首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Sulfasalazine (SSZ) is a pharmaceutical compound used for the treatment of rheumatoid arthritis. The electrochemical oxidation of SSZ at a glassy carbon electrode was studied by cyclic, differential pulse and square wave voltammetry in a wide pH range. For electrolytes with pH<11.0, the oxidation is an irreversible, diffusion‐control, pH‐dependent process that involves the transfer of one electron and one proton from the hydroxyl group of the salicylic moiety. For pH>11.0 the oxidation is pH‐independent, and a pKa≈11 was determined. The formation of a quinone‐like oxidation product that undergoes two electrons and two protons reversible redox reaction was observed. Also, UV‐vis spectra of SSZ were recorded as a function of supporting electrolytes pH. An electrochemical oxidation mechanism was proposed.  相似文献   

2.
The electrochemical oxidation of silver nanocrystals to silver halide crystals proceeds by a process of nucleation and growth. The mechanism is confirmed by analyzing chronopotentiograms using a new extension of nucleation theory. The theory makes it possible to derive plots of nucleation-growth currents vs potential, and growth rates vs potential, directly from experimental data. Such plots yield powerful insights into the reaction kinetics. In situ AFM imaging reveals that a few thousand of silver nanocrystals are oxidized to only a few tens of silver halide crystals, without pronounced loss of active material. The mechanism of this remarkable process is described in this paper. In particular, it is shown that the decrease in crystal population proceeds via an oversaturated silver solution, i.e., a process that is mediated by “driven” Ostwald ripening across the electrode surface. At the same time, the low solubility of silver species in bulk solution means that few silver ions escape from the surface. This combination of features explains why the transformation from silver to silver halide is near-stoichiometric yet highly reconstructive.Dedicated to our friend and colleague Professor Dr. Alan Bond on the occasion of his 60th birthday  相似文献   

3.
《Electroanalysis》2005,17(7):599-606
When a silver electrode is conditioned in a solution of 0.5 M sodium hydroxide with added sodium phosphate and using a dual pulse (500 mV/750 mV vs. Ag/AgCl), a stable silver(I)/silver(II) oxide surface is formed. It has been previously shown that various moieties react with the silver(II) oxide in a chemical oxidation at the outer surface of the oxide layer. This is then followed by re‐oxidation of the silver with the generation of current at approximately 500 mV relative to the silver/silver chloride electrode. Previously we found the need to remove carbon dioxide from the base and condition the electrode in a solution containing phosphate ion in order to provide mechanical stability to the oxide layer. We have previously shown this electrode to be applicable to the detection of a variety of carbohydrates. The applicability of the silver oxide/silver phosphate electrode to the post‐chromatographic amperometric detection of amino acids was investigated. Calibration studies of amino acids representative of the various classes demonstrated good sensitivity and linearity in the 1–100 μM range. Responses of amino acids were measured using glucose as an external standard, in order to correct for variability of the oxide layer. Relative responses of the amino acids ranged from 3 down to 0.1. Correlation with structure suggested the importance of absorption in determining the rate of oxidation. Comparison of arginine with n‐benzoyl‐L ‐arginine ethyl ester indicated that side chains as well as the backbone amino group can be oxidized. A Levitch plot of alanine was shown to be linear from approximately 30 to 300 radians per second spin rate at a scan rate of 50 mV per second. Application to post‐chromatographic detection was demonstrated.  相似文献   

4.
The morphology and surface roughness of silver (Ag) deposit formed on metallic copper (Cu) by cementation conducted in a 0.5M H2SO4 solution was investigated at various temperatures above 25°. The influence of the presence or absence of oxygen (O2) on Ag morphology was studied at an initial Ag+ concentration of 20 mg/dm3. An analysis of distribution diagrams of the surface height calculated from scanning‐electron‐microscope (SEM) top‐view images was performed. The cementation reaction results in a non‐homogeneous Ag deposit formed on the surface independently of the presence or absence of O2 in solution. The Ag deposit covers Cu mainly with a uniform and compact layer with separated germs of predendrites, but also a huge ‘fern‐leaf‐shaped’ and ‘lycopodium‐twigs‐shaped’ dendrites appear occasionally on the surface. The presence of O2 in the system and temperature do not affect significantly the morphology of Ag dendrite as well as a deposit formed on the smooth part of the surface. The roughness of surface with Ag cement varies with temperature only under aerobic conditions where the enhanced Cu corrosion increases the size of anodic sites. The results obtained from the surface‐height‐distribution diagrams constructed for anaerobic conditions showed that the reaction between Cu+ and Ag+ does not start in the bulk of the solution even at the highest studied temperature.  相似文献   

