(acac)](H2O)y ( 1b–5b ) (where Ln and HLn signify the ligand in its trianionic and dianionic form, respectively). However, when the substituents are electron withdrawing or poor donor only compounds of the type [Mn(HLn)(acac)](H2O)y ( 6–10 ) are obtained. All these compounds have been characterized by elemental analyses, IR and 1H NMR spectroscopy, FAB mass spectrometry, magnetic measurements and molar conductivities. The electrochemical behaviour of these complexes has also been studied.  相似文献   

7.
Unsymmetrical and symmetrical mononuclear and insoluble polynuclear oxo-vanadium(IV) Schiff-base complexes were prepared and characterized. The complexes [VO(5-x-6-y-Sal)(5-x′-6-y′-Sal)en)] (where x, x′ = H, Br and y, y′ = H, OMe) were obtained in monomeric form while for x or x′ = NO2 polymers were produced. In the case of [VO(5-x-6-y-Sal)(5-x′-6-y′-Sal)pn)] with a six-member N–N chelating ring, oxo-vanadium(IV) complexes were polynuclear. The tetradentate N2O2-Schiff-base ligands are coordinated in the equatorial plane of oxo-vanadium(IV). Electrochemical and spectroscopic data (UV–Vis and IR) suggest importance of coordination geometry and the substiuents on phenyl rings and the bridge group. Electron density of the vanadium center decreases by the electron-withdrawing groups on the ligand while electron density on vanadium increases via σ-donation of phenolic oxygen.  相似文献   

8.
Reactions of oxygen-containing molybdenum clusters MoxOy (x = 1–3, y = 1–9) with iron carbonyl ions Fe(CO) n + (n = 1–3) were studied by the ion cyclotron resonance technique. The reactions were found to yield mixed Fe-Mo oxo clusters MoxOyFe+ (x = 2, 3; y = 5, 6, 8, 9).  相似文献   

9.
New Schiff base (H2L) ligand is prepared via condensation of o-phthaldehyde and 2-aminophenol. The metal complexes of Cr(III), Mn(II), Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with the ligand are prepared in good yield from the reaction of the ligand with the corresponding metal salts. They are characterized based on elemental analyses, IR, solid reflectance, magnetic moment, electron spin resonance (ESR), molar conductance, 1H NMR and thermal analysis (TGA). From the elemental analyses data, the complexes are proposed to have the general formulae [M(L)(H2O)nyH2O (where M = Mn(II) (n = 0, y = 1), Fe(II) (n = y = 0), Co(II) (n = 2, y = 0), Ni(II) (n = y = 2), Cu(II) (n = 0, y = 2) and Zn(II) (n = y = 0), and [MCl(L)(H2O)]·yH2O (where M = Cr(III) and Fe(III), y = 1–2). The molar conductance data reveal that all the metal chelates are non-electrolytes. IR spectra show that H2L is coordinated to the metal ions in a bi-negatively tetradentate manner with ONNO donor sites of the azomethine N and deprotonated phenolic-OH. This is supported by the 1H NMR and ESR data. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral (Cr(III), Fe(III), Co(II) and Ni(II) complexes), tetrahedral (Mn(II), Fe(II) and Zn(II) complexes) and square planar (Cu(II) complex). The thermal behaviour of these chelates is studied and the activation thermodynamic parameters, such as, E*, ΔH*, ΔS* and ΔG* are calculated from the DrTGA curves using Coats-Redfern method. The parent Schiff base and its eight metal complexes are assayed against two fungal and two bacterial species. With respect to antifungal activity, the parent Schiff base and four metal complexes inhibited the growth of the tested fungi at different rates. Ni(II) complex is the most inhibitory metal complex, followed by Cr(III) complex, parent Schiff base then Co(II) complex. With regard to bacteria, only two of the tested metal complexes (Mn(II) and Fe(II)) weakly inhibit the growth of the two tested bacteria.  相似文献   

