首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Nylon‐66 nanocomposites were prepared by melt‐compounding nylon‐66 with an alkyl ammonium surfactant pretreated montmorillonite (MMT). The thermal stability of the organic MMT powders was measured by thermogravimetric analysis. The decomposition of the surfactant on the MMT occurred from 200 to 500 °C. The low onset decomposition temperature of the organic MMT is one shortcoming when it is used to prepare polymer nanocomposites at high melt‐compounding temperatures. To provide greater property enhancement and better thermal stability of the polymer/MMT nanocomposites, it is necessary to develop MMT modified with more thermally stable surfactants. The dispersion and spatial distribution of the organic MMT layers in the nylon‐66 matrix were characterized by X‐ray diffraction. The organic MMT layers were exfoliated but not randomly dispersed in the nylon‐66 matrix. A model was proposed to describe the spatial distribution of the organic MMT layers in an injection‐molded rectangular bar of nylon‐66/organic MMT nanocomposites. Most organic MMT layers were oriented in the injection‐molding direction. Layers near the four surfaces of the bar were parallel to their corresponding surfaces; whereas those in the bulk differed from the near‐surface layers and rotated themselves about the injection‐molding direction. The influence of the spatial distribution of the organic MMT on crystallization of nylon‐66 was also investigated. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1234–1243, 2003  相似文献   

2.
The structure and morphology of a novel polyamide, nylon‐10,14, and its lamellar crystals from dilute solution were examined by transmission electron microscopy and wide‐angle X‐ray diffraction (WAXD). Both the electron‐diffraction pattern and WAXD data demonstrated that nylon‐10,14 adopts the structure of a triclinic lattice similar to that of the traditional nylon‐66 but with a corresponding increase of the c parameter to 3.23 nm. In addition, the thermal behavior of melt‐crystallized nylon‐10,14 was investigated by dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). The glass‐transition temperature of nylon‐10,14 determined by the DMA data was 46.6°C. DSC indicated that the multiple melting behavior of isothermally crystallized nylon‐10,14 probably results from the melt and recrystallization mechanism. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1422–1427, 2003  相似文献   

3.
Highly exfoliated isotactic‐polypropylene/alkyl‐imidazolium modified montmorillonite (PP/IMMT) nanocomposites have been prepared via in situ intercalative polymerization. TEM and XRD results indicated that the obtained composites were highly exfoliated PP/IMMT nanocomposites and the average thickness of IMMT in PP matrix was less than 10 nm, and the distance between adjacent IMMT particles was in the range of 20–200 nm. The isothermal crystallization kinetics of highly exfoliated PP/IMMT nanocomposites were investigated by using differential scanning calorimeter(DSC) and polarized optical microscope (POM). The crystallization half‐time t1/2, crystallization peak time tmax, and the Avrami crystallization rate constant Kn showed that the nanosilicate layers accelerate the overall crystallization rate greatly due to the nucleation effect, and the crystallization rate was increased with the increase in MMT content. Meanwhile, the crystallinity of PP in nanocomposites decreased with the increase in clay content which indicated the PP chains were confined by the nanosilicate layers during the crystallization process. Although the well‐dispersed silicate layers did not have much influence on spherulites growth rate, the nucleation rate and the nuclei density increased significantly. Accordingly, the spherulite size decreased with the increase in MMT content. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2215–2225, 2009  相似文献   

4.
The polymorphism behavior in nylon‐11/montmorillonite (MMT) nanocomposite was investigated by wide‐angle X‐ray diffraction (WAXD) and variable‐temperature infrared spectroscopy. The results of WAXD and IR confirmed the presence of the γ‐crystalline form of nylon‐11, which is induced and stabilized by MMT. However, the hydrogen bond in the nanocomposite and its temperature dependence also exhibited some differences from neat nylon‐11. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 253–259, 2004  相似文献   