5.
《Electroanalysis》2005,17(4):313-318
An electrochemical investigation of rutin oxidation on a glassy carbon electrode was carried out using cyclic voltammetry, differential pulse voltammetry and square‐wave voltammetry over a wide pH interval. The electrochemical oxidation is a complex process, which proceeds in a cascade mechanism, related with the 4‐hydroxyl groups of the rutin molecule. The catechol 3′,4′‐dihydroxyl group is the first to be oxidized by a two‐electron – two‐proton reversible oxidation reaction, followed by an irreversible oxidation reaction due to the 5,7‐dihydroxyl group. Both mechanisms are pH dependent. An adsorption process is also observed and the oxidation products block the electrode surface.  相似文献   

6.
The oxidation kinetics of β‐isophorone (β‐IP) using molecular oxygen catalyzed by iron(III) acetylacetonate was investigated in a lab‐scale agitator bubbling reactor. β‐IP was found to give keto‐isophorone (KIP) and 4‐hydroxy‐3,5,5‐trimethyl‐2‐cyclohexen‐1‐one (HIP) along with little isomerization product α‐isophorone (α‐IP). The results show that the oxidation reaction took place in the pseudo–first‐order fast reaction regime. The experiment was conducted under the mass transfer reaction regime as the mass transfer resistances could not be easily eliminated. The intrinsic kinetics was obtained through apparent kinetics. The activation energy of oxidation of β‐IP to KIP is 70.5 ± 4.1 kJ mol–1, and the value of ln AKIP is 33.53 ± 1.22. Meanwhile, the activation energy of oxidation of β‐IP to HIP is 86.4 ± 5.4 kJ mol–1 and the value of ln AHIP is 36.23 ± 1.52, which could provide theoretical basis for industrial design, amplification of reactor, and the optimization of reaction.  相似文献   

7.
Efficient, stable catalysts with high selectivity for a single product are essential if electroreduction of CO2 is to become a viable route to the synthesis of industrial feedstocks and fuels. A plasma oxidation pre‐treatment of silver foil enhances the number of low‐coordinated catalytically active sites, which dramatically lowers the overpotential and increases the activity of CO2 electroreduction to CO. At −0.6 V versus RHE more than 90 % Faradaic efficiency towards CO was achieved on a pre‐oxidized silver foil. While transmission electron microscopy (TEM) and operando X‐ray absorption spectroscopy showed that oxygen species can survive in the bulk of the catalyst during the reaction, quasi in situ X‐ray photoelectron spectroscopy showed that the surface is metallic under reaction conditions. DFT calculations reveal that the defect‐rich surface of the plasma‐oxidized silver foils in the presence of local electric fields drastically decrease the overpotential of CO2 electroreduction.  相似文献   

8.
Electrochemical Oxidation of Quercetin   总被引:1,自引:0,他引:1  
《Electroanalysis》2003,15(22):1745-1750
The mechanism of electrochemical oxidation of quercetin on a glassy carbon electrode has been studied using cyclic, differential pulse and square‐wave voltammetry at different pH. It proceeds in a cascade mechanism, related with the two catechol hydroxyl groups and the other three hydroxyl groups which all present electroactivity, and the oxidation is pH dependent. Quercetin also adsorbs strongly on the electrode surface; and the final oxidation product is not electroactive and blocks the electrode surface. The oxidation of the catechol 3′,4′‐dihydroxyl electron‐donating groups, occurs first, at very low positive potentials, and is a two electron two proton reversible reaction. The hydroxyl group oxidized next was shown to undergo an irreversible oxidation reaction, and this hydroxyl group can form a intermolecular hydrogen bond with the neighboring oxygen. The other two hydroxyl groups also have an electron donating effect and their oxidation is reversible.  相似文献   

