首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New Co(II), Ni(II), and Cu(II) complexes were synthesized with the Schiff base ligand obtained by the condensation of sulfathiazole with salicylaldehyde. Their characterization was performed by elemental analysis, molar conductance, spectroscopic techniques (IR, diffuse reflectance and UV–Vis–NIR), magnetic moments, thermal analysis, and calorimetry (thermogravimetry/derivative thermogravimetry/differential scanning calorimetry), while their morphological and crystal systems were explained on the basis of powder X-ray diffraction results. The IR data indicated that the Schiff base ligand is tridentate coordinated to the metallic ion with two N atoms from azomethine group and thiazole ring and one O atom from phenolic group. The composition of the complexes was found to be of the [ML2]∙nH2O (M = Co, n = 1.5 (1); M = Ni, n = 1 (2); M = Cu, n = 4.5 (3)) type, having an octahedral geometry for the Co(II) and Ni(II) complexes and a tetragonally distorted octahedral geometry for the Cu(II) complex. The presence of lattice water molecules was confirmed by thermal analysis. XRD analysis evidenced the polycrystalline nature of the powders, with a monoclinic structure. The unit cell volume of the complexes was found to increase in the order of (2) < (1) < (3). SEM evidenced hard agglomerates with micrometric-range sizes for all the investigated samples (ligand and complexes). EDS analysis showed that the N:S and N:M atomic ratios were close to the theoretical ones (1.5 and 6.0, respectively). The geometric and electronic structures of the Schiff base ligand 4-((2-hydroxybenzylidene) amino)-N-(thiazol-2-yl) benzenesulfonamide (HL) was computationally investigated by the density functional theory (DFT) method. The predictive molecular properties of the chemical reactivity of the HL and Cu(II) complex were determined by a DFT calculation. The Schiff base and its metal complexes were tested against some bacterial strains (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis). The results indicated that the antibacterial activity of all metal complexes is better than that of the Schiff base.  相似文献   

2.
Two macrocyclic Schiff base ligands, L1 [1+1] and L2 [2+2], have been obtained in a one-pot cyclocondensation of 1,4-bis(2-formylphenyl)piperazine and 1,3-diaminopropane. Unfortunately, because of the low solubility of both ligands, their separation was unsuccessful. In the direct reaction of these mixed ligands (L1 and L2) and the appropriate metal ions only [CoL1(NO3)]ClO4, [NiL1](ClO4)2, [CuL1](ClO4)2 and [ZnL1(NO3)]ClO4 complexes have been isolated. All the complexes were characterized by elemental analyses, IR, FAB-MS, conductivity measurements and in the case of the [ZnL1(NO3)]ClO4 complex with NMR spectroscopy.  相似文献   

3.
A bioactive Schiff base HL i.e. 2‐hydroxy‐benzoic acid(3,4‐dihydro‐2H ‐naphthalen‐1‐ylidene)‐hydrazide was synthesized by reacting equimolar amount of salicylic acid hydrazide and 1‐tetralone. Co(II), Ni(II) and Zn(II) complexes of ligand HL was synthesized in 1:1 and 1:2 molar ratio of metal to ligand. The structure of the synthesized ligand and metal complexes was established by elemental analysis, molar conductance, magnetic susceptibility measurements, electronic, IR and EPR spectral techniques. For determining the thermal stability the TGA has been done. In DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6–31 + g(d,p) basis set. Spectral data reveal that ligand behave uninegative tridentate in ML complexes and uninegative bidentate in ML2 complexes. On the basis of characterization octahedral geometry has been assigned for Co(II) and Ni(II) complexes, while tetrahedral for Zn(II) complexes. Antibacterial activity of the synthesized compounds were evaluated against Staphylococcus aureus , Bacillus subtilis, Escherichia coli , Xanthomonas campestris and Pseudomonas aeruginosa and the results revealed that metal complexes show enhanced activity in comparison to free ligand.  相似文献   

