首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
The solubility, diffusivity, and permselectivity of propylene and propane in 40 different polyimides synthesized from 2,2‐bis(3,4‐decarboxyphenyl)hexafluoropropane dianhydride (6FDA) were determined at 298 K. The influence of the chemical structures on the physical and gas permeation properties of the 6FDA‐based polyimides was studied. The solubility of propylene in an unrelaxed volume of a polymer matrix mainly contributes to the total solubility of propylene for various 6FDA‐based polyimides. The diffusivity, the permeability of propylene, and the permselectivity in the propylene/propane mixed‐gas system depend on the solubility of propylene. This is thought to be associated with the penetrant‐induced plasticization effect. 6FDA‐based polyimides, which have a high glass‐transition temperature and a large fractional free volume, exhibit a high permeability with a relatively low permselectivity. Changing the number of  CH3 substituents in the phenylene linkage and changing the connectivity in the main chain are good ways of controlling the solubility of propylene and the corresponding permselectivity in the propylene/propane mixed‐gas system. Some 6FDA‐based polyimides restrict the solubility of propylene through the introduction of a  CONH linkage between the phenylene linkage; the  Cl substituent in the phenylene linkage at the diamine moiety exhibits a high separation performance in the mixed‐gas system. The polyimides are potentially useful membrane materials for the separation of propylene and propane in the petrochemical industry. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2525–2536, 2000  相似文献   

2.
Positron annihilation lifetime spectroscopy (PALS) was used to study the free volume behavior in the temperature range between 100 and 370 K in semicrystalline poly(ε‐caprolactone) (PCL). For the analysis of the spectra we used the well‐known routine MELT as well as the new program LT8.0, which allows both discrete and log‐normal distributed annihilation rates. From experiments, confirmed by the analysis of simulated spectra, we found that MELT returns too large values for the o‐Ps lifetime τ3 associated with too small intensities I3. This is due to the underestimation of the width of o‐Ps lifetime distribution in MELT (the spectra analyzed contained 3 million counts). The same effects were observed in the parameters obtained from the discrete term analysis. LT, however, returns, when allowing the o‐Ps lifetime to be distributed, rather accurate values for τ3, I3, and the width (standard deviation σ3) of the o‐Ps lifetime distribution. The effect of the glass transition, melting, and crystallization on the annihilation parameters was observed. These results were compared with differential scanning calorimetry (DSC) and pressure–volume–temperature (PVT) experiments. From this comparison, the number density of holes and the fractional free (hole) volume have been estimated. At a “knee” temperature Tk ≈ 1.5 Tg, a leveling off of the o‐Ps lifetime τ3 and a distinct decrease in the width, σ3, of its distribution was observed; the latter effect was detected for the first time. Fast motional processes and/or the disappearance of the dynamic heterogeneity of the glass and the transition to a homogeneous liquid are discussed as possible reasons for these effects. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3077–3088, 2003  相似文献   

3.
The temperature dependence of the mean size of nanoscale free‐volume holes, 〈Vh〉, in polymer blend system consisting of polar and nonpolar polymers has been investigated. The positron lifetime spectra were measured for a series of polymer blends between polyethylene (PE) and nitrile butadiene rubber (NBR) as a function of temperature from 100 to 300 K. The glass transition temperatures (Tg) for blends were determined from the ortho‐positronium (o‐Ps) lifetime τ3 and the mean size of free‐volume holes 〈Vh〉 versus temperature as a function of wt % of NBR. The Tgs estimated from the PALS data agree very well with those estimated from DSC in view of different time scales involved in the two measurements. Both DSC and PALS results for the blends showed two clear Tgs of a two‐phase system. Furthermore, from the variation of thermal expansivity of the nanoscale free‐volume holes, the thermal expansion coefficients of glass and amorphous phases were estimated. Variations of the o‐Ps formation probability I3 versus temperature for pure PE and blends with low wt % of NBR were interpreted on the basis of the spur reaction model of Ps formation with reference to the effects of localized electrons and trapping centers produced by positron irradiation. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 227–238, 2009  相似文献   

