首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Reactions of 1,10‐phenanthroline monohydrate, Na2C4H4O4 · 6 H2O and MnSO4 · H2O in CH3OH/H2O yielded a mixture of [Mn2(H2O)4(phen)2(C4H4O4)2] · 2 H2O ( 1 ) and [Mn(phen)2(H2O)2][Mn(phen)2(C4H4O4)](C4H4O4) · 7 H2O ( 2 ). The crystal structure of 1 (P1 (no. 2), a = 8.257(1) Å, b = 8.395(1) Å, c = 12.879(2) Å, α = 95.33(1)°, β = 104.56(1)°, γ = 106.76(1)°, V = 814.1(2) Å3, Z = 1) consists of the dinuclear [Mn2(H2O)4(phen)2(C4H4O4)2] molecules and hydrogen bonded H2O molecules. The centrosymmetric dinuclear molecules, in which the Mn atoms are octahedrally coordinated by two N atoms of one phen ligand and four O atoms from two H2O molecules and two bis‐monodentate succinato ligands, are assembled via π‐π stacking interactions into 2 D supramolecular layers parallel to (101) (d(Mn–O) = 2.123–2.265 Å, d(Mn–N) = 2.307 Å). The crystal structure of 2 (P1 (no. 2), a = 14.289(2) Å, b = 15.182(2) Å, c = 15.913(2) Å, α = 67.108(7)°, β = 87.27(1)°, γ = 68.216(8)°, V = 2934.2(7) Å3, Z = 2) is composed of the [Mn(phen)2(H2O)2]2+ cations, [Mn(phen)2(C4H4O4)] complex molecules, (C4H4O4)2– anions, and H2O molecules. The (C4H4O4)2– anions and H2O molecules form 3 D hydrogen bonded network and the cations and complex molecules in the tunnels along [001] and [011], respectively, are assembled via the π‐π stacking interactions into 1 D supramolecular chains. The Mn atoms are octahedrally coordinated by four N atoms of two bidentate chelating phen ligands and two water O atoms or two carboxyl O atoms (d(Mn–O) = 2.088–2.129 Å, d(Mn–N) = 2.277–2.355 Å). Interestingly, the succinato ligands in the complex molecules assume gauche conformation bidentately to chelate the Mn atoms into seven‐membered rings.  相似文献   

2.
Reactions of a freshly prepared Zn(OH)2‐2x(CO3)x · yH2O precipitate, phenanthroline with azelaic and sebacic acid in CH3OH/H2O afforded [Zn(phen)(C9H15O4)2] ( 1 ) and [Zn2(phen)2(H2O)2(C10H16O4)2] · 3H2O ( 2 ), respectively. They were structurally characterized by X‐ray diffraction methods. Compound 1 consists of complex molecules [Zn(phen)(C9H15O4)2] in which the Zn atoms are tetrahedrally coordinated by two N atoms of one phen ligand and two O atoms of different monodentate hydrogen azelaato groups. Intermolecular C(alkyl)‐H···π interactions and the intermolecular C(aryl)‐H···O and O‐H···O hydrogen bonds are responsible for the supramolecular assembly of the [Zn(phen)(C9H15O4)2] complexes. Compound 2 is built up from crystal H2O molecules and the centrosymmetric binuclear [Zn2(phen)2(H2O)2(C10H16O4)2] complex, in which two [Zn(phen)(H2O)]2+ moieties are bridged by two sebacato ligands. Through the intermolecular C(alkyl)‐H···O hydrogen bonds and π‐π stacking interactions, the binuclear complex molecules are assembled into layers, between which the lattice H2O molecules are sandwiched. Crystal data: ( 1 ) C2/c (no. 15), a = 13.887(2), b = 9.790(2), c = 22.887(3)Å, β = 107.05(1)°, U = 2974.8(8)Å3, Z = 4; ( 2 ) P1¯ (no. 2), a = 8.414(1), b = 10.679(1), c = 14.076(2)Å, α = 106.52(1)°, β = 91.56(1)°, γ = 99.09(1)°, U = 1193.9(2)Å3, Z = 1.  相似文献   

