首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 272 毫秒
1.
A binuclear samarium(III) complex with benzoic acid and 1,10‐phenanthroline, [Sm(BA)3phen]2 was synthesized and characterized by elemental analysis, UV, IR and TG‐DTG techniques. The structure of the title complex was established by single crystal X‐ray diffraction. The crystal is triclinic, space group P1 with a = 10.8216(11) Å, b = 11.9129(13) Å, c = 12.425(2) Å, α = 105.007(2)°, β = 93.652(2)°, γ = 113.2630(10)°, Z = 1, Dc = 1.650 mg·m?3, F(000) = 690. The carboxylate groups are bonded to the samarium ion in three modes: bidentate chelating, bidentate bridging, and tridentate chelating‐bridging. Each Sm3+ ion is coordinated to one bidentate chelating carboxylate group, two bidentate bridging and two tridentate chelating‐bridging carboxylate groups, as well as one 1,10‐phenanthroline molecule, forming a nine‐coordinate metal ion. Based on thermal analysis, the thermal decomposition process of [Sm(BA)3phen]2 has been derived.  相似文献   

2.
Jia D  Zhao Q  Zhang Y  Dai J  Zuo J 《Inorganic chemistry》2005,44(24):8861-8867
New lanthanide thioantimonate(V) compounds, [Ln(en)3(H2O)x(mu(3-x)-SbS4)] (en = ethylenediamine, Ln = La, x = 0, Ia; Ln = Nd, x = 1, Ib) and [Ln(en)4]SbS4.0.5en (Ln = Eu, IIa; Dy, IIb; Yb, IIc), were synthesized under mild solvothermal conditions by reacting Ln2O3, Sb, and S in en at 140 degrees C. These compounds were classified as two types according to the molecular structures. The crystal structure of type I (Ia and Ib) consists of one-dimensional neutral [Ln(en)3(H2O)x(mu(3-x)-SbS(4))]infinity (x = 0 or 1) chains, in which SbS4(3-) anions act as tridentate or bidentate bridging ligands to interlink [Ln(en)3]3+ ions, while the crystal structure of type II (IIa, IIb, and IIc) contains isolated [Ln(en)4]3+ cations, tetrahedral SbS4(3-) anions, and free en molecules. A systematic investigation of the crystal structures of the five lanthanide compounds, as well as two reported compounds, clarifies the relationship between the molecular structure and the entity of the lanthanide(III) series, such as the stability of the lanthanide(III)-en complexes, the coordination number, and the ionic radii of the metals.  相似文献   

3.
The structural and thermal behavior of all members of the homologous series of neodymium(III) alkanoates, ranging from neodymium(III) butyrate to neodymium(III) eicosanoate are described. Neodymium(III) butyrate monohydrate, Nd(C3H7COO)3.H2O crystallizes in space group P1 (No. 2), Z = 2. The lattice parameters are a = 9.824(2) A, b = 11.974(2) A, c = 14.633(2) A, alpha = 86.21(2) degrees, beta = 75.92(2) degrees, gamma = 77.97(2) degrees. The crystal structure consists of ionic layers of neodymium ions, separated by bilayers of butyrate anions. In the ionic layers, the neodymium ions are connected by bridging tridentate carboxylate groups to zigzag chains, whereas the chains are connected among themselves by bridging bidentate carboxylate groups. The two crystallographically different neodymium ions are both having coordination number 9, with a geometry close to a monocapped square antiprism. The structure of the higher homologues can be derived from the structure of neodymium butyrate by extending the alkyl chains. These compounds have a lamellar bilayer structure with planes of neodymium(III) ions coordinated to the carboxylate groups and with the alkyl chains in an all-trans conformation. All homologous compounds from neodymium(III) pentanoate to neodymium(III) pentadecanoate display a thermotropic mesophase, which was identified by high-temperature X-ray diffraction as a smectic A phase. For the series from neodymium(III) pentanoate to neodymium(III) undecanoate an additional high viscosity mesophase is present between the crystalline state and the smectic A mesophase.  相似文献   