10.
Based on the analogous kagomé [Co3(imda)2] layers (imda=imidazole‐4,5‐dicarboxylate), a family of pillar‐layered frameworks with the formula of [Co3(imda)2(L)3] ? (L)n ? xH2O ( 1 : L=pyrazine, n=0, x=8; 2 : L=4,4′‐bipyridine, n=1, x=8; 3 : L=1,4‐di(pyridin‐4‐yl)benzene, n=1, x=13; 4 : L=4,4′‐di(pyridin‐4‐yl)‐1,1′‐biphenyl, n=1, x=14) have been successfully synthesized by a hydrothermal/solvothermal method. Single‐crystal structural analysis shows a significant increase in the interlayer distances synchronized with the extension of the pillar ligands, namely, 7.092(3) ( 1 ), 10.921(6) ( 2 ), 14.780(5) ( 3 ), and 19.165(4) Å ( 4 ). Despite the wrinkled kagomé layers in complexes 2 – 4 , comprehensive magnetic characterizations revealed weakening of interlayer magnetic interactions and an increase in the degree of frustration as the pillar ligand becomes longer from 1 to 4 ; this leads to characteristic magnetic ground states. For compound 4 , which has the longest interlayer distance, the interlayer interaction is so weak that the magnetic properties observed within the range of temperature measured would correspond to the frustrated layer.  相似文献   

11.
The reactions of Mo+ ions and Mo x O y + oxygen-containing molybdenum cluster ions (x = 1-3; y = 1-9) with methane, ethylene oxide, and cyclopropane were studied using ion cyclotron resonance. The formation of a number of organometallic ions, including the metallocarbene MoCH2 + , as well as molybdenum oxometallocarbenes Mo x O y CH2 + (x = 1-3; y = 2, 4, 5, or 8) and Mo x O y (CH4)+ ions (x = 1-3; y = 2, 5, or 8), was detected. The upper and lower limits of bond energies in oxometallocarbene complexes were evaluated: 111 > D 0 (Mo x O y +-CH2) > 82 kcal/mol (x = 1-3; y = 2, 5, 8).  相似文献   

12.
Eight new two‐ligand complexes of copper(II) with 1,10‐phenanthroline and one of four different α‐hydroxy‐carboxylic acids (glycolic, lactic, mandelic and benzylic) were prepared. The complexes of general formula [Cu(HL)2(phen)] · nH2O (HL = monodeprotonated acid) ( 1 – 4 ) were characterized by elemental analysis, IR, electronic and EPR spectroscopy, magnetic measurements and thermo‐gravimetric analysis. The complexes of general formulae [Cu(HL)(phen)2](HL) · H2L · nSolv [ 1 a (HL = HGLYO, n = 1, Solv = MeCN) and 3 a (HL = HMANO, n = 0)] and [Cu(L)(phen)(OH2)] · nH2O [ 2 a (L = LACO2–, n = 4) and 4 a (L = BENO2–, n = 2)] were characterized by X‐ray diffractometry. In all these latter a pentacoordinated copper atom has a basically square pyramidal coordination polyhedron, the distortion of which towards a trigonal bipyramidal configuration has been evaluated in terms of the parameter τ. In 1 a and 3 a there are three forms of α‐hydroxycarboxylic acid: a monodentate monoanion, a monoanionic counterion, and a neutral molecule lying in the outer coordination sphere; in 2 a and 4 a the α‐hydroxycarboxylic acid is a bidentate dianion coordinating through carboxyl and hydroxyl oxygens.  相似文献   