3.
Reaction of CuCl2 · 2H2O, phenanthroline, maleic acid and NaOH in CH3OH/H2O (1:1 v/v) at pH = 7.0 yielded blue {[Cu(phen)]2(C4H2O4)2} · 4.5H2O, which crystallizes in the monoclinic space group C2/c (no. 15) with cell dimensions: a = 18.127(2)Å, b = 12.482(2)Å, c = 14.602(2)Å, β = 103.43(1)°, U = 3213.5(8)Å3, Z = 4. The crystal structure consists of the centrosymmetric dinuclear {[Cu(phen)]2(C4H2O4)2} complex molecules and hydrogen bonded H2O molecules. The Cu atoms are each square‐pyramidally coordinated by two N atoms of one phen ligand and three carboxyl O atoms of two maleato ligands with one carboxyl O atom at the apical position (d(Cu‐N) = 2.008, 2.012Å, equatorial d(Cu‐O) = 1.933, 1.969Å, axial d(Cu‐O) = 2.306Å). Two square‐pyramids are condensed via two apical carboxyl O atoms with a relatively larger Cu···Cu separation of 3.346(1)Å. The dinuclear complex molecules are assembled via the intermolecular π—π stacking interactions into 1D ribbons. Crossover of the resulting ribbons via interribbon π—π stacking interactions forms a 3D network with the tunnels occupied by H2O molecules. The title complex behaves paramagnetically between 5—300 K, following the Curie‐Weiss law χm(T—θ) = 0.435 cm3 · mol—1 · K with θ = 1.59 K.  相似文献   

4.
Blue crystals of Cu2(phen)2(H2O)2(C5H6O4)2 were obtained from a CH3OH–H2O solution containing CuCl2, 1,10‐phenanthroline (phen), glutaric acid and Na2CO3. The crystal structure (monoclinic, P21/c (no. 14), a = 10.271(1), b = 10.595(1), c = 15.585(1) Å, β = 107.105(3)°, Z = 2, R = 0.0328, wR2 = 0.1027 for 3376 observed reflections (F ≥ 2σ(F ) out of 3728 unique reflections) is built up of dinuclear Cu2(phen)2(H2O)2(C5H6O4)2 complex molecules centered at inversion centers. The Cu atoms are square‐pyramidally coordinated by two nitrogen atoms of one bidentate chelating phen ligand and three oxygen atoms from two bridging glutarate anions and one axial water molecule (d(Cu–N) = 2.018(2), 2.024(2) Å; basal d(Cu–O) = 1.949(2), 1.956(2) Å; axial d(Cu–O) = 2.382(2) Å). Through the π‐π stacking interactions extending in a direction, the complex molecules are interlinked into 2 D layers parallel to the ac plane. The resultant 2 D layers are held together by hydrogen bonds between water molecules and uncoordinated carboxyl oxygen atoms.  相似文献   

5.
The blue copper complex compounds [Cu(phen)2(C6H8O4)] · 4.5 H2O ( 1 ) and [(Cu2(phen)2Cl2)(C6H8O4)] · 4 H2O ( 2 ) were synthesized from CuCl2, 1,10‐phenanthroline (phen) and adipic acid in CH3OH/H2O solutions. [Cu(phen)2‐ (C6H8O4)] complexes and hydrogen bonded H2O molecules form the crystal structure of ( 1 ) (P1 (no. 2), a = 10.086(2) Å, b = 11.470(2) Å, c = 16.523(3) Å, α = 99.80(1)°, β = 115.13(1)°, γ = 115.13(1)°, V = 1617.5(5) Å3, Z = 2). The Cu atoms are square‐pyramidally coordinated by four N atoms of the phen ligands and one O atom of the adipate anion (d(Cu–O) = 1.989 Å, d(Cu–N) = 2.032–2.040 Å, axial d(Cu–N) = 2.235 Å). π‐π stacking interactions between phen ligands are responsible for the formation of supramolecular assemblies of [Cu(phen)2(C6H8O4)] complex molecules into 1 D chains along [111]. The crystal structure of ( 2 ) shows polymeric [(Cu2(phen)2Cl2)(C6H8O4)2/2] chains (P1 (no. 2), a = 7.013(1) Å, b = 10.376(1) Å, c = 11.372(3) Å, α = 73.64(1)°, β = 78.15(2)°, γ = 81.44(1)°, V = 773.5(2) Å3, Z = 1). The Cu atoms are fivefold coordinated by two Cl atoms, two N atoms of phen ligands and one O atom of the adipate anion, forming [CuCl2N2O] square pyramids with an axial Cl atom (d(Cu–O) = 1.958 Å, d(Cu–N) = 2.017–2.033 Å, d(Cu–Cl) = 2.281 Å; axial d(Cu–Cl) = 2.724 Å). Two square pyramids are condensed via the common Cl–Cl edge to centrosymmetric [Cu2Cl2N4O2] dimers, which are connected via the adipate anions to form the [(Cu2(phen)2Cl2)(C6H8O4)2/2] chains. The supramolecular 3 D network results from π‐π stacking interactions between the chains. H2O molecules are located in tunnels.  相似文献   