9.
In this study we investigated the electrocatalytic oxidation of anti‐inflammatory drug (paracetamol) on Nickel and Nickel–copper alloy modified glassy carbon electrodes (GC/Ni and GC/NiCu) in alkaline solution. These electrodes prepared by galvanostatic method and different electrochemical techniques such as cyclic voltammetry and chronoamperometry were used to track the oxidation process and its kinetics. From Voltammetric studies we concluded that in the presence of drugs the anodic peak current of low valences Nickel species increased, followed by a decrease in the corresponding cathodic current peak. This indicates that drugs were oxidized on the redox mediator which was immobilized on the electrode surface via an electrocatalytic mechanism. Using Laviron's equation, the values of α and ks for the immobilized redox species were determined. The anodic peak currents show linear dependency with the square root of scan rate. This behavior is the characteristic of a diffusion controlled process. Under the CA regime the reaction followed a Cottrellian behavior and the diffusion coefficient of paracetamol was found in agreement with the values obtained from CV measurements.  相似文献   

10.
The biodegradable metals, including magnesium (Mg), are a convenient alternative to permanent metals but fast uncontrolled corrosion limited wide clinical application. Formation of a barrier coating on Mg alloys could be a successful strategy for the production of a stable external layer that prevents fast corrosion. Our research was aimed to develop an Mg stable oxide coating using plasma electrolytic oxidation (PEO) in silicate-based solutions. 99.9% pure Mg alloy was anodized in electrolytes contained mixtures of sodium silicate and sodium fluoride, calcium hydroxide and sodium hydroxide. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), contact angle (CA), Photoluminescence analysis and immersion tests were performed to assess structural and long-term corrosion properties of the new coating. Biocompatibility and antibacterial potential of the new coating were evaluated using U2OS cell culture and the gram-positive Staphylococcus aureus (S. aureus, strain B 918). PEO provided the formation of a porous oxide layer with relatively high roughness. It was shown that Ca(OH)2 was a crucial compound for oxidation and surface modification of Mg implants, treated with the PEO method. The addition of Ca2+ ions resulted in more intense oxidation of the Mg surface and growth of the oxide layer with a higher active surface area. Cell culture experiments demonstrated appropriate cell adhesion to all investigated coatings with a significantly better proliferation rate for the samples treated in Ca(OH)2-containing electrolyte. In contrast, NaOH-based electrolyte provided more relevant antibacterial effects but did not support cell proliferation. In conclusion, it should be noted that PEO of Mg alloy in silicate baths containing Ca(OH)2 provided the formation of stable biocompatible oxide coatings that could be used in the development of commercial degradable implants.  相似文献   

11.
The evolution of the surface roughness during cementation of Ag+ conducted either in O2‐free or O2‐saturated aqueous H2SO4/CuSO4 was investigated at two different initial concentrations of Ag+. The kinetics data of the process determined previously in the rotating cylinder were linked directly with scanning‐electron‐microscope (SEM) images and surface‐height‐distribution diagrams calculated for various cementation times. It was found that, at the beginning of the process, the surface roughness decreases due to formation of a flat Ag layer on the top of the surface, independent of the presence or absence of O2 in the system. With increasing reaction time, an increase in the surface roughness was observed. The rate enhancement of the process is mainly responsible for the increase of the surface roughness in the O2‐saturated solutions, especially at the higher initial Ag+ concentration (100 mg/dm3). The rate enhancement observed at a latter stage of the process, connected with the increase of the effective surface area of the cathodic sites, was separated from the rate enhancement induced by the competitive chemical process occurring in O2‐free solution. The difference in the mechanisms of the processes conducted under aerobic and anaerobic conditions was reflected in the surface‐heigth distributions calculated from the SEM images.  相似文献   

12.
A glassy carbon (GC) electrode modified with silver pentacyanonitrosylferrate (AgPCNF) film as a redox mediator was fabricated. Cyclic voltammetry was used to study the redox property of AgPCNF modified electrode. The modified electrode showed a well‐defined redox couple due to [AgIFeIII/II(CN)5NO]1‐/2‐system. The effects of scan rates, supporting electrolytes and solution pHs were studied on the electrochemical behavior of the modified electrode. The feasibility of using the AgPCNF modified electrode to measure L ‐cysteine was investigated. It showed an excellent electrocatalytic activity towards the oxidation of L ‐cysteine and the anodic currents were proportional to the L ‐cysteine concentration in the range of 0.1 μM to 20 μM, the linear regression equation is Ipa(μA) = ‐68.58 ‐ 5.78CL ‐cysteine (μM), with a correlation coefficient 0.998 for N = 23. The detection limit was down to 3.5 × 10‐8 M (three times the ratio of signal to noise).  相似文献   

