首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
1,2‐Diaza‐3‐silacyclopent‐5‐ene – Synthesis and Reactions The dilithium salt of bis(tert‐butyl‐trimethylsilylmethylen)ketazine ( 1 ) forms an imine‐enamine salt. 1 reacts with halosilanes in a molar ratio of 1:1 to give 1,2‐diaza‐3‐silacyclopent‐5‐enes. Me3SiCH=CCMe3 [N(SiR,R′)‐N=C‐C]HSiMe3 ( 2 ‐ 7 ). ( 2 : R,R′ = Cl; 3 : R = CH3, R′ = Ph; 4 : R = F, R′ = CMe3; 5 : R = F, R′ = Ph; 6 : R = F, R′ = N(SiMe3)2; 7 : R = F, R′ = N(CMe3)SiMe3). In the reaction of 1 with tetrafluorosilane the spirocyclus 8 is isolated. The five‐membered ring compounds 2 ‐ 7 and compound 9 substituted on the silicon‐fluoro‐ and (tert‐butyltrimethylsilyl) are acid at the C(4)‐atom and therefore can be lithiated. Experiments to prepare lithium salts of 4 with MeLi, n‐BuLi and PhLi gave LiF and the substitution‐products 10 ‐ 12 . 9 forms a lithium salt which reacts with ClSiMe3 to give LiCl and the SiMe3 ring system ( 13 ) substituted at the C(4)‐atom. The ring compounds 3 ‐ 7 and 10 ‐ 12 form isomers, the formation is discussed. Results of the crystal structure and analyses of 8 , 10 , 12 , and 13 are presented.  相似文献   

2.
Synthesis of some new oxadiazole derivatives starting from 1,2,3-benzo[d]triazole-1-acetic hydrazide (1) is described. The target compounds 2-(N-substituted-aminocarbonylmethylthio)-5-(1,2,3-benzo[d]triazol-1-ylmethyl)- 1,3,4-oxadiazole (4a—4i) and 2-[2-(N-substituted-aminocarbonyl)ethylthio]-5-(1,2,3-benzo[d]triazol-1-ylmethyl)- 1,3,4-oxadiazole (5a—5i) were obtained in good yields via cyclisation of 1 and subjected to antibacterial activity test against pathogenic bacteria. The halogen containing mono- and di-substituted derivatives showed excellent antibacterial activity compared to other analogues.  相似文献   

3.
Pd‐Catalyzed amination of 3,5‐dibromo‐ and 3,5‐dichloropyridine ( 1a and 1b , resp.) with linear polyamines 2 leads to the formation of a new family of pyridine‐containing macrocycles 3 with an ‘exo’‐oriented pyridine N‐atom (Schemes 1 and 2). The dependence of the macrocycle yield on the nature of the halogen atom, the length of the polyamine chain and C/N atom ratio, and the composition of the catalytic system is studied. The synthesis of mono‐ and bis(5‐halopyridin‐3‐yl)‐substituted polyamines 4, 5, 8, 9 , and of 3,5‐bis(polyamino)‐substituted pyridines 6 is described (Schemes 3 and 4), and the use of these compounds as intermediates on the way to the macrocycles 7, 16 , and 18 with larger cavity (‘cyclodimers’ and ‘cyclotrimers’) is demonstrated (Schemes 510).  相似文献   

4.
Thermal reactions of hitherto α‐(3‐pyridyl)‐N‐phenylnitrone ( 1 ) with mono‐substituted electron‐rich and electron‐neutral dipolarophiles are regio‐, and stereo‐selective (exo‐selective), controlled by LUMO ‐ dipole ‐ HOMO‐ dipolarophile interaction, and furnish syn‐5‐substituted‐3‐(3‐pyridyl)‐isoxazolidines ( 5 ) in high yields. With electron deficient dipolarophiles such as acrylonitrile there is observed a loss of regioselectivity as well as stereoselectivity and the regioselectivity is reversed in reactions with methyl vinyl ketone and methyl acrylate, due to intervention of HOMO‐dipole ‐ LUMO‐dipolarophile interaction, affording 4‐substi‐tuted‐3‐(3‐pyridyl)‐isoxazolidines ( 7 ) as major products. Reactions of nitrone ( 1 ) with disubstituted dipolarophiles such as methyl methacrylate and ethyl coronate furnish methyl syn‐5‐methy‐3‐pyridyl‐1‐phenyl‐isoxazolidine‐5‐carboxylate ( 8 ) and ethyl anti‐5‐methy‐3‐pyridyl‐1‐phenyl‐isoxazolidine‐4‐carboxylate ( 10 ), respectively, in high yields. Reaction with N‐Phenylmaleimide affords novel isoxazolidino‐pyrro‐lidinediones bearing a 3‐pyridyl moiety ( 11, 12 ). A mechanistic rationalization of the obtained results in terms of electronic, steric and secondary interactions is proffered.  相似文献   