5.
The crystallization and melting behaviors of poly (vinylidene fluoride) (PVDF) with small amount of nanoparticles (1 wt %), such as montmorillonite (MMT), SiO2, CaCO3, or polytetrafluoroethylene (PTFE), directly prepared by melt‐mixing method were investigated by scanning electron microscopy (SEM), polarizing optical microscopy, Fourier transform infrared spectroscopy, wide angle X‐ray diffraction (WAXD), and differential scanning calorimetry (DSC). The nanoparticle structure and the interactions between PVDF molecule and nanoparticle surface predominated the crystallization behavior and morphology of the PVDF. Small amount addition of these four types of nanoparticles would not affect the original crystalline phase obtained in the neat PVDF sample (α phase), but accelerated the crystallization rate because of the nucleation effect. In these four blend systems, MMT or PTFE nanoparticles could be well applied for PVDF nanocomposite preparation because of stronger interactions between particle surface and PVDF molecules. The nucleation enhancement and the growth rate of the spherulites were decreased in the order SiO2 > CaCO3 > PTFE > MMT. The melting and recrystallization of PVDF was found in MMT addition sample, because of the special ways of ordering of the PVDF chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

6.
The crystalline‐phase transition in polyamide‐66/montmorillonite nanocomposites before melting was investigated by in situ X‐ray diffraction and is reported for the first time in this work. The phase‐transition temperature in the nanocomposites was 170 °C, 20 °C lower than that in polyamide‐66. The lower phase‐transition temperature of the nanocomposites could be attributed to the γ‐phase‐favorable environment caused by silicate layers. Meanwhile, the addition of silicate layers changed the crystal structure of the polyamide‐66 matrix and influenced the phase‐transition behavior. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 63–67, 2003  相似文献   

7.
The thermomechanical properties, morphology, and gas permeability of hybrids prepared with three types of organoclays were compared in detail. Hexadecylamine–montmorillonite (C16–MMT), dodecyltrimethyl ammonium bromide–montmorillonite (DTA‐MMT), and Cloisite 25A were used as organoclays in the preparation of nanocomposites. From morphological studies using transmission electron microscopy, most clay layers were found to be dispersed homogeneously in the matrix polymer, although some clusters or agglomerated particles were also detected. The initial degradation temperature (at a 2% weight loss) of the poly(lactic acid) (PLA) hybrid films with C16–MMT and Cloisite 25A decreased linearly with an increasing amount of organoclay. For hybrid films, the tensile properties initially increased but then decreased with the introduction of more of the inorganic phase. The O2 permeability values for all the hybrids for clay loadings up to 10 wt % were less than half the corresponding values for pure PLA, regardless of the organoclay. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 94–103, 2003  相似文献   

8.
Exfoliated montmorillonite (MMT)/poly(N‐isopropylacrylamide) (PNIPAAm) and MMT/poly(N‐isopropylacrylamide‐co‐acrylamide) [P(NIPAAm‐co‐AAm)] nanocomposites were fabricated by soap‐free emulsion polymerization. Interestingly, as the content of MMT was increased from 0 to 10 wt %, the glass transition temperature of MMT/PNIPAAm was decreased from 145 to 122 °C, whereas that of the MMT/P(NIPAAm‐co‐AAm) increased from 95 to 153 °C. Although the lower critical solution temperature (LCST) of 32 °C for the MMT/PNIPAAm nanocomposites in aqueous solutions was slightly increased with the content of MMT, that of the MMT/P(NIPAAm‐co‐AAm) was decreased from 70 to 65 °C. A mechanism that the hydrogen bonds between the amide groups of PNIPAAm were interfered by the exfoliated MMT nano‐platelets for the MMT/PNIPAAm nanocomposites and the preferred absorption of acrylamide units to the MMT nanoplatelets rather than N‐isopropylacrylamide in the MMT/P(NIPAAm‐co‐AAm) nanocomposites was suggested to interpret these unusual transition behavior. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 524–530, 2009  相似文献   

9.
Effects of ferrite nanoparticles (0.1–20 wt %) on the rheological and other physical properties of nylon‐66 were investigated. The presence of ferrite nanoparticles less than 1 wt % increased the crystallization temperature (Tc) by 4.2 °C with ferrite content, but further addition decreased Tc. The onset temperature of degradation was increased by 7.3 °C at only 0.1 wt % loading of ferrite, after which the thermal stability of nylon‐66 was decreased with ferrite content. The incorporation of ferrite nanoparticles more than 5 wt % increased the dynamic viscosity (η′) with the loading level. Further, it produced notably shear thickening behavior in the low frequency, after which high degree of shear thinning was followed with ferrite content. In the Cole–Cole plot, the nanocomposites with ferrite lower than 5 wt % presented a single master curve, while further addition gave rise to a deviation from the curve. The relaxation time (λ) was increased with ferrite content and the difference of λ between nylon‐66 and its nanocomposite was greater at lower frequency. The tensile strength was a little increased up to 1 wt % loading, after which it was decreased with increasing the loading level. In addition, the introduction of the nanoparticles increased tensile modulus and decreased the ductility with ferrite content. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 371–377, 2006  相似文献   

