首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of the initiation and propagation of the ring‐opening metathesis polymerization of exo,exo‐5,6‐bis(methoxycarbonyl)‐7‐oxabicyclo[2.2.1]hept‐2‐ene catalyzed by Grubbs' catalyst (Cl2(PCy3)2Ru?CHPh) were measured by ultraviolet–visible and 1H NMR spectroscopy, respectively. Activation parameters for these processes were also determined. Although the ratio of the rate constant of initiation to the rate constant of propagation was determined to be less than 1 for this system, this polymerization showed many of the characteristics of a living system, including low polydispersities. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2125–2131, 2003  相似文献   

2.
A series of ethylene–vinyl chloride‐like copolymers were prepared by ring‐opening metathesis polymerization (ROMP). The route to these materials included the bulk polymerization of 5‐chlorocyclooctene and 5,6‐dichlorocyclooctene with the first‐generation Grubbs' catalyst, followed by diimide hydrogenation of the resulting unsaturated polymers. In addition, the amount of chlorine in these materials was varied by the copolymerization of 5‐chlorocyclooctene with cyclooctene. These materials were fully characterized by NMR (1H and 13C), gel permeation chromatography, and Fourier transform infrared spectroscopy. Finally, hydroboration was carried out on the ROMP product of 5‐chlorocyclooctene to yield a polymer, which was effectively a vinyl alcohol–vinyl chloride–ethylene terpolymer. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2107–2116, 2003  相似文献   

3.
An amino isopropoxyl strontium (Sr‐PO) initiator, which was prepared by the reaction of propylene oxide with liquid strontium ammoniate solution, was used to carry out the ring‐opening polymerization (ROP) of cyclic esters to obtain aliphatic polyesters, such as poly(ε‐caprolactone) (PCL) and poly(L ‐lactide) (PLLA). The Sr‐PO initiator demonstrated an effective initiating activity for the ROP of ε‐caprolactone (ε‐CL) and L‐lactide (LLA) under mild conditions and adjusted the molecular weight by the ratio of monomer to Sr‐PO initiator. Block copolymer PCL‐b‐PLLA was prepared by sequential polymerization of ε‐CL and LLA, which was demonstrated by 1H NMR, 13C NMR, and gel permeation chromatography. The chemical structure of Sr‐PO initiator was confirmed by elemental analysis of Sr and N, 1H NMR analysis of the end groups in ε‐CL oligomer, and Fourier transform infrared (FTIR) spectroscopy. The end groups of PCL were hydroxyl and isopropoxycarbonyl, and FTIR spectroscopy showed the coordination between Sr‐PO initiator and model monomer γ‐butyrolactone. These experimental facts indicated that the ROP of cyclic esters followed a coordination‐insertion mechanism, and cyclic esters exclusively inserted into the Sr–O bond. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1934–1941, 2003  相似文献   

4.
Several new poly(pyridinium salt)s with quinoline diamine moieties in their backbones with tosylate and triflimide counterion were prepared by either a ring‐transmutation polymerization reaction with bis(pyrylium tosylate) with a series of isomeric quinoline diamines in dimethyl sulfoxide (DMSO) for 48 h at 130–140 °C or a metathesis reaction of the tosylate polymers with lithium triflimide in DMSO at about 60 °C. Their chemical structures were confirmed by FTIR, 1H and 13C NMR spectroscopy, and elemental analysis. Their number‐average molecular weights (Mn) were in the range of 18,000–58,000, and their polydispersities were in the range of 1.12–1.53 as determined by gel permeation chromatography. They had thermal stability in the temperature range of 353–455 °C and glass‐transition temperatures >240 °C. They had good solubility in common organic solvents and were characterized with polarizing optical microscopy (POM) studies for their lyotropic liquid‐crystalline properties. Their light‐emission properties were examined by spectrofluorometry in both the solution and film states. Their quantum yields were also determined. Additionally, their morphologies in the thin‐film states and melt‐drawn fibers were examined with POM, scanning electron microscopy, and transmission electron microscopy techniques. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
Precise graft copolymer architectures were achieved by combining the macromonomer technique with the acyclic diene metathesis (ADMET) reaction. These well‐defined copolymer structures were the result of proper monomer design before metathesis polymerization. Features such as length of the graft, nature, and concentration of the graft site along the backbone were manipulated via the combination of living atom transfer radical polymerization methods with ADMET chemistry. Furthermore, the physical behavior of these materials was altered such that they presented dissimilar thermal properties of either the homopolymers or random copolymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2816–2827, 2003  相似文献   