4.
This article describes the new economic decarboxylative trifluoromethylating reagent [Cu(phen)(O2CCF3)] ( 1 ; phen=1,10‐phenanthroline) and the efficient difluorocarbene precursor [Cu(phen)2][O2CCF2Cl] ( 2 ). Treatment of copper tert‐butoxide with phen and subsequent addition of trifluoroacetic acid or chlorodifluoroacetic acid afforded air‐stable complexes 1 and 2 , respectively, which were characterized by X‐ray crystallography. The copper(I) ion in 1 is coordinated by a bidentate phen ligand, a monodentate trifluoroacetate group, and a molecule of CH3CN in a distorted tetrahedral coordination geometry. The molecular structure of 2 adopts an ionic form that consists of a [Cu(phen)2]+ cation and a chlorodifluoroacetate anion. Complex 1 reacted with a variety of aryl and heteroaryl halides to form trifluoromethyl (hetero)arenes in good yields. The corresponding Hammett plot exhibited a linear relationship and a reaction parameter (ρ)=+0.56±0.02, which indicated that the trifluoromethylation reaction proceeded via a nucleophilic reactive species. Complex 2 reacts with phenols to produce aryl difluoromethyl ethers in modest‐to‐excellent yields. Mechanistic investigations revealed that the difluoromethylation reaction proceeds by initial copper‐mediated formation of difluorocarbene and subsequent concerted addition of difluorocarbene to the phenol to form a three‐center transition state.  相似文献   

5.
The complex [Pb(H2O)(μ‐OAc)(μ‐sac)]n with acetate (OAc) and saccharinate (sac) ligands was characterized by IR, elemental analysis and X‐ray crystallography. The mixed‐anion lead(II) complex crystallizes in the triclinic crystal system with the space group of P1¯. The single crystal X‐ray analysis shows that the complex is a coordination polymer in which the lead(II) ions have a highly distorted pentagonal bipyramidal coordination geometry. Lead(II) ions are bridged by carboxylate groups in a zigzag arrangement forming one‐dimensional infinite chains, which are also linked by sac bridges and aromatic π‐π contacts between the adjacent phenyl rings of sac ligands, resulting in a three‐dimensional network. One water molecule coordinates the lead(II) ion and also forms weak hydrogen bonds with the sulfonyl oxygen atoms of the neighboring sac ligands. The sac ligand acts as a bridging ligand through the nitrogen and carbonyl oxygen atoms, while the carboxylate moiety of the acetate ligand shows an unusual (bidentate, and bridging) coordination behaviour, which was observed for the first time in the structure.  相似文献   

6.
Three new lanthanide phenoxyacetate complexes with 1,10‐phenanthroline. [Nd(POA)3 (phen)]2 · 2C2H5OH (1), [Eu(POA)3‐ (phen)]2 · 2C2H5OH (2) and [Sm(POA)2(DMSO)(phen)]2‐ (ClO4)2 (3) (POA= phenoxyacetate, phen = 1,10‐phenanthroline, DMSO = dimethyl sulfoxide), were synthesized and characterized by elemental analyses, IR, UV‐vis and FAB‐MS spectra. Their structures were determined by single crystal X‐ray diffraction analysis. In complexes 1 and 2, the carboxylate groups are bonded to Ln3+ ion in three modes: the chelating bidentate, the bridging bidentate and the bridging tridentate. In complex 3, the carboxylate groups are bonded to Sm3+ ion only involved in one mode: the bridging bidentate. The luminescence behavior of complex 2 was also studied by means of emission spectra.  相似文献   

7.
Lanthanide(III) heteronuclear and binuclear complexes [TbGd(NAA)6(phen)2] (1) and [Tb2(NAA)6(phen)2] · 2C3H7NO (2) (NAA = 1-naphthylacetic acid, phen = 1,10-phenanthroline) were prepared and their crystal structures were determined. In 1 and 2, each lanthanide is nine-coordinate by two bidentate-bridging and two tridentate chelating-bridging carboxylate groups, one bidentate chelating carboxylate and one phen molecule in a distorted monocapped square antiprism. The solid-state luminescence behavior and the antibacterial activities were studied. Complexes 1 and 2 exhibited characteristic emission of Tb(III) ion 5D47FJ (J = 6–0) under UV radiation at room temperature. A main excitation peak (359 nm) of 2 appears under red emission of 615 nm. By contrast, all emission peak intensities of 1 were enhanced by addition of gadolinium(III), and the 545 nm band is much stronger than the 615 nm band, attributed to, under perturbation of the ligand field, the probability of 5D47F3 transition of Tb(III) was greatly enhanced in 2. Because of perturbation of the ligand field by addition of gadolinium(III), the probability of 5D47F5 transition of Tb(III) was greatly enhanced in 1 and green fluorescence was observed. The antibacterial activity showed that the two complexes were active against Escherichia coli, Staphylococcus aureus and Bacillus subtilis.  相似文献   

