首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reduced graphene oxide (RGO)‐supported Cu–Cu2O nanocomposite material (Cu‐Cu2O@RGO) was prepared through a one‐pot reflux synthesis method. The morphology, crystal structure and composition of the prepared Cu‐Cu2O@RGO were characterized using transmission electron microscopy, X‐ray diffraction, and X‐ray photoelectron, infrared and Raman spectroscopies. Cu‐Cu2O@RGO as a heterogeneous catalyst was applied to tandem reactions of halides and sodium azide with terminal alkynes to synthesize effectively 1,4‐disubstituted 1,2,3‐triazoles. Moreover, the catalyst showed excellent recyclability performance with very little leaching of the metal. Compared with homogeneous catalysts, Cu‐Cu2O@RGO as a green and efficient catalyst was recoverable, easy to separate and highly stable in the tandem method for the synthesis of 1,2,3‐triazole compounds.  相似文献   

2.
A facile and simple protocol for the 1,3‐dipolar cycloaddition of organic azides with terminal alkynes catalyzed by doped nano‐sized Cu2O on melamine? formaldehyde resin (nano‐Cu2O? MFR) as a new and convenient heterogeneous catalyst is described. In this method, ‘click’ cycloaddition of various structurally diverse β‐azido alcohols and alkynes in the presence of nano‐Cu2O? MFR in H2O/THF 1 : 2 furnished the corresponding 1,4‐disubstituted 1H‐1,2,3‐triazole adducts 1a – 1o in good to excellent yields at room temperature (Scheme and Table 3). The nano‐Cu2O? MFR was characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD), inductively coupled plasma (ICP) analysis, and FT‐IR. The nano‐Cu2O? MFR could be easily recovered and recycled from the reaction mixture and reused for many consecutive trials without significant decrease in activity (Table 4). The in vitro antibacterial activities of all synthesized compounds were tested on several Gram‐positive and/or Gram‐negative bacteria (Table 5). The results demonstrate the promising antibacterial activity for some of the synthesized compounds.  相似文献   

3.
A copper(I)‐based metal–organic framework ({[Cu2Br2(pypz)]n?nH2O} (Cu—Br–MOF) [pypz=bis[3,5‐dimethyl‐4‐(4’‐pyridyl)pyrazol‐1‐yl] methane] has been synthesized by using an elongated and flexible bridging ligand. The structure analysis reveals that each pypz ligand acts as a tritopic ligand connected to two Cu2Br2 dimeric units, forming a one‐dimensional zig–zag chain, and these chains further connected by a Cu2Br2 unit, give a two‐dimensional framework on the bc‐plane. In the Cu2Br2 dimeric unit, the copper ions are four coordinated, thereby possessing a tetrahedral geometry; this proves to be an excellent heterogeneous catalyst for the aerobic homocoupling of arylboronic acids under mild reaction conditions. This method requires only 3 mol % of catalyst and it does not require any base or oxidant—compared to other conventional (Cu, Pd, Fe, and Au) catalysts—for the transformation of arylboronic acids in very good yields (98 %). The shape and size selectivity of the catalyst in the homocoupling was investigated. The use of the catalyst was further extended to the epoxidation of olefins. Moreover, the catalyst can be easily separated by simple filtration and reused efficiently up to 5 cycles without major loss of reactivity.  相似文献   

4.
An eco‐efficient one‐pot three component reaction between different aldehydes or ketones with alkynes and amines for the synthesis of propargylamines was performed using Fe3O4@TiO2/Cu2O as a nano‐magnetic composite under solvent free condition. The catalyst showed remarkable catalytic activity by decreasing the time of the reaction in comparison of other reported magnetic catalysts. In addition, the Fe3O4@TiO2/Cu2O can be easily recycled and reutilized for five times without apparent loss of catalytic activity.  相似文献   

5.
Cu2O nanoparticles supported on hydrogen trititanate nanotubes (Cu2O/HTNT) catalysts have been efficiently catalyzed the multicomponent synthesis of 1,2,3‐triazoles in water at room temperature from different azide precursors, for example organic halides, sulfonates and anilines. The catalysts were synthesized by hydrothermal & wet‐impregnation methods and was characterized by HR‐TEM, EDS, XRD, XPS, N2‐adsorption desorption and ICP‐MS analysis. The catalyst could be recycled by centrifugation and reused up to seven cycles. The 1‐benzyl‐4‐(4‐chlorophenyl)‐1H‐1,2,3‐triazole ( 25 ) structure was proven by single crystal X‐ray diffraction studies.  相似文献   