6.
Several novel poly(pyridinium salt)s with heterocyclic pyridine moieties in their backbones with tosylate and triflimide counterions were prepared by either ring‐transmutation polymerization reaction of phenylated‐bis(pyrylium tosylate) with isomeric pyridine diamines of 4‐phenyl‐2,6‐bis(4‐aminophenyl)pyridine in dimethyl sulfoxide (DMSO) for 48 h at 130–140 °C or by metathesis reaction of the respective tosylate polymers with lithium triflimide in DMSO at about 60 °C. Their chemical structures were characterized by FTIR, 1H, 13C NMR spectroscopy, and elemental analysis. Their number‐average molecular weights (Mn) were in the range of 8,000–51,000 and their polydispersities in the range of 1.18–2.13 as determined by gel permeation chromatography. They had excellent thermal stabilities of 340–458 °C and high glass transition temperatures >200 °C. As they showed good solubilities in common organic solvents, their solution properties were also characterized for their lyotropic liquid‐crystalline properties with polarizing optical microscopy (POM) studies. Their photoluminescent properties were examined by using a spectrofluorometer in both solution and solid states. Their quantum yields were rather low, which were in the range of 1.3–2.0%. Additionally, hand‐drawn fibers from the melts were examined to determine their morphologies with a number of microscopic techniques including POM, scanning electron microscopy, and transmission electron microscopy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

7.
Various ladder‐like structured poly(phenyl‐co‐methacryl silsesquioxane)s (LPMSQ)s with high molecular weight (Mw = 10,000 ~ 40,000) were synthesized by direct hydrolysis and polymerization in the presence of base catalyst at 25 °C. Synthesized LPMSQs mainly showed ladder‐like structure and photo‐cure reaction by 100 mW/cm2 (360 nm) for 10 s without any photo‐cure initiators. Chemical composition and structural analysis of the obtained LPMSQs were characterized using 1H NMR, 29Si NMR, Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), and X‐ray diffraction (XRD). Physical properties of LPMSQs before and after photcuring were analyzed by Nanoindentation. Surface modulus increased to 8GPa and hardness of thin films increased from 100 to 400 MPa. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
Polyamides from isophthaloyl chloride and 1,3‐diamino‐4‐chlorobenzene with diverse constitutional order were obtained in a one‐stage synthesis varying the polymerization temperature and the monomer mixing modes. The constitutional order was calculated by 1H and 13C NMR spectroscopies. A model to determine the constitutional isomerism in these polycondensates was applied with the relevant kinetic reaction parameters obtained from the model reactions. The Monte Carlo technique was used to model the constitution along the polycondensation reaction as a function of the average polymerization degree. Constitution was determined by kinetic factors and not by thermodynamic ones. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1202–1215, 2003  相似文献   

9.
Cr catalysts supported on silica, zeolite NaY, and charcoal were prepared with two different methods. They were characterized and examined in the polymerization of ethene. Cyclic voltammetry, electron spin resonance, X‐ray photoelectron spectroscopy and silicon‐29 magic‐angle spinning nuclear magnetic resonance spectroscopy were used to characterize them, demonstrating that Cr is not in a single oxidation state, that the distribution among the various oxidation states depends on the history of the sample, and that even for a single oxidation state a variety of different environments can occur. In the polymerization of ethene, the supported Cr catalysts exhibited activity values varying from 103 to 105 gPE · molCr?1 · [M]?1 · h?1, depending on the choice of the support and on the method by which the Cr is placed on it. Silica seemed to be the most efficient support for Cr for this reaction. However, the zeolite‐supported catalysts also showed reasonable activity values (Ap ? 104 units) and presented the advantage of having a strong interaction between the Cr and the support, which may prevent leaching of the cation into the surrounding environment. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3768–3780, 2003  相似文献   

10.
We have used Grignard metathesis polymerization to prepare poly(3‐hexylthiophene)‐based copolymers containing electron‐withdrawing 4‐tert‐butylphenyl‐1,3,4‐oxadiazole‐phenyl moieties as side chains. We characterized these copolymers using 1H and 13C nuclear magnetic resonance spectroscopy, thermogravimetric analysis, and gel permeation chromatography. The band gap energy of copolymer was determined from the onset of the optical absorption. The quenching effects were observed in the photoluminescence spectra of the copolymers incorporating pendant electron‐deficient 1,3,4‐oxadiazole moieties on the side chains. The photocurrents of devices were enhanced in the presence of an optimal amount of the 1,3,4‐oxadiazole moieties, thereby leading to improved power conversion efficiencies. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3331–3339, 2010  相似文献   