5.
The condensation reactions of tetrachloro mono ( 1 and 2 ) and bisferrocenyl spirocyclotriphosphazenes ( 3 – 5 ) with morpholine in tetrahydrofuran gave the partly morpholino‐substituted ferrocenylphosphazenes. When the reactions were carried out with equal amounts of 1 – 5 and morpholine, the mono‐substituted ferrocenylphosphazenes ( 1a, 3a–5a ) formed as the major product. While the reactions were made with 1 equiv of 1–5 and 2 equiv of morpholine, the corresponding geminal–phosphazenes ( 1b–5b ) were isolated. In addition, the condensation reactions of 1 equiv of 1–5 and 3 equiv of morpholine resulted in the formation of di‐( 1b–5b ), tri‐( 2c–5c ), and tetra‐substituted phosphazenes. The tri‐substituted compounds were isolated as major products. Some new phosphazenes have stereogenic P center(s). The stereogenic properties of 1a and 2c were investigated using 31P nuclear magnetic resonance (NMR) spectroscopy in the presence of the chiral solvating agent; (S)‐(+)‐2,2,2‐trifluoro‐1‐(9′‐anthryl)ethanol. The structures of all the phosphazenes were characterized by one‐dimensional 1H, 13C, and 31P NMR, and two‐dimensional heteronuclear single quantum coherence spectral data. The salient spectral properties of the phosphazenes were presented.  相似文献   

6.
The reactions of α,β‐unsaturated nitriles ( 1, 9, 12 ) as bielectrophiles with aminoazoles ( 2, 4, 6 ) as binu‐cleophiles were investigated. Acrylonitrile ( 1 ) reacts almost exclusively in a chemoselective Michael‐type addition yielding the substituted azoles 3, 5 and 7 , respectively. Cinnamonitriles 9a,b behave in a similar way, but the free CN group adds a second molecule 4 yielding 10a,b and its cyclocondensation product 11a,b as minor component. The attempted formation of azolopyrimidines is best achieved by the reaction of the benzylidenemalononitriles 12a ‐ f with 2 or 4 . The process is chemo‐ and regioselective. The structure determinations were based on NMR measurements including DEFT, COSY, ROESY, HMQC and HMBC techniques and correct earlier suggestions.  相似文献   

7.
1‐Amino‐2‐pyrid‐3‐yl‐5‐(2‐benzoylethylthio)‐s‐triazole ( 1 ) was condensed with 1‐amino‐3‐mercapto‐5‐ [(un)substituted phenyl]‐s‐triazoles and subsequently substituted with chloroacetic acid to afford bis‐s‐triazole sulfanylacetic acid mono‐Schiff bases ( 3a – 3e ), which were condensed with 9‐formylanthracene to produce asymmetric bis(s‐triazole Schiff base) sulfanylacetic acids ( 4a – 4e ). The structures of new synthesized compounds were characterized by elemental analysis and spectral data, and their in vitro antitumor activity against L1210, CHO and HL60 cell lines was evaluted via the respective IC50 values by methylthiazole trazolium (MTT) assay.  相似文献   

8.
A one‐pot, multicomponent, convergent microwave synthesis of some new pyranyl‐ and chromenyl‐substituted quinolines has been reported. Twenty compounds were prepared by the reaction of 2‐methoxy‐3‐formyl quinoline ( 1a‐d ), malononitrile ( 2 ), and kojic acid ( 4a‐d )/1,3‐cyclohexadione or dimedone ( 6a ‐ h )/α‐ or β‐naphthol ( 8a ‐ d , 8e ‐ h ). The structures were confirmed by infrared (IR), 1H nuclear magnetic resonance (NMR), 13C NMR, mass, and single‐crystal X‐ray analyses. On comparison with the use of conventional Lewis acid catalysts and various metal triflates under microwave conditions, the latter contributed to good yields, in specific use of the recyclable Yb(OTf)3 catalyst attributed to high yields of the desired product. The protocol reported herein is solvent free, cost effective, and eco‐friendly.  相似文献   