13.
Silver (II) oxide layers (AgO) were prepared by anodic oxidation of pre‐oxidized, Ag2O‐covered silver electrodes in 1 M NaOH (pH 13.8). The oxidized electrodes were investigated using a combination of electrochemical techniques, ex situ X‐ray photoelectron spectroscopy (XPS) and in situ surface‐sensitive grazing incidence X‐ray absorption spectroscopy (EXAFS) under full potential control. The application of these different techniques leads to a detailed, consistent picture of the anodic silver (II) oxide layer formation. The experiments have shown that the chemical composition of the AgO layer varies significantly with oxidation potential, revealing a decreasing oxygen deficiency with increasing anodization potential and oxidation time. XPS as well as EXAFS experiments support the interpretation of the oxide as a mixed valence Ag + Ag3 + O2 with different contributions of Ag + and Ag3 + species, depending on potential and anodization time. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
An organic‐inorganic composite electrode was prepared by the sol‐gel method. For this purpose the carbon composite electrode (CCE) was modified with copper hexacyanoferrate (CuHCF). The CuHCF‐CCE was prepared by two methods. In one method CCE was prepared in one step and in another method the electrode was prepared in a two‐step process. The electrochemical behavior of the CuHCF modified electrode was studied by cyclic voltammetry; the modified electrode shows a pair of peaks with a surface‐confined characteristic in a 0.1 M phosphate buffer (pH 7) with K+ cation, as a supporting electrolyte. The CuHCF‐CCE showed electrocatalytic activity toward oxidation of Dopamine (DA). The kinetics of the catalytic reaction was investigated by using chronoamperometry. The average value of the rate constant for catalytic reaction and the diffusion coefficient were calculated. At a 0.85 V potential under hydrodynamic conditions (stirred solution), the oxidation current is proportional to the dopamine concentration, and the calibration plot was linear over the concentration range of 5‐85 μM.  相似文献   

15.
A simple hydrothermal process has been developed for the synthesis and assembly of copper and silver nanoparticles to aggregates. The reduction of Cu2+ and Ag+ ions to the zerovalent metal was performed by glyoxal in the absence of any external agent. The produced glyoxylic acid (GA) in the redox process stabi‐ lized metallic copper and silver particles and rendered them oxidation resistant for several months and dispersible in polar organic solvents and water. Detailed nanostructures of synthesized products were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X‐ray diffraction (XRD). The results demonstrated that assembly of nanoparticles to aggregates and their regularity were dependent on the reaction conditions such as temperature and concentration of the starting material. The Ostwald ripening process was proposed to explain the formation of copper nanoparticles by TEM observation at several times during the reaction. The existence of the surface stabilizing agent was identified by Fourier Transform infrared spectroscopy (FT‐IR) and thermogravimetric analyses (TGA).  相似文献   

16.
Understanding the fundamental relationship between the size and the structure of electrode materials is essential to design catalysts and enhance their activity. Therefore, spherical gold nanoparticles (GNSs) with a mean diameter from 4 to 15 nm were synthesized. UV/Vis spectroscopy, transmission electron microscopy, and under‐potential deposition of lead (UPDPb) were used to determine the morphology, size, and surface crystallographic structure of the GNSs. The UPDPb revealed that their crystallographic facets are affected by their size and the growth process. The catalytic properties of these GNSs toward glucose electrooxidation were studied by cyclic voltammetry, taking into account the scan rate and temperature effects. The results clearly show the size‐dependent electrocatalytic activity for glucose oxidation reactions that are controlled by diffusion. Small GNSs with an average size of 4.2 nm exhibited high catalytic activity. This drastic increase in activity results from the high specific area and reactivity of the surface electrons induced by their small size. The reaction mechanism was investigated by in situ Fourier transform infrared reflectance spectroscopy. Gluconolactone and gluconate were identified as the intermediate and the final reaction product, respectively, of the glucose electrooxidation.  相似文献   