6.
Two CoII complexes, Co(phen)(HL)2 ( 1 ) and [Co2(phen)2(H2O)4L2]·H2O ( 2 ) (H2L = HOOC‐(CH2)5‐COOH), were synthesized and structurally characterized on the basis of single crystal X‐ray diffraction data. In complex 1 the Co atoms are tetrahedrally coordinated by two N atoms of one phen ligand and two O atoms of different hydrogenpimelato ligands. Through π—π stacking interactions between carboxyl group and phen ligand, the complex molecules are assembled into 1D columnar chains, which are connected by intermolecular hydrogen bonds. Complex 2 consists of the centrosymmetric dinuclear [Co2(phen)2(H2O)4L2] molecules and hydrogen bonded H2O molecules. The Co atoms are each octahedrally surrounded by two N atoms of one phen ligand and four O atoms from two bis‐monodentate pimelato ligands and two H2O molecules at the trans positions. The results about thermal analyses, which were performed in flowing N2 atmosphere, on both complexes were discussed. Crystal data: ( 1 ) C2/c (no. 15), a = 13.491(1)Å, b = 9.828(1)Å, c = 19.392(2)Å, β = 100.648(1)°, U = 2526.9(4)Å3, Z = 4; ( 2 ) P1 (no. 2), a = 11.558(1)Å, b = 11.947(3)Å, c = 15.211(1)Å, α = 86.17(1)°, β = 75.55(1)°, γ = 69.95(1)°, U = 1910.3(3)Å3, Z = 2.  相似文献   

7.
The title compound [Cu2(phen)2(C9H14O4)2] · 6 H2O was prepared by the reaction of CuCl2 · 2 H2O, 1,10‐phenanthroline (phen), azelaic acid and Na2CO3 in a CH3OH/H2O solution. The crystal structure (monoclinic, C2/c (no. 15), a = 22.346(3), b = 11.862(1), c = 17.989(3) Å, β = 91.71(1)°, Z = 4, R = 0.0473, wR2 = 0.1344 for 4279 observed reflections) consists of centrosymmetric dinuclear [Cu2(phen)2(C9H14O4)2] complexes and hydrogen bonded H2O molecules. The Cu atom is square‐planar coordinated by the two N atoms of the chelating phen ligand and two O atoms of different bidentate bridging azelaate groups with d(Cu–N) = 2.053, 2.122(2) Å and d(Cu–O) = 1.948(2), 2.031(2) Å. Two azelaate anions bridge two common Cu atoms via the terminal O atoms (d(C–O) = 1.29(2) Å; d(C–C) = 1.550(4)–1.583(4) Å). Phen ligands of adjacent complexes cover each other at distances of about 3.62 Å, indicating π‐π stacking interaction, by which the complexes are linked to 1 D bands.  相似文献   