6.
A new, efficient and green protocol for the nano‐Cu2O‐catalyzed homo‐coupling reaction of terminal alkynes has been developed, using water/ionic liquid as an environmentally friendly solvent. Moreover, the system also allows the synthesis of unsymmetric 1,3‐diynes by cross‐coupling of two different terminal alkynes. It is noteworthy that the nano‐Cu2O‐catalyzed methodology is a good supplement to copper catalyst for the Glaser‐type homo‐coupling reaction. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Carbon dioxide (CO2) reduction in aqueous solutions is an attractive strategy for carbon capture and utilization. Cuprous oxide (Cu2O) is a promising catalyst for CO2 reduction as it can convert CO2 into valuable hydrocarbons and suppress the side hydrogen evolution reaction (HER). However, the nature of the active sites in Cu2O remains under debate because of the complex surface structure of Cu2O under reducing conditions, leading to limited guidance in designing improved Cu2O catalysts. This paper describes the functionality of surface‐bonded hydroxy groups on partially reduced Cu2O(111) for the CO2 reduction reaction (CO2RR) by combined density functional theory (DFT) calculations and experimental studies. We find that the surface hydroxy groups play a crucial role in the CO2RR and HER, and a moderate coverage of hydroxy groups is optimal for promotion of the CO2RR and suppression of the HER simultaneously. Electronic structure analysis indicates that the charge transfer from hydroxy groups to coordination‐unsaturated Cu (CuCUS) sites stabilizes surface‐adsorbed COOH*, which is a key intermediate during the CO2RR. Moreover, the CO2RR was evaluated over Cu2O octahedral catalysts with {111} facets and different surface coverages of hydroxy groups, which demonstrates that Cu2O octahedra with moderate coverage of hydroxy groups can indeed enhance the CO2RR and suppress the HER.  相似文献   

8.
The selective oxidation of propylene with O2 to propylene oxide and acrolein is of great interest and importance. We report the crystal‐plane‐controlled selectivity of uniform capping‐ligand‐free Cu2O octahedra, cubes, and rhombic dodecahedra in catalyzing propylene oxidation with O2: Cu2O octahedra exposing {111} crystal planes are most selective for acrolein; Cu2O cubes exposing {100} crystal planes are most selective for CO2; Cu2O rhombic dodecahedra exposing {110} crystal planes are most selective for propylene oxide. One‐coordinated Cu on Cu2O(111), three‐coordinated O on Cu2O(110), and two‐coordinated O on Cu2O(100) were identified as the catalytically active sites for the production of acrolein, propylene oxide, and CO2, respectively. These results reveal that crystal‐plane engineering of oxide catalysts could be a useful strategy for developing selective catalysts and for gaining fundamental understanding of complex heterogeneous catalytic reactions at the molecular level.  相似文献   

9.
A simple method for the activation of the Cu(0) wire used as catalyst in single‐electron transfer living radical polymerization (SET‐LRP) is reported. The surface of Cu(0) stored in air is coated with a layer of Cu2O. It is well established that Cu2O is a less reactive catalyst for SET‐LRP than Cu(0). We report here the activation of the Cu(0) wire under nitrogen by the reduction of Cu2O from its surface to Cu(0) by treatment with hydrazine hydrate. The kinetics of SET‐LRP of methyl acrylate (MA) catalyzed with activated Cu(0) wire in dimethyl sulfoxide (DMSO) at 25 °C demonstrated a dramatic acceleration of the polymerization and the absence of the induction period observed during SET‐LRP catalyzed with nonactivated Cu(0) in several laboratories. Exposure of the activated Cu(0) wire to air results in a lower apparent rate constant of propagation because of gradual oxidation of Cu(0) to Cu2O. This dramatic acceleration of SET‐LRP is similar to that observed with commercial Cu(0) nanopowder except that the polymerization provides excellent molecular weight evolution, very narrow molecular weight distribution and high polymer chain‐end functionality. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

10.
Ammonia–borane (AB) is an excellent material for chemical storage of hydrogen. However, the practical utilization of AB for production of hydrogen is hindered by the need of expensive noble metal‐based catalysts. Here, we report CuxCo1?xO nanoparticles (NPs) facilely deposited on graphene oxide (GO) as a low‐cost and high‐performance catalyst for the hydrolysis of AB. This hybrid catalyst exhibits an initial total turnover frequency (TOF) value of 70.0 (H2) mol/(Cat‐metal) mol?min, which is the highest TOF ever reported for noble metal‐free catalysts, and a good stability keeping 94 % activity after 5 cycles. Synchrotron radiation‐based X‐ray absorption spectroscopy (XAS) investigations suggested that the high catalytic performance could be attributed to the interfacial interaction between CuxCo1?xO NPs and GO. Moreover, the catalytic hydrolysis mechanism was studied by in situ XAS experiments for the first time, which reveal a significant water adsorption on the catalyst and clearly confirm the interaction between AB and the catalyst during hydrolysis.  相似文献   