13.
A phosphorus-containing Schiff base was prepared from bis{3-[2-(4-amino-1,5-dimethyl-2-phenylpyrazol-3-ylideneamino)ethyl]indol-1-ylmethyl}phosphinic acid and paraformaldehyde as a novel antibacterial compound. The reaction of the Schiff base ligand with VO(IV), Ni(II), Co(II), Cu(II), Zn(II), Cd(II), Hg(II), Pd(II) and Pt(IV) led to binuclear species of metal complexes, depending on the ratio of metal ion and ligand. The ligand and its complexes were investigated using elemental analysis, Fourier transform infrared, 1H NMR, 13C NMR, UV–visible and mass spectra, thermogravimetric analysis, conductivity measurements and thermal analysis. The results showed that the Schiff base behaves as a tetradentate ligand; moreover, on the basis of conductance results, of all the prepared complexes are non-electrolytes, excepting the Pt(IV) complex. The metal complexes were found to be formed with a metal-to-ligand ratio of 2:1, except for the Pt(IV) complex with a ratio of 1:1. The activation thermodynamic parameters (ΔE*, ΔH*, ΔS*, ΔG* and K) and the activation energy of thermal decomposition were determined from thermogravimetric analysis using the Coats–Redfern method. The biological activities of the metal complexes were screened against the growth of bacteria and fungi in vitro to assess the antimicrobial potential and study the toxicity of the compounds. The prepared compounds have noteworthy antimicrobial properties.  相似文献   

14.
Diphenylamino-fluorphosphine-carbonyl Complexes of Ni(0) and Mo(0) The complexes Ni(CO)x[(Ph2N)yPF3–y]4–x (x1 = 1–3, y1 = 1; x2 = 1–2, y2 = 2) are prepared by reaction of Ni(CO)4, i. e. norbornadiene-molybdenum(0)-tetracarbonyl with diphenylamino-fluorphosphines. The chemical properties, n.m.r. and i.r. spectra are discussed.  相似文献   

15.
To model the structures of dissolved uranium contaminants adsorbed on mineral surfaces and further understand their interaction with geological surfaces in nature, we have performed periodic density funtional theory (DFT) calculations on the sorption of uranyl species onto the TiO2 rutile (110) surface. Two kinds of surfaces, an ideal dry surface and a partially hydrated surface, were considered in this study. The uranyl dication was simulated as penta‐ or hexa‐coordinated in the equatorial plane. Two bonds are contributed by surface bridging oxygen atoms and the remaining equatorial coordination is satisfied by H2O, OH?, and CO32? ligands; this is known to be the most stable sorption structure. Experimental structural parameters of the surface–[UO2(H2O)3]2+ system were well reproduced by our calculations. With respect to adsorbates, [UO2(L1)x(L2)y(L3)z]n (L1=H2O, L2=OH?, L3=CO32?, x≤3, y≤3, z≤2, x+y+2z≤4), on the ideal surface, the variation of ligands from H2O to OH? and CO32? lengthens the U? Osurf and U? Ti distances. As a result, the uranyl–surface interaction decreases, as is evident from the calculated sorption energies. Our calculations support the experimental observation that the sorptive capacity of TiO2 decreases in the presence of carbonate ions. The stronger equatorial hydroxide and carbonate ligands around uranyl also result in U?O distances that are longer than those of aquouranyl species by 0.1–0.3 Å. Compared with the ideal surface, the hydrated surface introduces greater hydrogen bonding. This results in longer U?O bond lengths, shorter uranyl–surface separations in most cases, and stronger sorption interactions.  相似文献   

16.
Homo and heterobinuclear complexes of arylidene- anthranilic acids with Cu(II), Ni(II) and Co(II) are prepared and characterised by chemical analysis, spectral and X-ray diffraction techniques as well as conductivity measurements. Two types of homo-binuclear complexes are formed. The first has the formula M2L2Cl2(H2O)n where M=Cu(II), Ni(II) and Co(II), L = p-hydroxybenzylideneanthranilic acid (hba), p-dimethylaminobenzylideneanthranilic acid (daba) and p-nitrobenzylideneanthranilic acid(nba) and n = 0–3. The second type has the formula M2LCl3(H2O)n in which M is the same as in the first type, L = benzylideneanthranilic acid (ba), (daba) (in cases of Cu(II) and Ni(II)); and n = 1–5. Heterobinuclear complexes having the formula (MLCl2H2O) MCl2(H2O)n are isolated by reaction of Cu(II) binary chelates with Ni(II) and/or Co(II) chlorides. These are also characterized and their structures are elucidated.  相似文献   