8.
[Cd(H2O)3(C5H6O4)]·2H2O ( 1 ) and Cd(H2O)2(C6H8O4) ( 2 ) were prepared from reactions of fresh CdCO3 precipitate with aqueous solutions of glutaric acid and adipic acid, respectively, while Cd(H2O)2(C8H12O4) ( 3 ) crystallized in a filtrate obtained from the hydrothermal reaction of CdCl2·2.5H2O, suberic acid and H2O. Compound 1 consists of hydrogen bonded water molecules and linear {[Cd(H2O)3](C5H6O4)2/2} chains, which result from the pentagonal bipyramidally coordinated Cd atoms bridged by bis‐chelating glutarato ligands. In 2 and 3 , the six‐coordinate Cd atoms are bridged by bis‐chelating adipato and suberato ligands into zigzag chains according to {[Cd(H2O)3](C5H6O4)2/2} and {[Cd(H2O)2](C8H12O4)2/2}, respectively. The hydrogen bonds between water and the carboxylate oxygen atoms are responsible for the supramolecular assemblies of the zigzag chains into 3D networks. Crystallographic data: ( 1 ) P1¯ (no. 2), a = 8.012(1), b = 8.160(1), c = 8.939(1) Å, α = 82.29(1)°, β = 76.69(1)°, γ = 81.68(1)°, U = 559.6(1) Å3, Z = 2; ( 2 ) C2/c (no. 15), a = 16.495(1), b = 5.578(1), c = 11.073(1) Å, β = 95.48(1)°, U = 1014.2(1) Å3, Z = 4; ( 3 ) P2/c (no. 13), a = 9.407(2), b = 5.491(1), c = 11.317(2) Å, β = 95.93(3)°, U = 581.4(2) Å3, Z = 2.  相似文献   

9.
Three new oxo‐centered trinuclear mixed‐bridged carboxylate complexes with terminal unsaturated ligands ([M2M′(μ3‐O)(μ‐O2C3H3)5(μ‐O4C6H7)(O2C3H3) (H2O)2]·2H2O [M = Fe, M′ = Fe ( 1 ); M = Fe, M′ = Cr ( 2 ); M = Cr, M′ = Fe ( 3 )]) have been synthesized and characterized by means of elemental analyses, IR spectra and crystal structure analyses. The compounds crystallize isotypically in the orthorhombic space group type Pbcn with a = 24.622(3) Å, b = 16.304(2) Å, c = 17.491(2) Å, V = 7021.5(15) Å3 ( 1 ), a = 24.708(5) Å, b = 16.290(2) Å, c = 17.394(2) Å, V = 7001.0(18) Å3 ( 2 ), a = 24.611(4) Å, b = 16.300(3) Å, c = 17.359(3) Å, V = 6964(2) Å3 ( 3 ), and Z = 8. The infrared spectra show resolved bands arising from νasym(OCO) and νsym(OCO) vibrations of monodentate and bridging carboxylate ligands along with those of νasym(M2M′O) vibrations in the complexes.  相似文献   

10.
Two new glutarato bridged coordination polymers {[Mn(phen)]2(C5H6O4)4/2} ( 1 ) and {[Zn(phen)(H2O)](C5H6O4)2/2}· H2O ( 2 ) were structurally characterized on the basis of single crystal X‐ray diffraction data. Crystal data: ( 1 ) P2/c (no. 13), a = 10.340(2)Å, b = 10.525(2)Å, c = 13.891(2)Å, β = 98.31(1)°, U = 1495.9(5)Å3, Z = 2; ( 2 ) P21/n (no. 14), a = 6.738(1)Å, b = 25.636(3)Å, c = 10.374(1)Å, β = 106.13(1)°, U = 1721.4(4)Å3, Z = 4. Complex 1 consists of 1D ribbon‐like {[Mn(phen)]2(C5H6O4)4/2} chains, in which the [Mn(phen)] units were interlinked by glutarato ligands to generate 8‐ and 16‐membered rings. The Mn atoms are octahedrally coordinated by two N atoms of one phen ligand and four O atoms of three glutarato ligands with d(Mn‐N) = 2.270, 2.276Å, d(Mn‐O) = 2.114—2.283Å. Through the interchain π‐π stacking interactions, the 1D chains are assembled into 2D puckered layers, which are further held together by interlayer π‐π stacking interactions into a 3D network. Complex 2 is built up by 1D {[Zn(phen)(H2O)](C5H6O4)2/2} linear chains and hydrogen bonded H2O molecules. The Zn atoms are coordinated by two N atoms of one phen ligand and three O atoms of one H2O molecule and two glutarato ligands to form slightly elongated trigonal bipyramids with the water O atom and one phen N atom at the apical positions (d(Zn‐N) = 2.101, 2.168Å, d(Zn‐O) = 1.991—2.170Å). The 1D linear chains result from [Zn(phen)(H2O)] units bridged by bis‐monodentate glutarato ligands. The resulting 1D chains are assembled by π‐π stacking interactions into 2D layers, between which the hydrogen bonded H2O molecules are situated.  相似文献   