8.
Two novel inorganic-organic 3D network, namely{[Ln(L)1.5(H2O)2]·5H2O}n [Ln=Y (1), Ce (2)] [Ln(L)1.5(H2O)2]·5H2O [Ln=Y (1), Ce (2)], have been prepared through the assembly of the ligand 1,2-bis[3-(1,2,4-triazolyl)-4-amino-5-carboxylmethylthio]ethane (H2L) and lanthanide (III) salts under hydrothermal condition and structurally characterized by single-crystal X-ray diffractions. In complexes 1 and 2, the L2− anions adopt three different coordination fashions (bidentate chelate, bidentate bridging and bidentate chelate bridging) connecting Ln(III) ions via the oxygen atoms from carboxylate moieties. Both 1 and 2 exhibit 3D network structures with 2-fold interpenetration. Interestingly, the reversible desorption-adsorption behavior of lattice water is significantly observed in the two compounds. The result shows their potential application as late-model water absorbent in the field of adsorption material.  相似文献   

9.
在酸性介质、含水溶剂中合成了四元混配化合物[Ln(BA)2(NO3)(phen)]2(BA=苯甲酸根;Ln=La,Ce,Pr,Nd,Sm,Eu,Dy,Gd,Tb,Er),用元素分析、IR、DTA-TG等方法对配合物进行了表征.研究了配合物的顺磁性能和荧光性能.镨配合物的单晶衍射结果表明,配合物属三斜晶系,双核,Pr3+的配位数为9,4个BA呈二种配位方式,丰富了四元配合物的结构表现形式.  相似文献   

10.
The stoichiometric reaction of 1,10‐phenanthroline (phen), imino­di­acetic acid (IDA‐H2) and Cu(ClO4)2 in a H2O–CH3OH (2:1) solution yields μ‐imino­diacetato‐2:1κ4O,N,O′:O′′‐tris(1,10‐phenanthroline)‐1κ4N,N′;2κ2N,N′‐dicopper(II) diperchlorate methanol solvate, [Cu2(C4H5NO4)(C12H8N2)3](ClO4)2·CH3OH. The IDA ligand bridges the two CuII ions via a carboxyl­ate group and uses one further N and an O atom of the second carboxylate group to complete a fac‐tridentate coordination at one Cu centre. A phen ligand completes a distorted square‐pyramidal coordination at this metal atom, although there is weak coordination by a perchlorate O atom at a sixth position. The second Cu centre has a distorted trigonal–bipyramidal coordination to two phen moieties and a carboxyl­ate O atom.  相似文献   

11.
Reactions of alkaline earth metal chlorides with 2-aminobenzoic acid (2-abaH) have been investigated. The treatment of MCl2.nH2O (M = Mg, Ca, Sr or Ba) with 2-abaH in a 1:2 ratio in a MeOH/H2O/NH3 mixture leads to the formation of anthranilate complexes [Mg(2-aba)2] (1), [Ca(2-aba)2(OH2)3]infinity (2), [[Sr(2-aba)2(OH2)2].H2O)]infinity (3), and [Ba(2-aba)2(OH2)]infinity (4) respectively. Alternatively, these products can also be obtained starting from the corresponding metal acetates. Anthranilate complexes 1-4 have been characterized with the aid of elemental analysis, pH measurements, thermal analysis, and infrared, ultraviolet, and NMR (1H and 13C) spectroscopic studies. All the products are found to be thermally very stable and do not melt on heating to 250 degrees C. Thermal studies of complexes 2-4, however, indicate the loss of coordinated and lattice water molecules below 200 degrees C. In the case of the magnesium complex, the analytical and thermogravimetric studies indicate the absence of any coordinated or uncoordinated water molecules. Further, the solid-state structures of metal anthranilates 2-4 have been established by single-crystal X-ray diffraction studies. While the calcium ions in 2 are heptacoordinated, the strontium and barium ions in 3 and 4 reveal a coordination number of 9 apart from an additional weak metal-metal interaction along the polymeric chains. The carboxylate groups show different chelating and bridging modes of coordination behavior in the three complexes. Interestingly, apart from the carboxylate functionality, the amino group also binds to the metal centers in the case of strontium and barium complexes 3 and 4. However, the coordination sphere of 2 contains only O donors. All three compounds form polymeric networks in the solid state with the aid of different coordinating capabilities of the carboxylate anions and O-H...O and N-H...O hydrogen bonding interactions.  相似文献   