4.
The solubility, diffusivity, and permselectivity of 1,3-butadiene and n-butane in seven different polyimides synthesized from 2,2-bis (3,4-carboxyphenyl) hexafluoropropane dianhydride (6FDA) were determined at 298 K. The influence of chemical structures on physical and gas permeation properties of 6FDA-based polyimides was studied. Solubility of 1,3-butadiene in 6FDA-based polyimides can be described by a dual-mode sorption model. 1,3-Butadiene-induced plasticization is considered to be associated with the increasing permeabilities of 1,3-butadiene and n-butane and the decreasing permselectivity of 1,3-butadiene vs. n-butane in the mixed gas system containing a high concentration of 1,3-butadiene. It was found that controlling the solubility of 1,3-butadiene in an unrelaxed volume in 6FDA-based polyimides is very important to maintain the high permselectivity of 1,3-butadiene vs. n-butane in the mixed gas system. Changing the  C(CF3)2 linkage to a  CH2 ,  O linkage, removing methyl substituents at the ortho position of the imide linkage, and changing the p-phenylene linkage to an m-phenylene linkage in the main chains in some 6FDA-based polyimides are effective to decrease fractional free volume and restrict the solubility of 1,3-butadiene in the unrelaxed volume of a polymer matrix. The 6FDA-based polyimides restricting the solubility of 1,3-butadiene in an unrelaxed volume exhibit high separation performance in the 1,3-butadiene/n-butane mixed gas system compared with conventional glassy polymers and, therefore, are potentially useful membrane materials for the separation of 1,3-butadiene and n-butane in the petrochemical industry. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2941–2949, 1999  相似文献   

5.
The o‐Ps lifetime τ3 and the intensity I3 of ST‐AN copolymers and ST‐MMA copolymers have been determined by using the positron annihilation technique. The average free volume hole radius R is estimated according to Tao's and Eldrup's model. The result shows that the average free volume hole size mainly attributes to lateral group volume and polarity of macromolecular chain as well as polymerizing temperature, and the o‐Ps intensity I3 to the effect of the lateral group volume and the polarity. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 465–472, 1999  相似文献   

6.
A series of indan‐containing polyimides were synthesized, and their gas‐permeation behavior was characterized. The four polyimides used in this study were synthesized from an indan‐containing diamine [5,7‐diamino‐1,1,4,6‐tetramethylindan (DAI)] with four dianhydrides [3,3′4,4′‐benzophenone tetracarboxylic dianhydride (BTDA), 3,3′4,4′‐oxydiphthalic dianhydride (ODPA), (3,3′4,4′‐biphenyl tetracarboxylic dianhydride (BPDA), and 2,2′‐bis(3,4′‐dicarboxyphenyl) hexafluoropropane dianhydride (6FDA)]. The gas‐permeability coefficients of these four polyimides changed in the following order: DAI–BTDA < DAI–ODPA < DAI–BPDA < DAI–6FDA. This was consistent with the increasing order of the fraction of free volume (FFV). Moreover, the gas‐permeability coefficients were almost doubled from DAI–ODPA to DAI–BPDA and from DAI–BPDA to DAI–6FDA, although the FFV differences between the two polyimides were very small. The gas permeability and diffusivity of these indan‐containing polyimides increased with temperature, whereas the permselectivity and diffusion selectivity decreased. The activation energies for the permeation and diffusion of O2, N2, CH4, and CO2 were estimated. In comparison with the gas‐permeation behavior of other indan‐containing polymers, for these polyimides, very good gas‐permeation performance was found, that is, high gas‐permeability coefficients and reasonably high permselectivity. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2769–2779, 2004  相似文献   