17.
The electrochemical behaviour of the Ag(Hg)/Ag4RbI5 interface is investigated by a potentiostatic pulse method. It is found that the rate-determining step of the electrode reaction is electron transfer with an exchange current density of 68 mA cm–2 and a transfer coefficient of approximately 0.45. The order of the electrochemical reaction for silver oxidation is estimated from polarization investigations of silver amalgam in various concentrations. From this it is deduced that the mercury is ionized and is implanted in the electrolyte together with silver under anodic polarization: 15Ag+85Hg–100e→15Ag++85Hg+. From comparison of the electrochemical behaviour of the Ag(Hg)/Ag4RbI5 and Ag/Ag4RbI5 interfaces it is concluded that the rate of anodic silver dissolution on the Ag/Ag4RbI5 interface is limited by crystallization effects. Electronic Publication  相似文献   

18.
The morphology and surface roughness of silver deposits formed by cementation in 0.5M H2SO4 solution containing 0.5M CuSO4 was investigated at various temperatures. The influence of O2 on the morphology of deposited Ag on the Cu surface was studied in solutions containing 20 or 100 mg/dm3 initial Ag+. Surface‐height‐distribution diagrams were calculated from scanning‐electron‐microscopic (SEM) images. For the lower Ag+ concentration, the formation of granular deposits occurred in the presence of O2. In contrast, under anaerobic conditions, rather flat deposits with tiny Ag crystals were observed. For the higher Ag+ concentration, the presence of O2 did not significantly affect the morphology of the Ag deposit, but increasing temperature resulted in more‐compact and denser dendrites. Differences in the Ag‐deposit morphology and surface roughness were attributed to a different mechanism in the absence of O2. Under anaerobic conditions, a competitive reaction between Ag+ and Cu+ occurs in bulk solution, which consumes additional Ag+ ions. The SEM images and, especially, distribution diagrams of the surface height provided useful information on the formation and expansion of anodic sites on the Cu surface at various temperatures.  相似文献   

19.
Plasma oxidation of ethanethiol in air was investigated using three plasma regimes: surface dielectric pulsed corona discharge, surface dielectric barrier discharge and pulsed corona discharge (PCD) in the plasma reactor. Catalytic plasma degradation of ethanethiol was also performed on the singular or binary metals doped ?èCAl2O3. The ethanethiol removal rate increased with increasing energy density but energy efficiency was first increased and then decreased with increasing energy density under three various types of discharges. PCD plasma required the lowest energy density at the similar ethanethiol removal performance compared with the other two plasma discharges. The main intermediate by-products of ethanethiol oxidation by plasma are CH3CHO, HCHO, CO and CO2. The sum of these intermediate products selectivities is 19?C43?%, implying that some other intermediates containing carbon were undetermined. When using PCD plasma combined with catalysts, ethanethiol removal rate and energy efficiency were all evidently improved. The maximum energy efficiency was achieved about 200?g kWh?1 using Fe?CMn/?èCAl2O3 assisted PCD plasma, which was about 4.4 times when using PCD plasma alone. The mechanism of ethanethiol oxidation is also discussed.  相似文献   

20.
Zigzag silver nanowires with a uniform diameter of 20±5 nm were prepared by reducing silver nitrate (AgNO3) with N,N-dimethylformamide (DMF) in the presence of tetrabutyl titanate (TBT) and acetylacetone (AcAc) at 373 K for 18 h. X-ray and selected area electron diffraction (XRD and SAED) patterns reveal that the prepared product is made of pure silver with face centered cubic structure. Transmission electron microscopy (TEM) investigations suggest that the amount of silver nanowires is enhanced with increase in reaction time, and the end-to-end assemblies of silver nanorods are observed during the reaction process. After 18 h reaction, silver nanowires with zigzag morphology are obtained. In this paper, a possible growth process of silver nanowires with this interesting shape is described. Silver nanoparticles with small sizes were obtained by reducing Ag+ ions with DMF, providing seeds for homogeneous growth of silver nanorods. With the extending reaction time, the synthesized silver nanorods were connected in an end-to-end manner, and the interface between the connections of two nanorods gradually disappeared. The final product shows zigzag morphology with various angles. The angles between two connecting straight parts of zigzag nanowires exhibit an alterable range of 74-151°. These silver nanowires show tremendous potential applications in future nanoscale electronic circuits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号