17.
Mononuclear O,O-coordinated complexes K2(MLCl2) M = Zn(II), Cd(II) and dinuclear complexes (MZnLCl2R2)x along with dinuclear N,N-coordinated complexes (M′ZnH2LCl2R2)y (where M = Zn(II), Cd(II), Hg(II) and M′ = M and Sn(IV); R = Cl, CH3; x = 0, ?2; y = 0, +2) of N′-1-,N′-2-dihydroxy-N-1-,N-2-dipyridin-2-ylethanedimidamide (H2L) have been prepared. All complexes have been characterized by 1H NMR, IR, EI-mass spectroscopy and elemental microanalysis. These results are in agreement with our prediction for structures of mono and dinuclear complexes of H2L and L?2 with Zn(II) in the gas phase by theoretical studies.  相似文献   

18.
The Müller–Rochow direct process (DP) for the large-scale production of methylchlorosilanes MenSiCl4−n (n=1–3) generates a disilane residue (MenSi2Cl6−n, n=1–6, DPR) in thousands of tons annually. This report is on methylchlorodisilane cleavage reactions with use of phosphonium chlorides as the cleavage catalysts and reaction partners to preferably obtain bifunctional monosilanes MexSiHyClz (x=2, y=z=1; x,y=1, z=2; x=z=1, y=2). Product formation is controlled by the reaction temperature, the amount of phosphonium chloride employed, the choice of substituents at the phosphorus atom, and optionally by the presence of hydrogen chloride, dissolved in ethers, in the reaction mixture. Replacement of chloro by hydrido substituents at the disilane backbone strongly increases the overall efficiency of disilane cleavage, which allows nearly quantitative silane monomer formation under comparably moderate conditions. This efficient workup of the DPR thus not only increases the economic value of the DP, but also minimizes environmental pollution.  相似文献   

19.
Abstract

Reactions of O-tolyldithiocarbonate ligands, (o-, m-, and p-CH3C6H4O)CS2Na, with anhydrous FeCl2 (1:2 molar ratio) and with FeCl3 (1:1 and 1:3 molar ratio) yielded the complexes [{(CreO)CS2}2Fe] and [{(CreO)CS2}nFeCl3–n] (Cre = o-, m-, and p-CH3C6H4; n = 1 and 3), respectively. These complexes were reacted with nitrogen and phosphorus donor ligands in dichloromethane, which afforded the adducts corresponded to [{(CreO)CS2}2Fe.xL] and [(CreO)CS2FeCl2.xL] {x = 1, L = N2C12H8; x = 2, L = NC5H5, P(C6H5)3}. Elemental analyses and IR, UV-visible, and mass spectroscopic and magnetic studies indicated bidentate mode of bonding by dithiocarbonate ligands leading to sixcoordination around the iron atom as a consequence of Fe…Fe interaction in the complexes [{(CreO)CS2}2Fe] and [(CreO)CS2FeCl2]. The complexes exhibited antifungal activity. The fungicidal activity of the complexes has been tested by poisoned food technique using fungi Fusarium sp.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements for the following free supplemental resource: Antifungal Activity.  相似文献   

20.
Cu(II), Co(II), Ni(II), Cd(II), and Zn(II) complexes of 6-(2-phenyldiazenyl)-7-hydroxy-4-methyl coumarin (PAHC) are characterized based on elemental analyses, infrared, 1H NMR, magnetic moment, molar conductance, mass spectra, UV-Vis analysis, thermogravimetric analysis (TGA), and X-ray powder diffraction. From the elemental analyses, it is found that the complexes have formulae [M(L)2(H2O) n ] ? xH2O (where M = Cu(II), Co(II), Ni(II), Cd(II), and Zn(II), n = 0–2, x = 1–4). The molar conductance data reveal that all the metal chelates are non-electrolytes. From the magnetic and solid reflectance spectra, it is found that the structures of these complexes are octahedral or tetrahedral. The synthesized ligand and metal complexes were screened for antibacterial activity against some Gram-positive and Gram-negative bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号