7.
Aromatic polyamides based on poly(m‐xylylene adipamide) (MXD‐based polyamides) and poly(hexamethylene isophthalamide) (HMD‐based polyamides) were examined. Insight into the excellent gas‐barrier properties was obtained by the characterization of the effect of water sorption on the thermal transitions, density, refractive index, free‐volume hole size, and oxygen‐transport properties. Reversing the carbonyl position with respect to the amide nitrogen substantially lowered the oxygen permeability of MXD‐based polyamides in comparison with that of HMD‐based polyamides by facilitating hydrogen‐bond formation. The resulting restriction of conformational changes and segmental motions reduced diffusivity. The primary effect of water sorption was a decrease in the glass‐transition temperature (Tg) attributed to plasticization by bound water. No evidence was found to support the idea that sorbed water filled holes of free volume. When the polymer was in the glassy state, the drop in Tg accounted for hydration‐dependent changes in the density, refractive index, and free‐volume hole size. The correlation of the oxygen solubility with Tg and density confirmed the concept of oxygen sorption as filling holes of excess free volume. In some cases, water sorption produced a glass‐to‐rubber transition. The onset of rubbery behavior was associated with a minimum in the oxygen permeability. The glass‐to‐rubber transition also facilitated the crystallization of MXD‐based polymers, which complicated the interpretation of oxygen‐transport behavior at higher relative humidity. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1365–1381, 2005  相似文献   

8.
Permeability and solubility coefficients for H2, CO2, O2, CO, N2, and CH4 in polyimides prepared from 6FDA and methyl-substituted phenylenediamines were measured to investigate effects of the substituents on gas permeability and permselectivity. The methyl substituents restrict internal rotation around the bonds between the phenyl rings and the imide rings. The rigidity and nonplanar structure of the polymer chain, and the bulkiness of methyl groups make chain packing inefficient, resulting in increases in both diffusion and solubility coefficients of the gases. Polyimides from tetramethyl-p-phenylenediamine and trimethyl-m-phenylenediamine display very high permeability coefficients and very low permselectivity due to very high diffusion coefficients and very low diffusivity selectivity, as compared with the other polyimides having a similar fraction of free space. This suggests that these polyimides have high fractions of large-size free spaces.  相似文献   

9.
High‐quality positron lifetime measurements (70 million total counts) are reported for polyethylenes (PEs) of different crystallinities (Xc = 3–82%). The specific volumes of the crystalline and amorphous phases (Vc and Va, respectively) were estimated from density and wide‐angle X‐ray scattering (WAXS) experiments. Some samples (those with low values of Xc) were branched PEs, and those with high values of Xc were linear PEs for which Xc was varied with changes in the crystallization temperature. Both Vc and Va increase with decreasing Xc in the range 0% ≤ Xc ≤ 56% (the branched PEs) but are constant for Xc ≥ 56% (the linear PEs). The lifetime spectra were analyzed with the MELT and LIFSPECFIT routines. Artifacts that can appear in the spectrum analysis were checked via an analysis of computer‐generated spectra. Four lifetime components appeared in all of the PEs; the two long‐lived ones are attributed to pick‐off annihilation of ortho‐positronium (o‐Ps) in crystalline regions (τ3) and in holes of the amorphous phase (τ4). With increasing Xc, τ3 decreases from about 1.2 to 1 ns, τ4 decreases from 3.0 to 2.5 ns, and the intensity I4 decreases from 29 to 0%. An increase in I3 from 6 to 12% was observed. A comparison with simulations shows that the true I3 value approaches 0 for Xc → 0%. The decrease in I4 is weaker than the increase in Xc; this leads to the conclusion that the apparent specific o‐Ps yield in the amorphous phase I4Xc increases with Xc. Possible reasons for this surprising results are discussed. The fractional free hole volume [h = (Va ? Vocc)/Va, where Vocc is the crystalline occupied volume] was estimated from density and WAXS results. Between Xc = 0 and 56%, h decreases from 0.151 to 0.090, but it does not change further above Xc = 56%. The mean size (v) of the local free volumes (holes) estimated from τ4 decreases from 200 to 150 Å3. The number density of holes (Nh) calculated from these values (Nh = h/v) also decreases from 0.8 to 0.6 nm?3 in the range 0% ≤ Xc ≤ 56%. The values of Va, Vc, h, and Nh increase with an increasing degree of branching but do not vary for linear PEs. The possible influence of a crystalline–amorphous interfacial phase (three‐phase model) on the observed lifetime parameters is also discussed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 65–81, 2002  相似文献   