4.
New bi- and trihomonuclear Mn(II), Co(II), Ni(II), and Zn(II) complexes with sulfa-guanidine Schiff bases have been synthesized for potential chemotherapeutic use. The complexes are characterized using elemental and thermal (TGA) analyses, mass spectra (MS), molar conductance, IR, 1H-NMR, UV-Vis, and electron spin resonance (ESR) spectra as well as magnetic moment measurements. The low molar conductance values denote non-electrolytes. The thermal behavior of these chelates shows that the hydrated complexes lose water of hydration in the first step followed by loss of coordinated water followed immediately by decomposition of the anions and ligands in subsequent steps. IR and 1H-NMR data reveal that ligands are coordinated to the metal ions by two or three bidentate centers via the enol form of the carbonyl C=O group, enolic sulfonamide S(O)OH, and the nitrogen of azomethine. The UV-Vis and ESR spectra as well as magnetic moment data reveal that formation of octahedral [Mn2L1(AcO)2(H2O)6] (1), [Co2(L1)2(H2O)8] (2), [Ni2L1(AcO)2(H2O)6] (3), [Mn3L2(AcO)3(H2O)9] (5), [Co3L2(AcO)3(H2O)9] · 4H2O (6), [Ni3L2(AcO)3(H2O)9] · 7H2O (7), [Mn3L3(AcO)3(H2O)6] (9), [Co2(HL3)2(H2O)8] · 4H2O (10), [Ni3L3(AcO)3(H2O)9] (11), [Mn3L4(AcO)3(H2O)9] · H2O (13), [Co2(HL4)2(H2O)8] · 5H2O (14), and [Ni3L4(AcO)3(H2O)9] (15) while [Zn2L1(AcO)2(H2O)2] (4), [Zn3L2(AcO)3(H2O)3] · 2H2O (8), [Zn3L3(AcO)3(H2O)3] · 3H2O (12), and [Zn3L4(AcO)3(H2O)3] · 2H2O (16) are tetrahedral. The electron spray ionization (ESI) MS of the complexes showed isotope ion peaks of [M]+ and fragments supporting the formulation.  相似文献   

5.
Co(II), Ni(II) and Cu(II) complexes were synthesized with thiosemicarbazone (L(1)) and semicarbazone (L(2)) derived from 2-acetyl furan. These complexes were characterized by elemental analysis, molar conductance, magnetic moment, mass, IR, electronic and EPR spectral studies. The molar conductance measurement of the complexes in DMSO corresponds to non-electrolytic nature. All the complexes are of high-spin type. On the basis of different spectral studies six coordinated geometry may be assigned for all the complexes except Co(L)(2)(SO(4)) and Cu(L)(2)(SO(4)) [where L=L(1) and L(2)] which are of five coordinated square pyramidal geometry.  相似文献   

6.
New Schiff bases, N,N′-bis(salicylidene)-4-aminobenzylamine (H2L1), N,N′-bis(3-methoxysalicylidene)-4-aminobenzylamine (H2L2), and N,N′-bis(4-hydroxysalicylidene)-4-aminobenzylamine (H2L3), with their nickel(II), cobalt(II), and copper(II) complexes have been synthesized and characterized by elemental analyses, electronic absorption, FT-IR, magnetic susceptibility, and conductance measurements. For the ligands, 1H and 13C NMR and mass spectra were obtained. The tetradentate ligands coordinate to the metal ions through the phenolic oxygen and azomethine nitrogens. The keto-enol tautomeric forms of the Schiff bases H2L1, H2L2, and H2L3 have been investigated in polar and apolar solvents. All compounds were non-electrolytes in DMSO (~10?3 M) according to the conductance measurements. Antimicrobial activities of the Schiff bases and their complexes have been tested against Acinobacter baumannii, Pseudomonas aeruginosa, Micrococcus luteus, Bacillus megaterium, Corynebacterium xerosis, Staphylococcus aureus, Escherichia coli, Candida albicans, Rhodotorula rubra, and Kluyveromyces marxianus by the disc diffusion method; biological activity increases on complexation.  相似文献   