12.
By slow evaporation of solutions containing Ln(ClO4)3 (Ln=Pr, Nd, Sm), H5IO6 and an excess of HClO4, crystals of the title compounds could be obtained. Their structures were determined by single‐crystal X‐ray diffraction. The compounds crystallize in the monoclinic crystal system, space group I2/a. They contain two types of periodate ions: octahedral H4IO6 groups and two crystallographically different I2O10 groups, which consist of two edge‐sharing octahedra. These anions coordinate to the cations as bridging groups yielding a three‐dimensional network. Together with some water of crystallization, a coordination number of 9 is achieved around the lanthanide ions with a tri‐capped trigonal prismatic geometry.  相似文献   

13.
A new coordination polymer[Zn3(bpda)3(bpy)]1(H2bpda=2,2'-biphenyldicarboxylic acid,bpy=4,4'-bipyridien)has been hydrothermally synthesized and characterized by single-crystal X-ray diffraction analysis,elemental analysis,TG analysis and IR spectrum.1 Crystallizes in cubic crystal system,space group Ia-3,with a=20.9687(9) A,V=9219.7(3)A3,Z=8,and R (Ⅰ>2σ(Ⅰ))=0.0431.Complex 1 is a three-dimensional framework involving a new building block,linear trinuclear {Zn3(CO2)6N2} cluster.In the structure,each bpda coordinates to four zinc atoms via its two bridging bidentate carboxylate groups.To the best of our knowledge,1 implies a new coordination mode of 2,2'-biphenyldicarboxylic acid. The solid state fluorescent spectra show a strong emission peak at 451 nm(λex=341 nm).  相似文献   

14.
在95%乙醇溶液中合成了3种稀土萘甲酸邻菲罗啉三元配合物,其通式为RE(Nap)3·phen(RE=La3+,Eu3+,Tb3+;Nap=萘甲酸根;phen=邻菲咯啉).并用元素分析、IR、1H NMR、XPS、XRD等分析手段对产物进行了表征,结果表明萘甲酸根以双齿方式与稀土离子配位.  相似文献   

15.
In situ infrared spectroscopy has been used to investigate the adsorption of a range of simple aromatic carboxylic acids from aqueous solution to metal oxides. Thin films of TiO2, ZrO2, Al2O3 and Ta2O5 were prepared by evaporation of aqueous sols on single reflection ZnSe prisms. Benzoic acid adsorbed very strongly to ZrO2, in a bridging bidentate fashion, but showed only weak adsorption to TiO2 and Ta2O5. Substituted aromatic carboxylic acids; salicylic, phthalic and thiosalicylic, were found to adsorb to each metal oxide. Salicylic and phthalic acids adsorbed to the metal oxides via bidentate interactions, involving coordination through both carboxylate and substituent groups. Thiosalicylic acid adsorbed to the metal oxides as a bridging bidentate carboxylate with no coordination through the thiol substituent group.  相似文献   

16.
3,6,9-trioxaundecanedioic acid (3,6,9-tddaH2) reacts with Mn(CH3CO2)2·4H2O in ethanol to give [Mn(3,6,9-tdda)]·H2O (1). Recrystallization of 1 from methanol gives crystals of [Mn(3,6,9-tdda) (H2O)2]·2H2O (2). Complex 1 reacts with an ethanolic solution of 1,10-phenanthroline (phen) to give {[Mn(3,6,9-tdda)(phen)2]·3H2O·EtOH}n (3). All of the complexes are extremely water soluble. Complexes 2 and 3 were structurally characterised. The manganese(II) ion in 2 is seven coordinate, with an approximately pentagonal bipyramidal O7 coordination sphere. The axial donors are water molecules and the pentagonal plane is occupied by the diacid, acting as a pentadentate ligand through the three ethereal oxygens and one oxygen atom from each of the carboxylate functions. In complex 3 the manganese(II) ion is six-coordinate, being bound to two bidentate phenanthroline ligands and to the carboxylate oxygen atoms from two symmetry related diacids which are coordinated in a cis fashion. The structure consists of polymeric chains, with diacid ligands bridging the manganese ions. There is π-π stacking of pairs of phenanthroline ligands on adjacent chains, running along both the z and y directions.  相似文献   

17.
A 2D lead(II) coordination polymer [Pb2(phen)2(N3)3(ClO4)]n,( 1 ) containing 1,10‐phenanthroline (phen) and two different anions, has been synthesized and characterized by elemental analysis, IR and 1H NMR spectroscopy and X‐ray crystallography. The single‐crystal X‐ray data show two different kinds of Pb2+ ions with coordination numbers of eight, Pb1 = PbN6O2 and Pb2 = PbN8, with hemidirected and holodirected structures, respectively. The supramolecular features in 1 is negiotated through the weak but directional C‐H···O and C‐H···N interactions and aromatic π–π stacking interactions.  相似文献   

