共查询到20条相似文献,搜索用时 15 毫秒
1.
《Surface and interface analysis : SIA》2004,36(12):1516-1522
Removal of uranium from contaminated carbon steel surfaces by chelation with hydroxycarboxylic acid has been tested as a cleaning process for decommissioning and decontaminating contaminated surfaces. Comparison of contaminated surfaces prior to decontamination with subsequently cleaned surfaces was done in order to study the effectiveness of this cleaning technique. This was accomplished using various spectroscopic techniques, including x‐ray photoelectron spectroscopy, synchrotron infrared microspectroscopy, Rutherford backscattering spectroscopy and scanning electron microscopy/energy‐dispersive spectroscopy. Mild carbon steel (1010) coupons were exposed to uranyl nitrate solution, which led to the formation of a lightly corroded surface. Some contaminated samples underwent further cyclic humidity treatment, during which additional corrosion took place. In this study, it was found that a citric acid–hydrogen peroxide–citric acid cleaning method successfully removed uranium in lightly corroded areas. However, the method but incompletely decontaminated some heavily corroded areas where more highly crystallized corrosion products are found or where complex surface structure can occlude contaminants. Use of complementary analytical techniques is essential to provide an accurate model of surface chemistry before and after decontamination. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
2.
《Surface and interface analysis : SIA》2006,38(7):1130-1138
The influence of dipping temperature and time on the surface chemistry of hot‐dipped galvanized steel sheets during the alkaline degreasing process is investigated. The surface chemistry was monitored with scanning Auger electron spectroscopy (AES), X‐ray photoelectron spectroscopy (XPS), and time‐of‐flight secondary ion mass spectroscopy (ToF‐SIMS). The results show high Al concentrations on the untreated surfaces, which are significantly reduced during alkaline degreasing. The same conclusions could be drawn for the carbon compounds that accumulate on the surface during storage. The measurements reveal a gradual reduction in surface Al as the alkali solution temperature and/or degreasing time are increased. When degreasing was conducted at 70 °C for 30 s the surface was practically free from Al, which was present only in small islands. Furthermore, the experiments showed that the thickness of the oxide film covering the surfaces before and after alkaline degreasing is approximately 20 Å. The main constituents of the film varied from ZnAl hydroxide/oxide to Zn hydroxide/oxide, before and after degreasing, respectively. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
3.
《Surface and interface analysis : SIA》2006,38(8):1218-1222
The electrochemical behavior of the anode of the galvanic couple and the adsorption behavior of the cationic inhibitor on it have been investigated by using electrochemical methods, atomic force microscopy (AFM) and infrared spectroscopy (FTIR) technology. A galvanic electrode was prepared by coupling N80 carbon steel (CS) and S31803 stainless steel. All experiments were performed in NaCl solution in the presence or absence of an inhibitor. The results show that, in aqueous NaCl solution, CS carries negative excess charge, for the couple, positive charge is carried on the CS side (anode). The adsorption behavior of the cationic inhibitor on CS is significantly affected by the excess charge carried on it. Owing to the charge interaction between electrodes and the cationic inhibitor, the inhibitor has a greater tendency to adsorb on the single CS and less tendency to adsorb on the CS of the couple. Because of this, the adsorption film on the anode (CS side) of the couple is thin and defective. The failure of inhibiting galvanic corrosion attributes to the defective protective layer formed on the anodic area. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
4.
Sehoon Jung Min Serk Kwon Seung Bin Kim Kwang Soo Shin 《Surface and interface analysis : SIA》2013,45(7):1119-1128
A combination of scanning electron microscopy, X‐ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy with a sampling method by glow discharge sputtering was successfully employed to characterize the chemical information and microscopic features of oxide layers formed during decarburization annealing of electrical steel in the depth direction at high resolution. The discontinuous surface oxides consisted of SiO2, (Fe,Mn)SiO3/(Fe,Mn)2SiO4, and FeO. SiO2 embedded in the (Fe,Mn)2SiO4 at the surface may be developed by the preferential nucleation and growth kinetics. The discrete or often relatively spherical oxides of internal oxidation by the energetically favorable surface effect were identified as a mixture of SiO2 and (Fe,Mn)2SiO4 at a depth of ~0.5 µm from the surface. The oxides of networks and small particles at a depth greater than ~1 µm were solely silica, of which the morphologies were possibly caused by the enhanced diffusion of oxygen atoms and Si atoms at grain boundaries or sub‐grain boundaries. The equilibrium and kinetic considerations served by theoretical calculations were introduced to understand the formation and behavior of the observed in‐depth oxidation. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
5.