7.
New anthracene based Schiff base ligands L 1 and H( L 2 ), their Cu(II) complexes [Cu( L 1 )Cl2] ( 1 ) and [Cu( L 2 )Cl] ( 2 ) , (where L 1  = N1,N2bis(anthracene‐9‐methylene)benzene‐1,2‐diamine, L 2  = (2Z,4E)‐4‐(2‐(anthracen‐9‐ylmethyleneamino)phenylimino)pent‐2‐en‐2‐ol) have been prepared and characterized by elemental analysis, NMR, FAB‐mass, EPR, FT‐IR, UV–Vis and cyclic voltammetry. The electronic structures and geometrical parameters of complexes 1 and 2 were analyzed by the theoretical B3LYP/DFT method. The interaction of these complexes 1 and 2 with CT‐DNA has been explored by using absorption, cyclic voltammetric and CD spectral studies. From the electronic absorption spectral studies, it was found that the DNA binding constants of complexes 1 and 2 are 8.7 × 103 and 7.0 × 104 M?1, respectively. From electrochemical studies, the ratio of DNA binding constants K+/K2+ for 2 has been estimated to be >1. The high binding constant values, K+/K2+ ratios more than unity and positive shift of voltammetric E1/2 value on titration with DNA for complex 2 suggest that they bind more avidly with DNA than complex 1 . The inability to affect the conformational changes of DNA in the CD spectrum is the definite evidences of electrostatic binding by the complex 1 . It can be assumed that it is the bulky anthracene unit which sterically inhibits these complexes 1 and 2 from intercalation and thereby remains in the groove or electrostatic. The complex 2 hardly cleaves supercoiled pUC18 plasmid DNA in the presence of hydrogen peroxide. The results suggest that complex 2 bind to DNA through minor groove binding.  相似文献   

8.
Eight novel Pt(II), Pd(II), Cu(II) and Zn(II) complexes with 4’‐substituted terpyridine were synthesized and characterized by elemental analysis, UV, IR, NMR, electron paramagnetic resonance, high‐resolution mass spectrometry and molar conductivity measurements. The cytotoxicity of these complexes against HL‐60, BGC‐823, KB and Bel‐7402 cell lines was evaluated by MTT assay. All the complexes displayed cytotoxicity with low IC50 values (<20 μm ) and showed selectivity. Complexes 3 , 5 , 7 and 8 exerted 9‐, 5‐, 12‐ and 7‐fold higher cytotoxicity than cisplatin against Bel‐7402 cell line. The cytotoxicity of complexes 3 , 5 , 6 , 7 and 8 was higher than that of cisplatin against BGC‐823 cell line. Complexes 3 , 7 and 8 showed similar cytotoxicity to cisplatin against KB cell line. Complex 7 exhibited higher cytotoxicity than cisplatin against HL‐60 cell line. Among these complexes, complex 7 demonstrated the highest in vitro cytotoxicity, with IC50 values of 1.62, 3.59, 2.28 and 0.63 μm against HL‐60, BGC‐823, Bel‐7402 and KB cells lines, respectively. The results suggest that the cytotoxicity of these complexes is related to the nature of the terminal group of the ligand, the metal center and the leaving groups. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Potassium 1,3-bis(N-methyl piperazino)propan-2-O-xanthate (LK), and its complexes with Co(II), Ni(II) and Cu(I) ions have been prepared and characterized as [CoL2(H2O)2], [NiL2(H2O)2]·2H2O and CuL·2H2O by FT-IR, 1H and 13C?NMR spectroscopies, elemental analyses, magnetic susceptibility and TGA techniques.  相似文献   

10.
The reaction of aquo-ethanolic solutions of Co(II), Ni(II) and Cu(II) salts and ethanolic solution of capric acid hydrazide (L) yielded paramagnetic, high-spin bis- and tris(ligand) chelate complexes. The tris(ligand) complexes, [ML 3]X 2·nH2O [M=Co(II), Ni(II);X=NO 3 , ClO 4 , 1/2SO 4 2– ], have an octahedral structure formed on account of the bidentate (NO) coordination of three neutral hydrazide molecules. In the bis(ligand) complexes,ML 2(NCS)2 [M=Co(II), Ni(II)] and CuL 2 X 2·nH2O (X=NO 3 , ClO 4 and 1/2SO 4 2– ), the oxoanions and NCS take also part in coordination. The complexes have been characterized by elemental analysis, IR spectra, magnetic measurements, molar conductivity and TG analysis.
Caprinsäurehydrazid-Komplexe von Co(II), Ni(II) und Cu(II)
Zusammenfassung Durch die Reaktion von wäßrig-ethanolischen Lösungen von Co(II)-, Ni(II)-und Cu(II)-Salzen mit einer ethanolischen Lösung von Caprinsäurehydrazid (L) wurden paramagnetische high-spin Bis- und Tris-Ligand-Chelatkomplexe erhalten. Tris-Ligand-Komplexe des Typs [ML 3 X 2·nH2O [M=Co(II), Ni(II);X=NO 3 , ClO 4 , 1/2SO 4 2– ], die eine oktaedrische Struktur besitzen, entstehen durch die Koordination von drei neutralen zweizähnigen (NO)-Hydrazidmolekülen. Bei den Bis-Ligand-KomplexenML 2(NCS)2 [M=Co(II), Ni(II)], sowie bei den Bis-Ligand-Komplexen CuL 2 X 2·nH2O (X=NO 3 , ClO 4 , 1/2SO 4 2– ) nehmen bei der Koordination außer Hydrazid auch die Säurereste teil. Die Komplexe wurden durch Elementaranalyse, IR-Spektren, magnetische Messungen, molare Leitfähigkeit und TG-Analysen charakterisiert.
  相似文献   