11.
Poly(p‐nitrophenylacrylate‐co‐methacrylamide) and poly(p‐Nitrophenylacrylate‐coN,N′‐isopropylacrylamide) reactive microgels were synthesized by precipitation polymerization. The process was followed qualitatively by infrared spectroscopy (ATR‐FTIR) and microgels composition was determined by nuclear magnetic resonance (1H NMR). Scanning electron microscopy of obtained colloidal particles showed strictly spherical morphologies with a moderate polydispersity. The average hydrodynamic particle diameter and particle size distributions were measured by quasi‐elastic light scattering and the particle size distributions obtained ranged from 100 to 600 nm. Several synthetic parameters affect the particle size of these materials and thus, indirectly, their properties and future applications. In this article, we report the influence of different polymerization reaction conditions in the final microgel dimensions. For example, we observed that the different solvent‐comonomer affinity induced a significant change in swollen particle size of the copolymeric microgels. On the other hand, the crosslinking density limited the particle sizes, but an excess of crosslinker content in the reaction mixture resulted in the opposite effect. Finally, we also studied the influence of initiator content in the mean particle size. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3833–3842, 2007  相似文献   

12.
Polyethylene produced by a vanadium-based polymerization catalyst contains long-chain branching as determined by NMR and rheology, even though the polymer has very low levels of vinyl unsaturation. A new mechanism is proposed for the formation of the long-chain branching, which involves C H bond activation of the polyethylene backbone through a σ-bond metathesis reaction, followed by ethylene insertion at the new V C bond. Consistent with the proposed C H bond activation mechanism, the polymerization catalyst was also found to insert ethylene into the C H bonds of alkanes such as heptane. A bridged metallocene catalyst was also found to activate C H bonds of alkanes suggesting this new mechanism may explain the formation of long-chain branching in some metallocene-produced polyethylene. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2889–2898, 1998  相似文献   

13.
ABA block copolymers of methyl methacrylate and methylphenylsilane were synthesized with a methodology based on atom transfer radical polymerization (ATRP). The reaction of samples of α,ω‐dihalopoly(methylphenylsilane) with 2‐hydroxyethyl‐2‐methyl‐2‐bromoproprionate gave suitable macroinitiators for the ATRP of methyl methacrylate. The latter procedure was carried out at 95 °C in a xylene solution with CuBr and 2,2‐bipyridine as the initiating system. The rate of the polymerization was first‐order with respect to monomer conversion. The block copolymers were characterized with 1H NMR and 13C NMR spectroscopy and size exclusion chromatography, and differential scanning calorimetry was used to obtain preliminary evidence of phase separation in the copolymer products. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 30–40, 2003  相似文献   

14.
Partially sulfonated poly(aryl ether sulfone) (PESS) was synthesized and methacrylated via reaction with glycidyl methacrylate (PESSGMA) and cross‐linked via radical polymerization with styrene and vinyl‐phosphonic acid (VPA). The chemical structures of the synthesized pre‐polymers were characterized via FTIR and 1H NMR spectroscopic methods and molecular weight was determined via GPC. Membranes of these polymers were prepared via solution casting method. The crosslinking of the PESS polymer reduced IEC, proton conductivity, swelling in water, and methanol permeability of the membranes while increasing the modulus and the glass transition temperature. However, the introduction of the VPA comonomer increased the proton conductivity while maintaining excellent resistance to methanol cross‐over, which was significantly higher as compared with both PESS and the commercial Nafion membranes. Membranes of PESSGMA copolymers incorporating VPA, exhibited proton conductivity values at 60 °C in the range of 16–32 mS cm−1 and methanol permeability values in the range of 6.52 × 10−9 – 1.92 × 10−8 cm2 s−1. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 558–575  相似文献   

15.
The synthesis of magnetic core–shell nanoparticles consisting of magnetite cores surface‐functionalized by glycolic acid covered by polylactic acid was performed by applying the “grafting‐from” strategy, where the polymerization is initiated from the particle surface. The surface initiated ring‐opening polymerization of D,L ‐lactide was initiated by tin (II) 2‐ethylhexanoate using microwave irradiation. Core–shell nanoparticles of high colloidal stability in water were obtained in this way. The morphology of the magnetic core–shell nanostructure was determined by transmission electron microscopy, and the chemical structure was elucidated by Fourier transform infrared spectroscopy (FTIR) and X‐ray photoelectron spectroscopy. Magnetic measurements revealed superparamagnetic behavior and high magnetization values. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
New crosslinked cellulose‐based plastic films were synthesized with olefin metathesis as a crosslinking reaction. Microcrystalline cellulose was first dissolved in a lithium chloride/N,N‐dimethylacetamide solvent system and acylated by ω‐undecenoyl chloride under microwave irradiation with N,N‐dimethyl‐4‐aminopyridine as the catalyst. Cellulose unsaturated fatty acyl esters with a degree of substitution (DS) ranging from 1.4 to 2.0 were then crosslinked by olefin metathesis with a first generation Grubbs catalyst. Crosslinking ratios (T) ranging from 20 to 90% were obtained for low catalyst amounts (<1.2%), but gels appeared when T was too high. To avoid this gel formation, cellulose was acylated with a mixture of lauroyl and ω‐undecenoyl chlorides. This internal dilution allowed us to obtain films of every case and various T (varying from 10 to 80% for a catalyst amount below 3.5%). Plastics were characterized by Fourier transform infrared (FTIR) spectroscopy, and the fatty acid mixture resulting from the hydrolysis of cellulose esters were analyzed by gas chromatography (GC) and NMR spectroscopy. Mechanical properties showed that the elastic modulus and tensile failure stress was higher when the plastic films were crosslinked. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 407–418, 2005  相似文献   