10.
The gas‐transport properties of poly[2,6‐toluene‐2,2‐bis(3,4‐dicarboxylphenyl)hexafluoropropane diimide] (6FDA‐2,6‐DAT) have been investigated. The sorption behavior of dense 6FDA‐2,6‐DAT membranes is well described by the dual‐mode sorption model and has certain relationships with the critical temperatures of the penetrants. The solubility coefficient decreases with an increase in either the pressure or temperature. The temperature dependence of the diffusivity coefficient increases with an increase in the penetrant size, as the order of the activation energy for the diffusion jump is CH4 > N2 > O2 > CO2. Also, the average diffusion coefficient increases with increasing pressure for all the gases tested. As a combined contribution from sorption and diffusion, permeability decreases with increases in the pressure and the kinetic diameter of the penetrant molecules. Even up to 32.7 atm, no plasticization phenomenon can be observed on flat dense 6FDA‐2,6‐DAT membranes from their permeability–pressure curves. However, just as for other gases, the absolute value of the heat of sorption of CO2 decreases with increasing pressure at a low‐pressure range, but the trend changes when the feed pressure is greater than 10 atm. This implies that CO2‐induced plasticization may occur and reduce the positive enthalpy required to create a site into which a penetrant can be sorbed. Therefore, a better diagnosis of the inherent threshold pressure for the plasticization of a glassy polymer membrane may involve examining the absolute value of the heat of sorption as a function of pressure and identifying the turning point at which the gradient of the absolute value of the heat of sorption against pressure turns from a negative value to a positive one. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 354–364, 2004  相似文献   

11.
The free volume behaviour of the polyacrylonitrile/lithium triflate system is investigated over the composition range 0–75 wt % salt. The addition of salt, up to 45 wt %, to the PAN polymer substantially increases the free volume as measured by the orthopositronium pickoff lifetime, τ3. Beyond this salt concentration (i.e., 45–70 wt %) the free volume remains approximately constant. This constant free volume region corresponds to a region of high ionic conductivity in the glassy state, making these materials polymer‐based fast ion conductors, that is, having a decoupling ratio Rτ ≫1. The high salt content in these fast ion conductors results in a high susceptibility to polar solvents such as water. For all compositions, water absorption results in a free volume increase attributed to plasticization; however, in the fast ion conducting region, a significantly larger free volume response due to plasticization is measured and may be connected to a percolation morphology in these samples. Salt addition is shown to lower the Tg, as measured by positron annihilation lifetime spectroscopy (PALS). Tg is 115°C for PAN and 85°C for 66 wt % lithium triflate. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 341–350, 2000  相似文献   

12.
The ortho‐positronium (o‐Ps) annihilation parameters, i.e. the mean o‐Ps lifetime, τ3, and the o‐Ps relative intensity, I3, in cis‐1,4‐polybutadiene (cis‐1,4‐PBD) and polyisobutylene (PIB) over a wide temperature range including the glass‐liquid transition have been measured by means of positron annihilation lifetime Spectroscopy (PALS). From them the free volume microstructural characteristics, i.e. the mean free volume hole size, Vh, and the free volume hole fraction, fh, have been determined via a semiempirical quantum‐mechanical model of o‐Ps in a spherical hole or a phenomenological model of volumetric and free volume hole properties, respectively. Consequently, the literature rheological data for both the above‐mentioned polymers have been related to the free volume hole fractions via the WLF‐Doolittle type equation. It has been found that i) in the case of PIB this equation holds over 130K above the glass transition temperature Tg and ii) in the case of cis‐PBD the WLF‐Doolitle equation is valid in the temperature range over 60K above 1.3Tg, but below 1.3Tg down to Tg the modified WLF‐Doolittle‐Macedo‐Litovitz equation with the additional activation‐energy term describes the shift factor data better.  相似文献   

13.
The positron annihilation lifetime measurements have been performed on a number of amorphous styrene–methyl acrylate copolymers and styrene–butyl methacrylate copolymers. The densities of copolymers were obtained with immersion method by using a capillary pycnometer and the average molecular weights were determined by gel chromatography. The lifetime τ3 of ortho‐positronium (o‐Ps) pick‐off annihilation have been found to correlate with side group volume and polarity of macromolecular chains in the copolymers, and relative intensity I3 is attributed mainly to the electron‐attracting groups trapping the spur electrons and positrons. The experimental results have been discussed on the basis of the structural variation of macromolecular chains. In addition, the PALS measurement as a function of time for polystyrene and several styrene–methyl acrylate copolymers has also been performed. The result shows that an electric field is built in polymers during extended positron annihilation spectroscopy measurement, and the field effect is a main factor which causes the decrease in I3 with time. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2476–2485, 1999  相似文献   