11.
A novel Schiff base has been designed and synthesized using the bioactive ligand obtained from 4-aminoantipyrine, 3,4-dimethoxybenzaldehyde and 2-aminobenzoic acid. Its Cu(II), Co(II), Ni(II), Zn(II) complexes have also been synthesized in ethanol medium. The structural features have arrived from their elemental analyses, magnetic susceptibility, molar conductance, mass, IR, UV–Vis, 1H NMR and ESR spectral studies. The data show that the complexes have composition of ML2 type. The electronic absorption spectral data of the complexes suggest an octahedral geometry around the central metal ion. The interaction of the complexes with calf thymus (CT) DNA has been studied using absorption spectra, cyclic voltammetric, and viscosity measurement. The metal complexes have been found to promote cleavage of pUC19 DNA from the super coiled form I to the open circular form II. The complexes show enhanced antifungal and antibacterial activities compared with the free ligand.  相似文献   

12.
Two mixed-ligand complexes, [Cu(L)(2imi)] (1) and [Ni(L)(2imi)]·MeOH (2) [L = 2-(((5-chloro-2-oxyphenyl)imino)methyl)phenolato) and 2imi = 2-methyl imidazole], have been prepared by the reaction of appropriate metal salts with H2L and 2-methyl imidazole. Their structures were characterized by microanalysis, FT-IR, UV–vis, molar conductivity, and 1H NMR for [Ni(L)(2imi)]·MeOH. The structures were determined using single crystal X-ray diffraction. Each four-coordinate metal center, Cu(II) in 1 and Ni(II) in 2, is surrounded by donors of Schiff base (L2?) and N of 2-methyl imidazole in square planar geometries. α-Amylase activities of these compounds have also been investigated. The experimental data showed that α-amylase was inhibited by Ni(II) complex while the Cu(II) complex causes a 1.3-fold decrease in Km value. Antimicrobial results show that these compounds, especially the Cu(II) complex, have potential for antibacterial activity against Gram negative and Gram positive bacteria and antifungal activity against Aspergillus fumigatus.  相似文献   

13.
Transition metal complexes containing an amoxicillin-based Schiff base (H2L, 3 ) obtained from the condensation of amoxicillin 1 with salicylaldehyde 2 were prepared. Spectroscopic and physicochemical techniques, namely, UV–visible, Fourier-transform infrared spectroscopy, 1H NMR, electron paramagnetic resonance, transmission electron microscopy, mass spectrometry, magnetic susceptibility, molar conductance, density functional theory (DFT) calculations, together with elemental and thermal analyses were used to characterize the synthesized complexes. Based on these studies, the general formulae [ML(H2O)3], where M = Mn 4 , Ni 5 , Zn 6 , and [ML(H2O)], where M = Cu 7 , Ag 8 , were proposed for the complexes. The amoxicillin-based Schiff base ligand behaved as a dianionic O3-tridentate chelating agent. DFT studies and magnetic and spectral data revealed octahedral geometries for Mn, Ni, and Zn atoms and distorted tetrahedral geometries for Cu(II) and Ag(II) complexes. Synthesized compounds were tested for antibacterial activity by both agar disk diffusion method and the minimum inhibitory concentration. in vitro bacterial viability revealed that complex 5 had similar antibacterial activity as 1 against Staphylococcus aureus and Staphylococcus epidermidis, whereas Pseudomonas aeruginosa, resistant to amoxicillin, was sensitive to complex 8 . The antibacterial activity of complex 8 could be attributed to its greater catalytic activity as shown by DFT calculations. Toxicity bioassay of the tested compounds showed LC50 values > 1000 ppm, indicating their nontoxicity against brine shrimp nauplii (Artemia salina).  相似文献   