9.
The condensation reactions of N2Ox (x = 2, 3) donor-type aminopodand (4) and dibenzo-diaza-crown ethers (5, 6, and 9) with hexachlorocyclotriphosphazatriene, N3P3Cl6, produce two kinds of partially substituted novel phosphazene derivatives, namely, spiro-bino-spiro- (19) and spiro-crypta (21, 22, and 25) phosphazenes. The partially substituted spiro-ansa-spiro-phosphazene (11) reacted with pyrrolidine and 1,4-dioxa-8-azaspiro[4,5]decane (DASD) give the corresponding new fully substituted phosphazenes (14 and 16). Unexpectedly, the reactions of 23 and 24 with pyrrolidine result in only geminal crypta phosphazenes (26 and 27). The solid-state structures of 16 and 22 have been determined by X-ray diffraction techniques. The relative inner hole-size of the macrocycle in the radii of 22 is 1.27 A. The relationship between the exocyclic NPN (alpha') and endocyclic (alpha) bond angles for spiro-crypta phosphazenes and exocyclic OPN (alpha') bond angles for spiro-ansa-spiro- and spiro-bino-spiro-phosphazenes with 31P NMR chemical shifts of NPN and OPN phosphorus atoms, respectively, have been investigated. The structures of 10, 14, 16, 19, 21, 22, and 25-27 have also been examined by FTIR, 1H, 13C, and 31P NMR, HETCOR, MS, and elemental analyses. The 31P NMR spectra of 10, 21, 22, and 25 indicate that the compounds have anisochrony. In compounds 16 and 22, the spirocyclic nitrogen atoms have pyramidal geometries resulting in stereogenic properties.  相似文献   

10.
Convenient procedures for the synthesis of new organophosphorus‐substituted mono‐ and bis(trimethylsilyl)amines with PCH2N moiety are proposed, starting from trimethylsilyl esters of organophosphorus acids, as well as 1,3,5‐trialkylhexahydro‐1,3,5‐triazines and N‐alkoxymethyl bis(trimethylsilyl)amines as aminomethylating reagents. Certain properties of the resulting compounds are presented. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 21:71–77, 2010; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20580  相似文献   

11.
Two novel series of monodisperse multi‐triarylamine‐substituted oligothiophenes, G 2 ‐ OT ( n )‐ G 2 with thiophene unit (n) varying from 6 to 8, and 4,7‐bis(2′‐oligothienyl)‐2,1,3‐benzothiadiazoles G 2 ‐ OT ( n ) BTD ‐ G 2 (n = 2, 4, 6) have been synthesized by the Suzuki coupling reactions. With an elongation of alkyl‐substituted oligothiophene core or an incorporation of benzothiadiazole into the central core, the absorption and emission spectra of G 2 ‐ OT ( n )‐ G 2 and G 2 ‐ OT ( n ) BTD ‐ G 2 series red‐shift substantially with the optical gap reducing to 1.95 eV for G 2 ‐ OT ( 6 ) BTD ‐ G 2 . Alkyl‐substitution onto oligothiophene backbone not only improves the solubility of the highly extended dendrimers but also renders coplanarity of the dendritic oligothiophene backbone at the excited state, which results in the enhancement of fluorescence quantum efficiency. The bulk heterojunction solar cells using these newly synthesized dendritic oligothiophenes as a donor material and [6,6]‐phenyl C61‐butyric acid methyl ester (PCBM) as an acceptor material were fabricated and investigated which showed an increase in device performance as compared with those of the lower homologues. On increasing the loading of PCBM from 1.5 to 3 times in the active layer, there was also an enhancement in device performance with power conversion efficiencies of as‐fabricated solar cells increasing from 0.18% to 0.32%. In addition, proper annealing procedure could significantly improve the device performance of the dendrimer‐based photovoltaic cell. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 137–148, 2009  相似文献   

12.
《化学:亚洲杂志》2017,12(9):954-957
We successfully synthesized mono‐ and bis‐substituted polyselanylbenzenes 3 and 5 via mono‐ and dilithiation of hexakis(phenylselanyl)benzene ( 1 ), respectively. Introduction of various heteroatom functionalities into hexaselanylbenzene changed the electronic properties dependent on the σ‐symmetric circular orbitals that were formed by the interactions between neighboring heteroatoms. In the cyclic voltammetry and theoretical studies on bis‐heteroatom‐substituted benzenes 5 , the extent of the interactions in the circular orbitals with σ‐symmetry affected the stability of the cationic species of 5 . This study would give insight into the molecular design for new σ‐delocalized systems and inspire the development of tuning electronic properties of benzene derivatives by σ‐type orbital interactions derived from heteroatom functionalities.  相似文献   