14.
Positron lifetime spectroscopy has been applied to study the temperature dependence of free-volume properties in a solvent-free polymer–salt complex polyethylene oxide (PEO) doped with ammonium iodide (NH4I, with NH ≈ 0.076) in the temperature range of 298–353 K. The observed lifetime spectra were resolved into three components and the longest lifetime, τ3, was associated with the pick-off annihilation of ortho-positronium (o-Ps) trapped by the free volume. The lifetime component, τ3, and its intensity, I3, both showed a significant variation with temperature, which followed a different course in the heating and cooling cycle. Changes in the temperature coefficient of τ3 and I3 were observed at T ≈ 328 K, the melting point of the sample. This behaviour is correlated to the temperature variation of the electrical conductivity. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 969–976, 1998  相似文献   

15.
Novolac epoxy resins cured with novolac resin, novolac acetate resin, novolac butyrate resin, and novolac phenylacetate resin named as EP, EPA, EPB, and EPP, respectively, were prepared. Their physical aging behavior at a Tg‐30 °C (30 °C below glass‐transition temperature) was examined by positron annihilation lifetime spectroscopy and differential scanning calorimetry. The ortho‐positronium annihilation lifetime τ3 variation extent of EP is less apparent than that of the other three esterified samples during physical aging. The time dependence of ops intensity I3 agreed with the Kohlrausch‐Williams‐Watts (KWW) equation. The relaxation time (τ0) and nonexponential parameter were calculated. The free volume and enthalpy relaxation rate characterized by the reciprocal of τ0 and ?ΔH/?logt, respectively, exhibit the same order—EPP > EPB > EPA > EP. These results suggest that the extend and rate of relaxation are not only related to the frozen free volume produced by quenching but also significantly influenced by segmental mobility of the network that attributed to the side‐group flexibility and their interaction with networks. This work also supports the fact that side‐group flexibility and the free‐volume fraction and distribution act in concert to control the water‐diffusion behavior in epoxy networks. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1135–1142, 2003  相似文献   

16.
The permeation behavior of different ethylene‐1‐hexene, ethylene‐1‐octene, and ethylene‐1‐dodecene copolymers synthesized with metallocene catalysts has been analyzed. These copolymers cover a wide range of comonomer contents, so their crystallinities display rather considerable variations. The results for the permeability to oxygen of the different ethylene copolymers show that the main factor influencing the permeability is the noncrystalline fraction, although some influence of the kind of comonomer may also be present, which may be explained by the fact that when the alkyl branch of the α‐olefin is longer, there is an increase in the free volume in the amorphous and interfacial regions, causing slightly higher values of the permeability coefficient. From the results with different gases, it follows that, in general, an increase in the size of the penetrant (as expressed by its kinetic diameter or critical molar volume) leads to an increase in the solubility and a decrease in the diffusion coefficient. A wide range of permeability values is covered by these ethylene copolymers, depending basically on the crystallinity of the sample, but the permselectivity of CO2 with respect to oxygen (and probably between other pairs of gases) does not differ very much among the different copolymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2174–2184, 2003  相似文献   

17.
Early stages of cyclic fatigue‐loaded polystyrene (PS) specimens were investigated by positron annihilation lifetime spectroscopy (PALS) at a maximum stress amplitude of 15 MPa. PALS yields information about the average unoccupied hole volume. A linear increase in the ortho‐positronium (o‐Ps) lifetime was observed in a range from 0 to 50,000 cycles. This increase occurs homogeneously distributed at different positions along a sample of 170 mm. The average unoccupied void volume increases by 1.2%. On the other hand, the o‐Ps intensity shows no systematic change upon cycling. The results suggest a homogeneous and linear increase in free volume prior to craze formation. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1991–1995, 2008  相似文献   