10.
Montmorillonite (MMT) was modified with the acidified cocamidopropyl betaine (CAB) and the resulting organo‐montmorillonite (O‐MMT) was dispersed in an epoxy/methyl tetrahydrophthalic anhydride system to form epoxy nanocomposites. The intercalation and exfoliation behavior of the epoxy nanocomposites were examined by X‐ray diffraction and transmission electron microscopy. The curing behavior and thermal property were investigated by in situ Fourier transform infrared spectroscopy and DSC, respectively. The results showed that MMT could be highly intercalated by acidified CAB, and O‐MMT could be easily dispersed in epoxy resin to form intercalated/exfoliated epoxy nanocomposites. When the O‐MMT loading was lower than 8 phr (relative to 100 phr resin), exfoliated nanocomposites were achieved. The glass‐transition temperatures (Tg's) of the exfoliated nanocomposite were 20 °C higher than that of the neat resin. At higher O‐MMT loading, partial exfoliation was achieved, and those samples possessed moderately higher Tg's as compared with the neat resin. O‐MMT showed an obviously catalytic nature toward the curing of epoxy resin. The curing rate of the epoxy compound increased with O‐MMT loading. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1192–1198, 2004  相似文献   

11.
For the improved dispersion of montmorillonite (MMT) in a polypropylene (PP) matrix, PP/MMT nanocomposites prepared via direct melt intercalation were further subjected to oscillating stress achieved by dynamic packing injection molding. The shear‐induced morphological changes were investigated with an Instron machine, wide‐angle X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy. The original nanocomposites possessed a partly intercalated and partly exfoliated morphology. A transformation of the intercalated structure into an exfoliated structure occurred after shearing, and a more homogeneous dispersion of MMT in the PP matrix was obtained. However, the increase of the exfoliated structure was accompanied by the scarifying of the orientation of MMT layers along the shear direction. Some bended or curved MMT layers were found for the first time by TEM after shearing. However, the orientation of PP chains in the PP/MMT nanocomposites became very difficult under an external shear force; this indicated that the molecular motion of PP chains intercalated between MMT layers was highly confined. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1–10, 2003  相似文献   

12.
An exploratory pioneering study on the fabrication of nylon‐6/montmorillonite (MMT) nanocomposites with the aid of water as an intercalating/exfoliating agent via melt compounding in a twin‐screw extruder was conducted. Commercial nylon‐6 pellets and pristine MMT powder were directly fed into the hopper of the extruder. Water was then injected into the extruder downstream. After interactions with the nylon‐6 melt/pristine MMT system, water was removed from the extruder further downstream via a venting gate. As such, no third‐component residual was left within the extrudates. Transmission electron microscopy micrographs showed that pristine MMT was uniformly dispersed in the nylon‐6 matrix. The contact time between water and the nylon‐6/pristine MMT system inside the extruder was so short that nylon‐6 was subjected to very little hydrolysis, if any. The resultant nanocomposites showed higher stiffness, superior tensile strength, and improved thermal stability in comparison with their counterparts obtained without water assistance and the nylon‐6/organic MMT nanocomposites. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1100–1112, 2005  相似文献   

13.
Conducting polypyrrole (PPy)‐montmorillonite (MMT) clay nanocomposites have been synthesized by the in situ intercalative polymerization method. The PPy‐MMT nanocomposites are characterized by field‐emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD), ultraviolet–visible (UV–vis) spectroscopy, thermogravimetric analysis (TGA), and Fourier‐transform infrared (FTIR) spectroscopy. XRD patterns show that after polymerization by the in situ intercalative method with ammonium persulfate and 1 M HCl, an increase in the basal spacing from 1.2 to 1.9 nm was observed, signifying that PPy is synthesized between the interlayer spaces of MMT. TEM and SEM micrographs suggest that the coexistence of intercalated MMT layers with the PPy macromolecules. FTIR reveals that there might be possible interfacial interactions present between the MMT clay and PPy matrix. The study also shows that the introduction of MMT clay results in thermal stability improvement of the PPy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2279–2285, 2008  相似文献   