14.
The complexes of 4-chloro-2-methoxybenzoic acid anion with Mn2+, Co2+, Ni2+, Cu2+ and Zn2+ were obtained as polycrystalline solids with general formula M(C8H6ClO3)2·nH2O and colours typical for M(II) ions (Mn – slightly pink, Co – pink, Ni – slightly green, Cu – turquoise and Zn – white). The results of elemental, thermal and spectral analyses suggest that compounds of Mn(II), Cu(II) and Zn(II) are tetrahydrates whereas those of Co(II) and Ni(II) are pentahydrates. The carboxylate groups in these complexes are monodentate. The hydrates of 4-chloro-2-methoxybenzoates of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) heated in air to 1273 K are dehydrated in one step in the range of 323–411 K and form anhydrous salts which next in the range of 433–1212 K are decomposed to the following oxides: Mn3O4, CoO, NiO and ZnO. The final products of decomposition of Cu(II) complex are CuO and Cu. The solubility value in water at 293 K for all complexes is in the order of 10–3 mol dm–3. The plots of χM vs. temperature of 4-chloro-2-methoxybenzoates of Mn(II), Co(II), Ni(II) and Cu(II) follow the Curie–Weiss law. The magnetic moment values of Mn2+, Co2+, Ni2+ and Cu2+ ions in these complexes were determined in the range of 76−303 K and they change from: 5.88–6.04 μB for Mn(C8H6ClO3)2·4H2O, 3.96–4.75 μB for Co(C8H6ClO3)2·5H2O, 2.32–3.02 μB for Ni(C8H6ClO3)2·5H2O and 1.77–1.94 μB for Cu(C8H6ClO3)2·4H2O.  相似文献   

15.
Five new Ni(II) Schiff base complexes [NiLx(Solv)2] denoted by NiLx, x = 1–5, were synthesized and characterized. The Schiff base ligands were synthesized from the condensation of 5-bromo-2-hydroxy-3-nitrobenzaldehyde with different aliphatic and aromatic diamines. The X-ray crystal structure of NiL3 was determined. The ligands and complexes were tested as antibacterial agents against two gram(+) and two gram(?) human pathogenic bacteria. The complexes showed moderate antibacterial activity against both gram type bacteria. The new Ni(II) complexes showed enhanced antibacterial activity compared to the previously reported Cu(II) complexes of the same ligands.  相似文献   

16.
Four new complexes of 2,3,4-trimethoxybenzoic acid anion with manganese(II), cobalt(II), nickel(II) and copper(II) cations were synthesized, analysed and characterized by standard chemical and physical methods. 2,3,4-Trimethoxybenzoates of Mn(II), Co(II), Ni(II) and Cu(II) are polycrystalline compounds with colours typical for M(II) ions. The carboxylate group in the anhydrous complexes of Mn(II), Co(II) and Ni(II) is monodentate and in that of Cu(II) monohydrate is bidentate bridging one. The anhydrous complexes of Mn(II), Co(II) and Ni(II) heated in air to 1273 K are stable up to 505–517 K. Next in the range of 505–1205 K they decompose to the following oxides: Mn3O4, CoO, NiO. The complex of Cu(II) is stable up to 390 K, and next in the range of 390–443 K it loses one molecule of water. The final product of its decomposition is CuO. The solubility in water at 293 K is of the order of 10–3 mol dm–3 for the Mn(II) complex and 10–4 mol dm–3 for Co(II), Ni(II) and Cu(II) complexes. The magnetic moment values of Mn2+, Co2+, Ni2+ and Cu2+ ions in 2,3,4-trimethoxybenzoates experimentally determined in the range of 77–300 K change from 5.64–6.57 μB (for Mn2+), 4.73–5.17 μB (for Co2+), 3.26–3.35 μB (for Ni2+) and 0.27–1.42 μB (for Cu2+). 2,3,4-Trimethoxybenzoates of Mn(II), Co(II) and Ni(II) follow the Curie–Weiss law, whereas that of Cu(II) forms a dimer.  相似文献   