18.
Positron lifetime measurements, performed in the temperature range 80–300 K, are reported for polyethylene (PE) and polytetrafluoroethylene (PTFE). The lifetime spectra have been analyzed using the data processing routines LIFSPECFIT and MELT. Two long-lived components appear, which are attributed to pick-off annihilation of ortho-positronium in crystalline regions and at holes in the amorphous phase. The ortho-positronium lifetimes, τ3 and τ4, are used to estimate the crystalline packing density and the size of local free volumes in the crystalline and amorphous phases. The interstitial free volume in the crystals exhibits a weak linear increase with the temperature which is attributed to thermal expansion of the crystal unit cell. In the amorphous phase, the hole volume varies between 0.053 and 0.188 nm3 (PE) and between 0.152 and 0.372 nm3 (PTFE). Its temperature variation may be fitted by two straight lines, the intersection of which is used to estimate a glass transition temperature of Tg = 195 K for both PE and PTFE. The slopes of the free volume in the glassy and crystalline phases with the temperature correlate well with each other. The coefficients of thermal expansion of the hole volume are compared with the macroscopic volume change below and above the glass transition. From this comparison a fractional hole volume at Tg of 4.5 (PE) and 5.7% (PTFE) and a number of 0.73 (PE) and 0.36 (PTFE) × 1027 holes/m3 is estimated. Finally, it is found that the intensity of o-Ps annihilation in crystals shows a different temperature dependence to that in the amorphous phase. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1513–1528, 1998  相似文献   

19.
The sorption and permeation of pentane, hexane, and toluene through highly permeable polymer of intrinsic microporosity (PIM‐1) membranes were investigated. It was established that the hydrocarbons sorbed strongly within the micro‐void regions of the PIM‐1 membrane. The sorption concentration was similar for the paraffins, pentane and hexane, but greater for aromatic toluene at high vapor activities. The magnitude of the hydrocarbon permeability was associated with the critical temperature of the hydrocarbon. The PIM‐1 membrane displayed selectivity for the three hydrocarbons over CO2. As a consequence, the presence of the three hydrocarbons dramatically reduced the permeability of CO2 and N2 under mixed gas–vapor conditions to 68%–95% below the dry gas value. For all three hydrocarbons the N2 permeability was more strongly impacted than CO2 permeability, and hence the ideal CO2/N2 selectivity of PIM‐1 increased. It was determined that CO2 and N2 solubility decreased because of hydrocarbon competitive sorption while CO2 and N2 diffusivity also decreased because of anti‐plasticization, which was due to the presence of hydrocarbon clusters within the membrane structure. There was a clear correlation between the magnitude of anti‐plasticization and the critical temperature of the hydrocarbon. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 397–404  相似文献   

20.
1,1‐Bis[4‐(4‐aminophenoxy)phenyl]‐1‐phenylethane (BAPPE) was prepared through nucleophilic substitution reaction of 1,1‐bis(4‐hydroxyphenyl)‐1‐phenylethane and p‐chloronitrobenzene in the presence of K2CO3 in N,N‐dimethylformamide, followed by catalytic reduction with hydrazine and Pd/C. Novel organosoluble polyimides and copolyimides were synthesized from BAPPE and six kinds of commercial dianhydrides, including pyromellitic dianhydride (PMDA, Ia ), 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA, Ib ), 3,3′,4,4′‐ biphenyltetracarboxylic dianhydride (BPDA, Ic ), 4,4′‐oxydiphthalic anhydride (ODPA, Id ), 3,3′,4,4′‐diphenylsulfonetetracarboxylic dianhydride (DSDA, Ie ) and 4,4′‐hexafluoroisopropylidenediphthalic anhydride (6FDA, If ). Differing with the conventional polyimide process by thermal cyclodehydration of poly(amic acid), when polyimides were prepared by chemical cyclodehydration with N‐methyl‐2‐pyrrolidone as used solvent, resulted polymers showed good solubility. Additional, Ia,b were mixed respectively with the rest of dianhydrides (Ic–f) and BAPPE at certain molar ratios to prepare copolyimides with arbitrary solubilities. These polyimides and copolyimides were characterized by good mechanical properties together with good thermal stability. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2082–2090, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号