14.
In this work, poly(ethylene terephthalate)/organically modified montmorillonite (PET/o‐MMT) nanocomposites were prepared via direct melt compounding in a twin‐screw extruder. The main objective was to study the effects of using a polyester ionomer (PETi) as a compatibilizer to promote the intercalation and/or exfoliation of the o‐MMT in the PET. The o‐MMT content was 0, 1, 3, or 5 wt % and the PETi/o‐MMT mass ratio was 0/1, 1/1, or 3/1. The PETi was efficient to promote the intercalation/exfoliation of the o‐MMT in the PET matrix, as revealed by wide angle X‐ray scattering and transmission electron microscopy. Rheological characterization showed that the PET/o‐MMT nanocomposites exhibited a higher complex viscosity at low frequencies than PET, which is characteristic of materials presenting yield strength. Moreover, the higher the content and/or the degree of intercalation/exfoliation of the o‐MMT, the more the nanocomposite behaved like a solid because of a percolated structure formed by the o‐MMT layers, and the more the storage and loss modulus, G′ and G″, became independent of the frequency at low frequencies. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3084–3091, 2007  相似文献   

15.
Summary: Nylon‐6/Na+‐montmorillonite (MMT) nanocomposites (NNNs) are synthesized by a hydrolyzed ring‐opening polymerization. At a loading of only 2 wt.‐% MMT, the tensile modulus, the flexural modulus, and the heat distortion temperature of the NNNs exhibit increases of nearly 20%, 60%, and 63 °C, respectively. Compared with that of neat nylon‐6, the temperature of the main α‐relaxation (Tα) of the NNNs is shifted 3.6 °C toward higher temperatures and two β‐relaxation peaks are observed. Another interesting phenomenon is that there is a new melting peak (at about 206 °C) for the NNNs.

DSC second heating curves of neat nylon‐6 (N6), nylon‐6/Na+‐MMT nanocomposites with highly swollen Na+‐MMT (NHM), and nylon‐6/Na+‐MMT nanocomposites with slightly swollen Na+‐MMT (NSM) with various amounts of Na+‐MMT.  相似文献   


16.
PP/PP‐g‐MA/MMT/EOR blend nanocomposites were prepared in a twin‐screw extruder at fixed 30 wt % elastomer and 0 to 7 wt % MMT content. Elastomer particle size and shape in the presence of MMT were evaluated at various PP‐g‐MA/organoclay masterbatch ratios of 0, 0.5, 1.0, and 1.5. The organoclay dispersion facilitated by maleated polypropylene serves to reduce the size of the elastomer dispersed phase particles and facilitates toughening of these blend nanocomposites. The rheological data analysis using modified Carreau‐Yasuda model showed maximum yield stress in extruder‐made nanocomposites compared with nanocomposites of reactor‐made TPO. Increasing either MMT content or the PP‐g‐MA/organoclay ratio can drive the elastomer particle size below the critical particle size below which toughness is dramatically increased. The ductile‐brittle transition shift toward lower MMT content as the PP‐g‐MA/organoclay ratio is increased. The D‐B transition temperature also decreased with increased MMT content and masterbatch ratio. Elastomer particle sizes below ~1.0 μm did not lead to further decrease in the D‐B transition temperature. The tensile modulus, yield strength, and elongation at yield improved with increasing MMT content and masterbatch ratio while elongation at break was reduced. The modified Mori‐Tanaka model showed better fit to experimental modulus when the effect of MMT and elastomer are considered individually. Overall, extruder‐made nanocomposites showed balanced properties of PP/PP‐g‐MA/MMT/EOR blend nanocomposites compared with nanocomposites of reactor‐made TPO. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