17.
Reaction of Cu(II) nitrate with a new pyrazole-based Schiff base ligand, 5-methyl-3-formylpyrazole-N-(2′-methylphenoxy)methyleneimine (MPzOA), afforded two types of Cu(II) complexes at different reaction temperatures, [Cu(MPzOA)(NO3)]2 (1) and [Cu(3,7,11,15-tetramethylporphyrin)(H2O)](NO3)2 (2), reported together with a Ni(II) complex, [Ni(MPzOA)2(H2O)2]Br2 (3). The compounds are characterized by single crystal X-ray structure analyses along with several physico-chemical and spectral parameters. Complex 1 is authenticated as a bis(μ-pyrazolato)dicopper(II), while 2 is a porphyrinogen and 3 is a distorted octahedral complex. Structural analyses of the complexes reveal that 1 crystallized in monoclinic P21/n space group while 2 and 3 crystallized in monoclinic C2/c space group. DNA-binding studies of the complexes have shown that the complexes interact with CT-DNA. DNA-cleavage studies with plasmid DNA have shown that 1 and 2 induce extensive DNA cleavage in the presence of H2O2 as an additive, whereas there is no change in degradation of super-coiled DNA by 3 in the presence of additive. The antimicrobial studies of the complexes against Escherichia coli DH5α bacteria strain indicated that all the complexes were capable of killing E. coli with different LD50 values.  相似文献   

18.
Potassium 1,3-dipyrrolidinopropan-2-O-xanthate (LK), and its complexes with Co(II), Ni(II) and Cu(I) have been prepared and characterized as [CoL2(H2O)2]?·?2H2O, [NiL2(H2O)2] and CuL?·?2H2O by FT-IR, 1H and 13C NMR spectroscopies, elemental analyses, magnetic susceptibility and TGA techniques.  相似文献   

19.
Cobalt(II), nickel(II), and copper(II) complexes containing 5,12-di(4-bromophenyl)-7,14-dimethyl-1,2,4,8,9,11-hexaazacyclotetradeca-7,14-diene-3,10-dione (H2L1) and 5,12-diphenyl-7,14-dimethyl-1,2,4,8,9,11-hexaazacyclotetradeca-7,14-diene-3,10-dione (H2L2) have been synthesized. All complexes were characterized by elemental analysis, MALDI TOF-MS spectrometry, and electronic absorption spectroscopy. The crystal structures of two compounds, [Cu2(H2L1)Cl4]n and [NiL2], were determined by X-ray powder diffraction. In the polymeric [Cu2(H2L1)Cl4]n, the Cu2Cl4 units and H2L1 molecules are situated on inversion centers. Each Cu(II) has a distorted trigonal-bipyramidal coordination environment formed by N and O from H2L1 [Cu–N 2.340(14)?Å, Cu–O 1.952(11)?Å], two bridging chlorides [Cu–Cl 2.332(5), 2.279(5)?Å] and one terminal chloride [Cu–Cl 2.320(6)?Å]. In the [NiL2] complex, the Ni(II) situated on inversion center has a distorted square-planar coordination environment formed by four nitrogens from L2 [Ni–N 1.860(11), 1.900(11)?Å].  相似文献   

20.

Cu(II), Ni(II) and Zn(II) complexes with the Schiff base derived from 1,2-bis-(o-aminophenoxy)ethane with salicylaldehyde have been prepared. The complexes have been characterized by elemental analysis, magnetic measurements, 1H NMR, 13C NMR, UV, visible and IR spectra as well as conductance measurements. The ligand is coordinated to the central metal as a tetradentate ONNO ligand. The four bonding sites are the central azomethine nitrogen and aldehydic OH groups. The ligand was used for complexation studies. Stability constants were measured by a conductometric method. Furthermore, the stability constants for complexation between ZnCl2 and Cu(NO3)2 salts and N,N′-bis(salicylidene)-1,2-bis-(o-aminophenoxy)ethane (H2L) in 80% dioxane/water and pure methanol were determined from conductance measurements. The magnitudes of these ion association constants are related to the nature of the solvation of the cation and the complexed cation. The mobilities of the complexes are also dependent, in part, upon solvation effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号