11.
Three adipato bridged mixed ligand catena complexes {[M(phen)(H2O)]‐(C6H8O4)2/2} with M = NiII ( 1 ), CuII ( 2 ), ZnII ( 3 ) were synthesized. Structure determination based on X‐ray diffraction shows that they crystallize isostructurally in the monoclinic space group C2/c (no. 15) with cell dimensions of: 1 a = 22.451(4)Å, b = 9.041(1)Å, c = 17.440(2)Å, β = 103.41(1)°, U = 3443.4(9)Å3, Z = 8; 2 a = 22.479(2)Å, b = 9.067(1)Å, c = 17.494(3)Å, β = 103.67(1)°, U = 3464.6(8)Å3, Z = 8; 3 a = 22.635(3)Å, b = 9.052(1)Å, c = 17.571(3)Å, β = 103.24(1)°, U = 3504.5(9)Å3, Z = 8. The crystal structure consists of 1D {[M(phen)(H2O)]‐(C6H8O4)2/2} zigzag chains, in which the metal atoms are all octahedrally coordinated by two N atoms of one phen ligands and four O atoms of one H2O molecule and two adipato ligands. The zigzag chains are held together by interchain π‐π stacking interactions and interchain hydrogen bonds.  相似文献   

12.
Reaction of MnSO4 · H2O, 2,2′‐bipyridine (bpy), suberic acid and Na2CO3 in CH3OH/H2O yielded a mixture of [Mn2(H2O)4(bpy)2(C8H12O4)2] · 2 H2O ( 1 ) and [Mn(H2O)2‐ (bpy)(C8H12O4)2/2] · H2O ( 2 ). In both complexes, the Mn atoms are octahedrally coordinated by two N atoms of one bpy ligand and four O atoms of two trans positioned H2O molecules and two suberato ligands (d(Mn–O) = 2.107–2.328 Å; d(Mn–N) = 2.250–2.330 Å). The bis‐monodentate suberato ligands bridge Mn atoms to form dinuclear [Mn2(H2O)4(bpy)2(C8H12O4)2] complex molecules in 1 and 1D [Mn(H2O)2(bpy)(C8H12O4)2/2] chains in 2 . Via the intermolecular hydrogen bondings and π‐π stacking interactions, the dinuclear molecules in 1 are assembled into 2D networks parallel to (100), between which the crystal H2O molecules are sandwiched. The polymeric chains in 2 are linked together by interchain hydrogen bonding and π‐π stacking interactions into 3D networks with the crystal H2O molecules located in tunnels along [010]. Crystal data for 1 : P21/c (no. 14), a = 10.092(1) Å, b = 11.916(2) Å, c = 17.296(2) Å, β = 93.41(1)° and Z = 2. Crystal data for 2 : P21/c (no. 14), a = 11.176(2) Å, b = 9.688(1) Å, c = 37.842(6) Å, β = 90.06(1)° and Z = 8.  相似文献   

13.
Two mixed ligand ZnII complexes [Zn(phen)L2/2](H2L) ( 1 ) and [(phen)2Zn(μ‐L)Zn(phen)2]L � 11H2O ( 2 ) with H2L = suc‐cinic acid were prepared and crystallographically characterized. Complex 1 crystallizes in the monoclinic space group C2/c (no. 15) with a = 13.618(1) Å, b = 9.585(1) Å, c = 15.165(1) Å, β = 96.780(6)°, V = 1965.6(3)Å3, Z = 4 and complex 2 in the triclinic space group P 1¯ (no. 2) with a = 12.989(2)Å, b = 14.464(2)Å, c = 18.025(3)Å, α = 90.01(1)°, β = 109.69(1)°, γ = 112.32(1)°, V = 2917.4(8) Å3, Z = 2. 1 consists of succinic acid molecules and 1D zigzag [Zn(phen)(C4H4O4)2/2] polymeric chains, in which the tetrahedrally coordinated Zn atoms are bridged by bis ‐ monodentate succinato ligands. Succinic acid molecules play an important role in supramolecular assemblies of the polymeric chains into 2D layers as well as in the stacking of 2D layers. 2 is composed of [(phen)2Zn(μ‐L)Zn(phen)2]2+ complex cations, succinate anions and hydrogen bonded water molecules. Within the divalent cations, Zn atoms are octahedrally coordinated by four N atoms of two phen ligands and two O atoms of one bis‐chelating succinato ligand. Through the intermolecular π—π stacking interactions, the complex cations form positively charged 2D layers, between which the noncoordinating succinate anions and water molecules are sandwiched.  相似文献   