11.
Identification of the active copper species, and further illustration of the catalytic mechanism of Cu‐based catalysts is still a challenge because of the mobility and evolution of Cu0 and Cu+ species in the reaction process. Thus, an unprecedentedly stable Cu‐based catalyst was prepared by uniformly embedding Cu nanoparticles in a mesoporous silica shell allowing clarification of the catalytic roles of Cu0 and Cu+ in the dehydrogenation of methanol to methyl formate by combining isotope‐labeling experiment, in situ spectroscopy, and DFT calculations. It is shown that Cu0 sites promote the cleavage of the O?H bond in methanol and of the C?H bond in the reaction intermediates CH3O and H2COOCH3 which is formed from CH3O and HCHO, whereas Cu+ sites cause rapid decomposition of formaldehyde generated on the Cu0 sites into CO and H2.  相似文献   

12.
Various substituted diarylether derivatives were prepared by using heterogeneous reusable Cu2O- and Cu-coated carbon nanotubes (Cu2O/Cu-CNTs) as catalyst under ligand-free conditions, which provided good to excellent yields. The catalyst was characterized by TEM, XRD, and AAS analysis. The effects of solvent, base, and amount of catalyst for the O-arylation were investigated. The catalyst could be recovered by simple filtration from the reaction mixture without further treatment and reused several times with consistent catalytic activity. In addition, CNTs could also be recovered from the used Cu2O/Cu-CNTs by a simple acid treatment.  相似文献   

13.
Electrocatalytic water oxidation using the oxidatively robust 2,7‐[bis(2‐pyridylmethyl)aminomethyl]‐1,8‐naphthyridine ligand (BPMAN)‐based dinuclear copper(II) complex, [Cu2(BPMAN)(μ‐OH)]3+, has been investigated. This catalyst exhibits high reactivity and stability towards water oxidation in neutral aqueous solutions. DFT calculations suggest that the O? O bond formation takes place by an intramolecular direct coupling mechanism rather than by a nucleophilic attack of water on the high‐oxidation‐state CuIV?O moiety.  相似文献   

14.
《中国化学会会志》2018,65(5):505-510
A facile and efficient protocol has been developed for synthesis of 1,4‐disubstituted 1,2,3‐triazoles in good to excellent yields using Cu(OAc)2·H2O (0.5 mol%)/NH2OH·HCl (0.5 mol%)/CH3COONa (1.0 mol%) as the catalyst system. The presence of CH3COONa (2 equiv) could ensure the in situ generation of Cu2O as the active catalyst instead of CuCl from Cu(OAc)2·H2O (1 equiv)/NH2OH·HCl (1 equiv). This protocol could be carried out in water under mild conditions.  相似文献   

15.
Multicomponent Cu? Cu2O? TiO2 nanojunction systems were successfully synthesized by a mild chemical process, and their structure and composition were thoroughly analyzed by X‐ray diffraction, transmission electron microscopy, field‐emission scanning electron microscopy, and X‐ray photoelectron spectroscopy. The as‐prepared Cu? Cu2O? TiO2 (3 and 9 h) nanojunctions demonstrated higher photocatalytic activities under UV/Vis light irradiation in the process of the degradation of organic compounds than those of the Cu? Cu2O, Cu? TiO2, and Cu2O? TiO2 starting materials. Moreover, time‐resolved photoluminescence spectra demonstrated that the quenching times of electrons and holes in Cu? Cu2O? TiO2 (3 h) is higher than that of Cu? Cu2O? TiO2 (9 h); this leads to a better photocatalytic performance of Cu? Cu2O? TiO2 (3 h). The improvement in photodegradation activity and electron–hole separation of Cu? Cu2O? TiO2 (3 h) can be ascribed to the rational coupling of components and dimensional control. Meanwhile, an unusual electron–hole transmission pathway for photocatalytic reactions over Cu? Cu2O? TiO2 nanojunctions was also identified.  相似文献   

16.
A Cu‐based methanol synthesis catalyst was obtained from a phase pure Cu,Zn,Al hydrotalcite‐like precursor, which was prepared by co‐precipitation. This sample was intrinsically more active than a conventionally prepared Cu/ZnO/Al2O3 catalyst. Upon thermal decomposition in air, the [(Cu0.5Zn0.17Al0.33)(OH)2(CO3)0.17] ? mH2O precursor is transferred into a carbonate‐modified, amorphous mixed oxide. The calcined catalyst can be described as well‐dispersed “CuO” within ZnAl2O4 still containing stabilizing carbonate with a strong interaction of Cu2+ ions with the Zn–Al matrix. The reduction of this material was carefully analyzed by complementary temperature‐programmed reduction (TPR) and near‐edge X‐ray absorption fine structure (NEXAFS) measurements. The results fully describe the reduction mechanism with a kinetic model that can be used to predict the oxidation state of Cu at given reduction conditions. The reaction proceeds in two steps through a kinetically stabilized CuI intermediate. With reduction, a nanostructured catalyst evolves with metallic Cu particles dispersed in a ZnAl2O4 spinel‐like matrix. Due to the strong interaction of Cu and the oxide matrix, the small Cu particles (7 nm) of this catalyst are partially embedded leading to lower absolute activity in comparison with a catalyst comprised of less‐embedded particles. Interestingly, the exposed Cu surface area exhibits a superior intrinsic activity, which is related to a positive effect of the interface contact of Cu and its surroundings.  相似文献   