13.
Mono‐ ( 3a – 3e and 4a – 4e ) and bis‐ferrocene ( 5a – 5e and 6a – 6e ) conjugated 5‐substituted uracil derivatives that are bridged by 1,2,3‐triazole linker were synthesized. The impact of ferrocene unit and spacer between ferrocene and triazole on radical scavenging potency was observed. Bis‐ferrocenyl uracil derivatives exhibited better antiproliferative activities than their mono‐ferrocenyl analogs. Bis‐ferrocenyl methyl‐ ( 5b ) and halogen‐substituted ( 5e , 6c , and 6d ) uracil derivatives showed pronounced and selective cytostatic activities on colon adenocarcinoma (CaCo‐2) and Burkitt lymphoma (Raji) cells, with higher potency and selectivity than the reference drug 5‐fluorouracil. Generation of reactive oxygen species (ROS) in CaCo‐2 and Raji cells when treated with compounds 5b , 5e , and 6d was observed. Bis‐ferrocenyl 5‐chlorouracil 6c induced significant disruption in mitochondrial membrane potential that is accompanied by activation of apoptosis in CaCo‐2, Raji, and acute lymphoblastic leukemia (CCRF‐CEM) cells, while 6d caused mitochondrial dysfunction and apoptosis induction in CaCo‐2 and Raji cells. Potent antiproliferative activity of 6c and 6d could be associated with mitochondrial membrane potential disruption accompanied by apoptosis induction. Our findings highlighted 6c and 6d with potent and selective antiproliferative activity on CaCo‐2, Raji, and CCRF‐CEM cells that may be associated with targeting cancer cell mitochondria, as a molecular target.  相似文献   

14.
Pseudo‐ephedrine derived 2‐imino‐1,3‐thiazolidine 1 reacts with tris(diethylamino)phosphane by stepwise replacement of the diethylamino group to give the mono‐, bis‐ and tris(imino)phosphanes 2 , 3 and 4 , respectively, of which 4 could be isolated in pure state. The analogous reaction with diethylamino‐diphenylphosphane affords the imino‐diphenylphosphane 5 . The iminophosphanes react with sulfur or selenium to give the corresponding phosphorus(V) compounds. In contrast, the reaction of the iminophosphanes with oxygen is very slow; anhydrous trimethylamine N‐oxide reacts in the melt with the phosphanes to give the oxides 4(O) and 5(O) . The molecular structures of 4(O) (in mixture with 4 ), 4(Se) , 5(S) and 5(Se) were determined by X‐ray analysis. In all cases the ring‐sulfur and the phosphorus atoms are in cis‐positions at the C=N bonds. The analogous solution structures were determined by 1H, 13C, 15N, 31P and 77Se NMR spectroscopy. In the case of the compounds 5 , 5(O) , 5(S) and 5(Se) the isotope‐induced chemical shifts 1δ14/15N(31P) were determined, using INEPT‐HEED experiments.  相似文献   

15.
A series of novel narrow‐band‐gap copolymers ( P1 ‐ P12 ) composed of alkyl‐substituted fluorene (FO) units and six analogous mono‐ and bis(2‐aryl‐2‐cyanovinyl)‐10‐hexylphenothiazine monomers ( M1 ‐ M6 ) were synthesized by a palladium‐catalyzed Suzuki coupling reaction with two different feed in ratios of FO to M1 ‐ M6 (molar ratio = 3:1 and 1:1). The absorption spectra of polymers P1 ‐ P12 exhibited broad peaks located in the UV and visible regions from 400 to 800 nm with optical band gaps at 1.55–2.10 eV, which fit near the wavelength of the maximum solar photon reflux. Electrochemical experiments displayed that the reversible p‐ and n‐doping processes of copolymers were partially reversible, and the proper HOMO/LUMO levels enabled a high photovoltaic open‐circuit voltage. As blended with [6,6]‐phenyl C61 butyric acid methyl ester (PCBM) as an electron acceptor in bulk heterojunction photovoltaic devices, narrow‐band‐gap polymers P1 ‐ P12 as electron donors showed significant photovoltaic performance which varied with the intramolecular donor‐acceptor interaction and their mixing ratios to PCBM. Under 100 mW/cm2 of AM 1.5 white‐light illumination, the device of copolymer P12 produced the highest preliminary result having an open‐circuit voltage of 0.64 V, a short‐circuit current of 2.70 mA/cm2, a fill factor of 0.29, and an energy conversion efficiency of 0.51%. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4285–4304, 2008  相似文献   