14.
The crystal structures of two (hexafluoroacetylacetonato)copper(II) complexes with 3-imidazoline nitroxide radicals, [Cu(C5HF6O2)2]3 (C14H19N2O)2 (I) and [Cu(C5HF6O2)2]3 (C13H17N2O3)2 (II), have been determined. The compounds are triclinic (PI, Z=1) with a=8.730(2), b=10.357(2), c=21.996(5) Å, α=103.24(2), β=94.03(2), γ=95.04(2)0, V=1920(1) Å3 for I and a=8.679(2), b=14.769(4), c=15.368(4) Å, α=85.58(2), β=96.25(1), γ=104.60(1)0, V=1893(1) Å3 for II. Complexes I and II are molecular. The trinuclear molecules are centrosymmetric relative to the Cu(1) atom. The coordination polyhedron of Cu(1) is a square bipyramid formed by the O atoms of the hfac anions and nitroxide radicals (average Cu?Ohfac 1.92(1) for I and 1.93(1) Å for II; Cu?ON?O 2.47(1) for I and 2.56(1) Å for II). The coordination polyhedron of Cu(2) is a trigonal bipyramid formed by the O atoms of the hfac anions (Cu?Ohfac 1.91(1)–2.12(1) for I and 1.91(1)–2.09(1) Å for II) and an imine N atom of the radical (Cu(2)?N(2) 2.00(1) for I and 2.03(1) Å for II). The molecules are linked by van der Waals forces.  相似文献   

15.
Methyliminodiacetic acid (H2Mida) and imidazole react with copper(II) to form crystals of the square pyramidal complex [Cu(Mida)Im]. One N and two O atoms of the Mida ligand (Cu-N 2.010(1) Å, Cu-O 1.955(1) Å, and 1.978(1) Å) and the imidazole N atom (1.950(1) Å) lie at the base of the pyramid. The carboxyl O atom of the neighboring complex lies at the apical position (2.411(1) Å); in this way the individual complexes are linked into infinite zigzag chains. Substitution of imidazole by 1,10-phenanthroline gave [Cu2(Mida)2(Phen)H2O]·2H2O crystals with two nonequivalent centrosymmetric octahedral anions [Cu(Mida)2]2? of face type (Cu-N 2.023 Å and 2.028(2) Å, Cu-Oax 2.579 Å and 2.530(2) Å, Cu-Obas 1.952 Å and 1.936(2) Å). The anions serve as bridges in chains between the [Cu(Phen)H2O]2+ cation fragments to which they are bonded by their axial carboxyl groups. The Cu atom of the cation has a [4+1] environment (with the H2O molecule lying on the axis of the pyramid, and with two N atoms of the ligand and two O atoms of the anions lying at the base).  相似文献   