17.
A novel thermosetting polyurethane (TSPU)/organic montmorillonite (OMMT) nanocomposite has been synthesized. N‐diamino octadecyl trimethyl ammonium chloride (DODTMAC) was used as an intercalation agent to treat Na+‐montmorillonite (MMT) and form a novel kind of OMMT. Fourier transform infrared spectroscopy (FT‐IR), wide angle X‐ray diffraction (WAXD), and thermogravimetric analysis (TGA) data indicated that the MMT was successfully intercalated by this intercalation agent, as evidenced by the fact that the basal spacing of MMT galleries was expanded from 1.5 to 3.2 nm. This OMMT was used to prepare the TSPU nanocomposites. Both the reinforcing and compatibilizing performance of the filler were investigated. Tensile tests showed that the tensile strength of TSPU/OMMT‐4 was the highest, and was about 3.62 times higher than that of the pure TSPU, and also the elongation at break showed an enhancement. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) measurements illustrated that the glass transition temperature of the TSPU/OMMT‐4 nanocomposite was improved from 0.5 to 6.5 °C, which corresponded to the restriction of the soft segments of TSPU. The highest initial and center temperatures of TSPU/OMMT‐4 obtained from TGA were due to the highest retard effect of the TSPU molecular chains. WAXD studies showed that the formation of the nanocomposites in all the cases with the almost disappearance of the peaks corresponding to the basal spacing of MMT. SEM and TEM were used to investigate the morphologies of the TSPU/OMMT‐4 nanocomposite, and demonstrated that the nanocomposite was comprised of a well dispersion of a mixture of intercalated and exfoliated silicate layers throughout the matrix. It was proposed that the nano‐reinforcing effect caused by the well‐dispersed silicate layers might reduce the amount and size of voids and increase the length of the crack‐spreading path during tensile drawing. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 519–531, 2007.  相似文献   

18.
Polypropylene (PP) nanocomposites were prepared using montmorillonite with different organic modifiers, and the effect of processing aid (EMCA and PPG) on the dispersion of the nanofillers in the PP matrix was evaluated by WAXD, TEM, DSC, TGA, DMA, and mechanical tests. The present study helps to clarify the effects of the organic modifiers of clays on the intercalation and exfoliation processes. Nanocomposites of intercalated and partially exfoliated morphology were obtained, mainly when a low amount (1:1) of PP-g-MA/MMT was used. The results of the tests on mechanical properties showed that the clays with larger d001 (C-15A and Nanofil 5) using PPG presented a more considerable gain in impact strength. The nanocomposites using clays with smaller d001(C-20A) presented larger modulus when compared with those of pristine PP. The heat deflection temperature, crystallization temperature, and thermal stability of the nanocomposites were improved compared to neat PP. The DMA results showed that the organoclay improved the modulus of PP, but decreased the Tg. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2519–2531, 2008  相似文献   

19.
A perfect single crystal of nylon‐2,14 was prepared from 0.02% (w/v) 1,4‐butanediol solution by a “self‐seeding” technique and isothermal crystallization at 120 and 145 °C. The morphology and structure features were examined by transmission electron microscopy with both image and diffraction modes, atomic force microscopy, and wide‐angle X‐ray diffraction (WAXD). The nylon‐2,14 single crystal grown from 1,4‐butanediol at 145 °C inhabited a lathlike shape with a lamellar thickness of about 9 nm. Electron diffraction and WAXD data indicated that nylon‐2,14 crystallized in a triclinic system with lattice dimensions a = 0.49 nm, b = 0.51 nm, c = 2.23 nm, α = 60.4°, β = 77°, and γ = 59°. The crystal structure is different from that of nylon‐6,6 but similar to that of other members of nylon‐2Y. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1913–1918, 2002  相似文献   

20.
Clay organifier with propylene oxide‐capped polyethylene glycol (PEG) with amine end group (jeffamines ED600–2003) was synthesized through an ion exchange process between sodium cations in montmorillonite (MMT) and ? NH groups in ED600–2003. The d‐spacing of organoclay was found to be 1.697–1.734 nm compared to 0.96 nm of pristine MMT. Transmission electron microscopy (TEM) was used to determine the molecular dispersion of the clay within ED600. Polyurethane‐urea/montmorillonite (PUU‐MMT) nanocomposites were prepared via in situ polymerization from polyethylene glycol (PEG 400) or 1,4 butane diol (1,4 BD), toluene diisocyanate (TDI), jeffamines ED600–2003, and 1–12 wt% of organoclay. Intercalation of PUU into modified clays was confirmed by X‐ray diffraction (XRD), scanning electron microscopy, and TEM. The barrier properties were significantly reduced; however, the thermal stability was increased in the nanocomposites as compared to the pristine polymer. Nanocomposites exhibited optical clarity and solvent resistance. The mechanical properties and the glass transition temperature of PUU were improved with the addition of organoclay. The incorporation of silicate layers gave rise to a considerable increase in the storage modulus (stiffness), demonstrating the reinforcing effect of clay on the PUU matrix. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号