16.
The reagent Me3Si(C6F5) was used for the preparation of a series of perfluorinated, pentafluorophenyl‐substituted 3,6‐dihydro‐2H‐1,4‐oxazines ( 2 – 8 ), which, otherwise, would be very difficult to synthesize. Multiple pentafluorophenylation occurred not only on the heterocyclic ring of the starting compound 1 (Scheme), but also in para position of the introduced C6F5 substituent(s) leading to compounds with one to three nonafluorobiphenyl (C12F9) substituents. While the tris(pentafluorophenyl)‐substituted compound 3 could be isolated as the sole product by stoichiometric control of the reagent, the higher‐substituted compounds 5 – 8 could only be obtained as mixtures. The structures of the oligo(perfluoroaryl) compounds were confirmed by 19F‐ and 13C‐NMR, MS, and/or X‐ray crystallography. DFT simulations of the 19F‐ and 13C‐NMR chemical shifts were performed at the B3LYP‐GIAO/6‐31++G(d,p) level for geometries optimized by the B3LYP/6‐31G(d) level, a technique that proved to be very useful to accomplish full NMR assignment of these complex products.  相似文献   

17.
Fourteen novel arylaldehyde (arylketone)‐(4‐substituted phenyl‐5‐substituted phenoxy‐methyl‐4H‐1,2,4‐triazole‐3‐yl)‐thiol acetyl hydrazone derivatives ( 5a‐5g, 6a‐6g ) were synthesized by 4‐substituted phenyl‐5‐substituted phenoxy‐methyl‐1,2,4‐triazole‐3‐thione as starting material according to substructure link principle, followed by thioetherification, hydrazide hydrazone reaction. The structures of these compounds were confirmed by IR, 1H NMR and elemental analysis. Crystal structure of compounds 1b and 6d were determined by the X‐ray diffraction.  相似文献   

18.
Synthesis, Complex Formation, and Crystal Structures of Cyclotriphosphazenes with N,N,N′,N′‐Tetramethylguanidine Groups The reactions of monochloropentaphenoxycyclotriphosphazene and hexachlorocyclotriphosphazene with N,N,N′,N′‐tetramethylguanidine yield the mono and tetra substituted products 2‐(N,N,N′,N′‐tetramethylguanidine)‐2,4,4,6,6‐pentaphenoxy‐2 λ5,4 λ5,6 λ5‐cyclotriphosphaza‐1,3,5‐trien ( 1 ) and 2,2‐dichlor‐4,4,6,6‐tetra‐(N,N,N′,N′‐tetramethylguanidine‐2 λ5,4 λ5,6 λ5‐cyclotriphosphaza‐1,3,5‐trien ( 2 ) respectively; no hexa functionalized product could be obtained, even with high excess of the nucleophile. Electron release from the exocyclic amino substituent reduces the acceptor ability of the phosphorus atoms. Reactions of ( 2 ) with copper(II) chloride and palladium(II) bis(acetonitrilo)dichloride yield metal complexes with a ligand : metal ratio of 1 : 2. The X‐ray structure analyses of N3P3Cl2(NC(N(CH3)2)2)4 · 2 CuCl2 ( 2 a ) and N3P3Cl2(NC(N(CH3)2)2)4 · 2 PdCl2 ( 2 b ) show that each metal atom is coordinated by two imino nitrogen atoms in geminal positions and two chloride atoms in a square planar arrangement.  相似文献   

19.
2‐Aminobenzimidazoles are widely present in a number of bioactive molecules. Generally, the preparation of these molecules could be realized by the mono‐substitution of 2‐halobenzimidazoles with amines. However, rare examples were reported for the di‐substituted products and the selectivity of mono‐ vs. di‐substitution was relatively low. Considering the potential values of the di‐substituted products, we accomplished the first selective diheteroarylation of amines with 2‐halobenzimidazoles. Notably, this Pd‐catalyzed transformation was realized under ligand‐free conditions. Accordingly, numerous target products were efficiently produced from various aromatic or aliphatic amines and 2‐halobenzimidazoles. It was worth noting that two representative products were further confirmed by X‐ray crystallography. More significantly, this catalytic process could be applied to the synthesis and discovery of new bioactive compounds, which demonstrated the synthetic usefulness of this newly developed approach.  相似文献   

20.
The 15N NMR chemical shifts of N7‐ and N9‐substituted purine derivatives were investigated systematically at the natural abundance level of the 15N isotope. The NMR chemical shifts were determined and assigned using GSQMBC, GHMBC, GHMQC and GHSQC experiments in solution. 15N cross‐polarization magic angle spinning data were recorded for selected compounds in order to study the principal values of the 15N chemical shifts. Geometric parameters obtained by using RHF/6–31G** and single‐crystal x‐ray structural analysis were used to calculate the chemical‐shielding constants (GIAO and IGLO) which were then used to assign the nitrogen resonances observed in the solid‐state NMR spectra and to determine the orientation of the principal components of the shift tensors. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号