16.
Syntheses of the sky blue complex compounds [Ni(H2O)3(phen)(C5H6O4)] · H2O ( 1 ) and [Ni(H2O)2(phen)(C5H6O4)] ( 2 ) were carried out by the reactions of 1,10‐phenanthroline monohydrate, glutaric acid, NiSO4 · 6 H2O and Na2CO3 in CH3OH/H2O at pH = 6.9 and 7.5, respectively. The crystal structure of 1 (P 1 (no. 2), a = 14.289 Å, b = 15.182 Å, c = 15.913 Å, α = 67.108°, β = 87.27°, γ = 68.216°, V = 2934.2 Å3, Z = 2) consists of hydrogen bonded [Ni(H2O)3‐ (phen)(C5H6O4)]2 dimers and H2O molecules. The Ni atoms are octahedrally coordinated by two N atoms of one phen ligand, three water O atoms and one carboxyl O atom from one monodentate glutarato ligand (d(Ni–N) = 2.086, 2.090 Å; d(Ni–O) = 2.064–2.079 Å). Through the π‐π stacking interactions and intermolecular hydrogen bonds, the dimers are assembled to form 2 D layers parallel to (0 1 1). The crystal structure of 2 (P21/n (no. 14), a = 7.574 Å, b = 11.938 Å, c = 18.817 Å, β = 98.48°, V = 1682.8 Å3, Z = 4) contains [Ni(H2O)2(phen)(C5H6O4)2/2] supramolecular chains extending along [010]. The Ni atoms are octahedrally coordinated by two N atoms of one phen ligand, two water O atoms and two carboxyl O atoms from different bis‐monodentate glutarato ligands with d(Ni–N) = 2.082, 2.105 Å and d(Ni–O) = 2.059–2.087 Å. The supramolecular chains are assembled into a 3 D network by π‐π stacking interactions and interchain hydrogen bonds. A TG/DTA of 2 shows two endothermic effects at 132 °C and 390 °C corresponding to the complete dehydration and the lost of phen.  相似文献   

17.
The syntheses of homo‐ and heteropentanuclear coordination compounds with the molecular formulae [MZn4(L)4(L′)6] (M = CoII or Zn; L = chloride or acac; L′ = 1,2,3‐benzotriazolate) are reported. These compounds display a highly symmetric coordination unit consisting of a central metal ion (M = CoII or Zn) which is octahedrally coordinated by 6 tridentate benzotriazolate‐type ligands via their N(2) donor atom. The benzotriazolate ligands span the edges of an imaginary tetrahedron thus providing four coordination sites at the corners of the tetrahedron, which are then filled by four zinc ions. The coordination shell of the latter are completed by bidentate acetylacetonate (acac) ligands or by chloride anions, respectively. The solid state structures of two homopentanuclear metal complexes, namely [Zn5(acac)4(bta)6]·4C6H12 ( 1 ) (acacH = acetylacetone; btaH = 1,2,3‐benzotriazole), and [Zn5Cl4(Me2bta)6]·2DMF ( 2 ) (Me2btaH = 5,6‐dimethyl‐1,2,3‐benzotriazole) were determined by single crystal X‐ray structure analysis. The heteropentanuclear metal complex [CoIIZn4Cl4(Me2bta)6]·2DMF ( 3 ) is isostructural with compound 2 . Compound 1 was synthesized from stoichiometric amounts of Zn(acac)2 and btaH employing dichloromethane as solvent. The synthesis of compound 2 requires addition of an auxiliary base to the DMF solution of anhydrous ZnCl2 and Me2btaH. For compound 3 a stoichiometric ratio of Co(NO3)2·6H2O, anhydrous ZnCl2 and Me2btaH was employed during synthesis. Phase purity of all compounds was proved by X‐ray powder diffraction (XRPD) analysis, IR spectroscopy, and elemental analysis. Crystal data: for 1 (C80H100N18O8Zn5): monoclinic, space group P21/c with a = 23.781(5) Å, b = 16.000(3) Å, c = 25.170(5) Å, β = 115.29(3)°, V = 8659(3) Å3, Z = 4, ρ = 1.357 g cm?3. For 2 (C54H62Cl4N20O2Zn5): cubic, space group with a = 23.367(3) Å, V = 12759(3) Å3, Z = 8, ρ = 1.553 g cm?3. For 3 (C54H62Cl4CoN20O2Zn4): cubic, space group with a = 23.443(3) Å, V = 12884(3) Å3, Z = 8, ρ = 1.532 g cm?3.  相似文献   