17.
The effect of stretching on the thermal behavior of acrylic fibers was investigated with differential scanning calorimetry (DSC), thermogravimetric analysis, and Fourier transform infrared spectroscopy (FTIR). In air atmosphere, the peak temperature of the dynamic DSC thermogram was significantly lowered from 289 to 273 °C when the gel fibers (undrawn) were drawn to a draw ratio of 11.2. However, the initiation temperature was unchanged at 202 °C. The shoulder in the region of 310–380 °C was gradually converted to a sharp peak during the drawing process. However, the dynamic DSC in nitrogen atmosphere did not change in all cases. In air atmosphere the total heat liberated, ΔH, for gel fiber was 851 J g?1. However, upon drawing to 11.2, ΔH increased to 1580 J g?1 showing an increase in the total chemical changes. An intimate relationship of chemical changes during the heating process was observed with FTIR of heated samples at various temperatures. The initiation of a DSC exotherm in air begins with nitrile cyclization, and subsequently dehydrogenation was initiated between 220 and 260 °C. An increase in the X‐ray orientation factor and sonic modulus gave a correlation between the stretching draw ratio and crystalline/overall molecular orientation. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2949–2958, 2003  相似文献   

18.
A diethylphosphonate‐containing benzoxazine compound (DEP‐Bz) to be used as a multi‐functional reaction agent for preparation of high performance polybenzoxazine thermosetting resins has been reported. The chemical structure of DEP‐Bz has been characterized with FTIR, 1H NMR, and elemental analysis. The phosphonate groups of DEP‐Bz could convert into phosphonic acid groups which could catalyze the ring‐opening addition reaction of benzoxazines, to demonstrate the thermally latent catalytic effect of DEP‐Bz on the polymerization of benzoxazine compounds. Moreover, DEP‐Bz could also serve as a reactive‐type modifier for polybenzoxazines and other thermosets. DEP‐Bz modified polybenzoxazine resins have shown relatively low reaction temperature (about 190 °C), high mechanical strength with a storage modulus of about 3.0 GPa, and high flame retardancy with a limit oxygen index of about 32. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3523–3530  相似文献   

19.
Poly(3‐hexylthiophene)/graphene (P3HT/G) materials are synthesized using an in situ Grignard metathesis approach. The structural properties and spectroscopy of the materials are studied using NMR, FTIR, and UV–vis absorption spectroscopies, wide‐angle X‐ray scattering, atomic force microscopy and cyclic voltammetry. P3HT regioregularities ≥90% are observed in composites with approximate graphene compositions as high as 20% by weight. 1H and 13C NMR spectra of liquid phase dispersions reveal signals that are not observed in pristine P3HT. The intensity of these signals correlates with the graphene content, thereby indicating that the graphene is influencing the polymerization process. Anomalous features in the FTIR spectra of P3HT/G powders are also observed. AFM images of P3HT/G films show morphological differences between P3HT on graphene compared with P3HT domains on the silicon substrates. Cyclic voltammetry reveals a monotonic decrease in the energy of the HOMO and LUMO levels of P3HT with increasing graphene loading. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 60–76  相似文献   

20.
This article described the synthesis of cyclic poly(ε‐caprolactone) (PCL) via ring‐closing metathesis (RCM), ring closing enyne metathesis (RCEM), and “click” reaction of different difunctional linear PCL. Linear PCL precursors were prepared by ring‐opening polymerization (ROP) of ε‐caprolactone in bulk using 10‐undecen‐1‐ol or propargyl alcohol as the initiator, followed by reacting with corresponding acyl chloride containing vinyl or azido end group. The subsequent end‐to‐end intramolecular coupling reactions were performed under high dilution conditions. The successful transformation of linear PCL precursor to cyclic PCL was confirmed by Gel permeation chromatography, 1H NMR, and Fourier transform infrared measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3022–3033, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号