17.
Cu2O nanoparticles/DMEDA (N,N′‐dimethylethylenediamine) was proved to be an efficient catalyst system for amidation of aryl halides under mild condition. This method displayed excellent selectivity and the catalyst was recyclable without loss of activity. The low cost, simple operation and excellent yields make this approach attractive for industrial applications.  相似文献   

18.
P‐type Cu2O has been long considered as an attractive photocatalyst for photocatalytic water reduction, but few successful examples has been reported. Here, we report the synthesis of TiO2 (core)/Cu2O (ultrathin film shell) nanorods by a redox reaction between Cu2+ and in‐situ generated Ti3+ when Cu2+‐exchanged H‐titanate nanotubes are calcined in air. Owing to the strong TiO2‐Cu2O interfacial interaction, TiO2 (core)/Cu2O (ultrathin film shell) nanorods are highly active and stable in photocatalytic water reduction. The TiO2 core and Cu2O ultrathin film shell respectively act as the photosensitizer and cocatalyst, and both the photoexcited electrons in the conduction band and the holes in the valence band of TiO2 respectively transfer to the conduction band and valence band of the Cu2O ultrathin film shell. Our results unambiguously show that Cu2O itself can act as the highly active and stable cocatalyst for photocatalytic water reduction.  相似文献   

19.
The relative effectiveness of CuO and Cu2O were compared as catalysts for the methylchlorosilane (MCS) reaction. MCS reactions catalyzed by CuO had higher rates (0.15 g/g Si-h) than MCS reactions catalyzed by Cu2O (0.08) AND higher selectivities (4–5 points in % Di higherfor CuO). A synthetic method was found for making 17O-labeledCu2O based on reaction of CuCl with excess NaCl and >2equivalents of Na17OH. The Na17OH was made from17O-enriched water and Na. The % enrichment of theCu2O was determined by reduction of the Cu2O with H2 to form Cu and water and then subsequent reaction of the water product with Me2SiCl2 to make cyclo-octamethyltetrasiloxane (D4). The 17O enrichment of the D4 wasthen determined by mass spectroscopy. Thus Cu2O was made with27% 17O ±5%. The labeled Cu2Owas used as the catalyst in the MCS lab reactor. A 14% enrichmentin 17O in D4 and dichlorotetramethyldisiloxane(MClMCl) was found vs. the controlexperiment with natural abundance oxygen Cu2O. Thus all of the oxygen from the copper oxide catalyst ends up as siloxane; 50% of the oxygen in the product siloxane comes from other sources. Copper oxide catalyst was used in the presence of the phosphorus promoters Cu3P and PEt3. In both phosphorus promoter experiments, the resultant MCS lab beds were subjected toacetonitrile extraction and then NMR analysis of the extracts. Theseextracts showed that phosphorus-containing species were present and thatwhen Cu3P was the promoter, phosphorus products containing17O were present. Thus for Cu3P, some of thephosphorus reacts with the 17O from the Cu2O catalyst.  相似文献   

20.
This work confirms the presence of a large facet‐dependent photocatalytic activity of Cu2O crystals through sparse deposition of gold particles on Cu2O cubes, octahedra, and rhombic dodecahedra. Au‐decorated Cu2O rhombic dodecahedra and octahedra showed greatly enhanced photodegradation rates of methyl orange resulting from a better separation of the photogenerated electrons and holes, with the rhombic dodecahedra giving the best efficiency. Au–Cu2O core–shell rhombic dodecahedra also displayed a better photocatalytic activity than pristine rhombic dodecahedra. However, Au‐deposited Cu2O cubes, pristine cubes, and Au‐deposited small nanocubes bound by entirely {100} facets are all photocatalytically inactive. X‐ray photoelectron spectra (XPS) showed identical copper peak positions for these Au‐decorated crystals. Remarkably, electron paramagnetic resonance (EPR) measurements indicated a higher production of hydroxyl radicals for the photoirradiated Cu2O rhombic dodecahedra than for the octahedra, but no radicals were produced from photoirradiated Cu2O cubes. The Cu2O {100} face may present a high energy barrier through its large band edge bending and/or electrostatic repulsion, preventing charge carriers from reaching to this surface. The conventional photocatalysis model fails in this case. The facet‐dependent photocatalytic differences should be observable in other semiconductor systems whenever a photoinduced charge‐transfer process occurs across an interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号