18.
Reactions of phenanthroline (phen) and Er(NO3)3 · 5 H2O or Lu(NO3)3 · H2O in CH3OH/H2O yield [Ln2(phen)4(H2O)4(OH)2](NO3)4(phen)2 with Ln = Er ( 1 ), Lu ( 2 ). Both isostructural complex compounds crystallize in the triclinic space group P 1 (no. 2) with the cell dimensions: a = 11.257(2) Å, b = 11.467(2) Å, c = 14.069(2) Å, α = 93.93(2)°, β = 98.18(1)°, γ = 108.14(1)°, V = 1696.0(6) Å3, Z = 1 for ( 1 ) and a = 11.251(1) Å, b = 11.476(1) Å, c = 14.019(1) Å, α = 93.83(1)°, β = 98.27(1)°, γ = 108.27(1)°, V = 1689.0(3) Å3, Z = 1 for ( 2 ). The crystal structures consist of the hydroxo bridged dinuclear [Ln2(phen)4(H2O)4(OH)2]4+ complex cations, hydrogen bonded NO3 anions and π‐π stacking (phen)2 dimers. The rare earth metal atoms are coordinated by four N atoms of two phen ligands and four O atoms of two H2O molecules and two μ‐OH groups to complete tetragonal antiprisms. Via two common μ‐OH groups, two neighboring tetragonal antiprisms are condensed to a centrosymmetric dinuclear [Ln2(phen)4(H2O)4(OH)2]4+ complex cation. Based on π‐π stacking interactions and hydrogen bonding, the complex cations and (phen)2 dimers form 2 D layers parallel to (1 0 1), between which the hydrogen bonded NO3 anions are sandwiched. The structures can be simplified into a distorted CsCl structure when {[Ln2(phen)4(H2O)4(OH)2](NO3)4} and (phen)2 are viewed as building units.  相似文献   

19.
The reaction of CuCl2 · 2 H2O, 1,10‐phenanthroline (phen), suberic acid and Na2CO3 in a CH3CN–H2O solution yielded blue needle‐like crystals of [Cu2(phen)2(C8H12O4)2] · 3 H2O. The crystal structure (monoclinic, P21/n, a = 10.756(2) Å, b = 9.790(2) Å, c = 18.593(4) Å, β = 91.15(3)°, Z = 2, R = 0.043, wR2 = 0.1238) consists of suberato‐bridged [Cu2(phen)2(C8H12O4)4/2] layers and hydrogen bonded H2O molecules. The Cu atoms are coordinated by two N atoms from one bidentate chelating phen ligand and three carboxyl O atoms from different suberato ligands to form distorted [CuN2O3] square‐pyramids with one carboxyl O atom at the apical position (d(Cu–N) = 2.017(2), 2.043(3) Å, basal d(Cu–O) = 1.936(2), 1.951(2) Å and axial d(Cu–O) = 2.389(2) Å). Two [CuN2O3] square‐pyramids are condensed via a common O–O edge to a centrosymmetric [Cu2N4O4] dimer with the Cu…Cu distance of 3.406(1) Å indicating no interaction between Cu atoms. The resultant [Cu2N4O4] dimers are interlinked by the tridentate suberato ligands to form [Cu2(phen)2(C8H12O4)4/2] layers parallel to (101). These are assembled via π‐π stacking interactions into 3D network with H2O molecules in the tunnels extending in the [010] direction.  相似文献   

20.
Three new alkali metal transition metal sulfate‐oxalates, RbFe(SO4)(C2O4)0.5 · H2O and CsM(SO4)(C2O4)0.5 · H2O (M = Mn, Fe) were prepared through hydrothermal reactions and characterized by single‐crystal X‐ray diffraction, solid state UV/Vis/NIR diffuse reflectance spectroscopy, infrared spectra, thermogravimetric analysis, and powder X‐ray diffraction. The title compounds all crystallize in the monoclinic space group P21/c (no. 14) with lattice parameters: a = 7.9193(5), b = 9.4907(6), c = 8.8090(6) Å, β = 95.180(2)°, Z = 4 for RbFe(SO4)(C2O4)0.5 · H2O; a = 8.0654(11), b = 9.6103(13), c = 9.2189(13) Å, β = 94.564(4)°, Z = 4 for CsMn(SO4)(C2O4)0.5 · H2O; and a = 7.9377(3), b = 9.5757(4), c = 9.1474(4) Å, β = 96.1040(10)°, Z = 4 for CsFe(SO4)(C2O4)0.5 · H2O. All compounds exhibit three‐dimensional frameworks composed of [MO6] octahedra, [SO4]2– tetrahedra, and [C2O4]2– anions. The alkali cations are located in one‐dimensional tunnels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号