18.
《Polyhedron》1999,18(6):787-792
A novel hexanuclear Zr(IV) complex, [Zr6(O)6(OH)2(Ph2CHCOO)10(phen)2]·4CH3CN (1), where phen denotes 1,10-phenanthroline, has been prepared and characterized on the basis of elemental analysis, infrared-spectroscopy measurements, and X-ray crystallography. Complex 1 resides on a crystallographic inversion center, thus making only three of the six zirconium ions unique. The six zirconium ions are arranged in apices of an octahedron. One Zr(IV) metal ion (Zr1) is individually joined with two Zr(IV) metal ions (Zr2, Zr3) by one syn–syn bridging carboxylate group, and Zr1 has three μ3-O and one μ3-OH bridges through Zr2 and Zr3. The Zr2 atom is also connected by one syn–syn bridging carboxylate group through Zr3*. Moreover, Zr1 is coordinated by two nitrogen atoms of a bidentate 1,10-phenanthroline group with eight coordination. Besides these, Zr2 is coordinated by one carboxylate of a bidentate–chelate type, completing the eight coordination. The Zr3 atom is coordinated by one monodentate carboxylate oxygen, consequently has a novel seven coordination.  相似文献   

19.
The scandium(III) cations in the structures of pentaaqua(biuret‐κ2O,O′)scandium(III) trichloride monohydrate, [Sc(C2H5N3O2)(H2O)5]Cl3·H2O, (I), and tetrakis(biuret‐κ2O,O′)scandium(III) trinitrate, [Sc(C2H5N3O2)4](NO3)3, (II), are found to adopt very different coordinations with the same biuret ligand. The roles of hydrogen bonding and the counter‐ion in the establishment of the structures are described. In (I), the Sc3+ cation adopts a fairly regular pentagonal bipyramidal coordination geometry arising from one O,O′‐bidentate biuret molecule and five water molecules. A dense network of N—H...Cl, O—H...O and O—H...Cl hydrogen bonds help to establish the packing, resulting in dimeric associations of two cations and two water molecules. In (II), the Sc3+ cation (site symmetry 2) adopts a slightly squashed square‐antiprismatic geometry arising from four O,O′‐bidentate biuret molecules. A network of N—H...O hydrogen bonds help to establish the packing, which features [010] chains of cations. One of the nitrate ions is disordered about an inversion centre. Both structures form three‐dimensional hydrogen‐bond networks.  相似文献   

20.
Rare‐Earth‐Metal Coordination Polymers: Syntheses and Crystal Structures of Six New Pimelinates, [M(Pim)(PimH)(H2O)](H2O) (M = Ce, Pr) and [M2(Pim)3(H2O)4] (M = Tb, Ho, Er, Tm) The new rare‐earth metal carboxylates [M(Pim)(PimH)(H2O)](H2O) (M = Ce ( 1 ), Pr ( 2 )) and [M2(Pim)3(H2O)4] (M = Tb ( 3 ), Ho ( 4 ), Er ( 5 ), Tm ( 6 )) were prepared from the reaction of pimelinic acid with CeO2, Pr6O11, Tb4O7, HoCl3, ErCl3 and Tm(NO3)3, respectively. Their crystal structures were determined by single‐crystal X‐ray diffraction. [M(Pim)(PimH)(H2O)](H2O) crystallize in the monoclinic space group P21/n (no. 14) with a = 909.6(1), b = 870.6(1), c = 2240.5(2) pm, β = 92.30(1)°, Z = 4 (crystal data for M = Ce). The isostructural pimelinate‐hydrates [M2(Pim)3(H2O)4] crystallize with orthorhombic symmetry, Pbcn (no. 60), with a = 1392.5(1), b = 902.3(1), c = 2408.8(2) pm, Z = 4 (crystal data for M = Tb). The rare‐earth cations have coordination numbers of 10 ( 1 , 2 ) and 9 ( 3 , 4 , 5 and 6 ), respectively. In the crystal structure of [M(Pim)(PimH)(H2O)](H2O) bidentate and tridentate‐bridging carboxylate groups form rather dense structures in which chains are bridged to layers and further to networks. Pimelinic acid molecules fill the channels. In [M2(Pim)3(H2O)4] tridentate‐bridging carboxylate groups coordinating to two rare‐earth ions lead to dimers that are linked with other dimers to strands. The channels thus formed between the strands are rather small in diameter. They do not contain any non‐coordinated water molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号