S. D. Gurumayum Sharma D. Moreton B. Vincent 《Colloids and surfaces. A, Physicochemical and engineering aspects》2002,210(2-3):265-275
The adsorption isotherms for carbon particles of about 200 nm size, in the presence of various combinations of a terminally functionalised (amine) polyisobutylene polymer and alkylpropoxylate/alkylbutoxylate surfactant molecules, on 7 μm diameter stainless steel beads from isooctane solutions have been obtained. The deposition of carbon particles on stainless steel plates was achieved using a flow-cell and analysed using scanning electron microscopy. The flow-cell was also used to study the “cleaning” properties of various polymer/surfactant solutions, in their ability to remove deposited particles. It was found that the polymer molecules were much more effective dispersants and stabilisers for the carbon particles, but the surfactant molecules were much better at effecting anti-deposition and subsequent removal of deposited carbon particles, and provide carried adsorbed polymer chains. 相似文献
6.
Marcin A. Malik Pawel J. Kulesza Renata Wlodarczyk Gunther Wittstock Rüdiger Szargan Henryk Bala Zbigniew Galus 《Journal of Solid State Electrochemistry》2005,9(5):403-411
Electrodeposition of well-adhering polypyrrole-based hybrid films containing hexacyanoferrate(II,III) anions from neutral solutions of pyrrole and potassium hexacyanoferrate(II) on medium carbon (0.48% C) steel has been described. The resulting polypyrrole coatings that are doped with hexacyanoferrate(II,III) anions show protective properties against pitting corrosion of carbon steel substrates in strongly acidic media containing chlorides (0.1 mol dm–3 HCl + 0.4 mol dm–3 NaCl). Polypyrrole acts as a stable host matrix for inorganic anions. The presence of negatively charged species (hexacyanoferrates) in the polymer backbone tends to block the access of pitting-causing anions (chlorides) to the surface of steel. The Fe(CN)63-/4– anions existing in the vicinity of steel substrate stabilizes its surface by forming an overcoating in the form of sparingly soluble metal hexacyanoferrate, mostly Prussian blue (PB), microstructures. It has been demonstrated that by applying cyclic voltammetry and X-ray photoelectron spectroscopy, the presence of traces of free cyanide anions promotes the formation of PB on carbon steel surface which results in increasing the adherence of polypyrrole-based films to the metallic substrate. Morphology of the protective composite films is also addressed.Dedicated to Prof. G. Horanyi on the occasion of his 70th birthday 相似文献
7.
《印度化学会志》2022,99(12):100701
In the present work, two new 8-hydroxyquinoline derivatives namely, 5-(((2-hydroxybenzylidene)amino)methyl) 8-hydroxyquinoline [HBMQ] and 5-(((4-chlorobenzylidene)amino)methyl) 8-hydroxyquinoline [CBMQ] were synthesized and investigated as corrosion inhibitors against the dissolution of carbon steel (C38 steel) in 1 M HCl. These compounds were obtained with high yield, and their structures were characterized by nuclear magnetic resonance spectroscopy (NMR) and elemental analysis. Gravimetric, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), and surface morphology analyses utilizing scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) were used to quantify inhibitory performance. The adsorption process of inhibitory compounds was then demonstrated using quantum mechanics approaches such as Density Functional Theory (DFT) and Molecular Dynamic Simulation (MD). Based on EIS results, the investigated derivatives effectively inhibit the degradation of C38 steel over the entire concentration range with a maximum efficiency of 91.9% and 88.0% for [CBMQ] and [HBMQ], respectively, at 10?3 M. In addition, the PDP studies revealed that [HBMQ] and [CBMQ] compounds acted according to a mixed-type mechanism. Moreover, the adsorption mechanism follows the Langmuir isotherm model. The quantum theoretical study by DFT and MD simulation confirmed the experimental results. 相似文献
8.
《Surface and interface analysis : SIA》2004,36(1):8-16
Zirconia (ZrO2) films of tissue‐like structure and narrow pore size distribution have been deposited by spray pyrolysis using aqueous zirconyl chloride octahydrate (ZrOCl2·8H2O) precursor solutions. Stainless‐steel sheets, protected or unprotected by a ZnO barrier layer, have been used as the substrate material held at 473 K. The ZnO barrier layers have been deposited on the stainless steel held at 523 K by spray pyrolysis using a zinc acetate precursor. Their property of corrosion protection to stainless steel has been proved by electrochemical polarization measurements in 0.5 M NaCl solution. A complementary study of XPS (depth profiling, mapping) and x‐ray diffraction has shown that the unprotected steel substrates were corroded during ZrO2 film post‐annealing in air at T ≥ 773 K, whereas steel substrates protected with a compact barrier layer of crystalline ZnO before ZrO2 film deposition did not show surface corrosion even after annealing up to 997 K. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
9.
Rates of corrosion of low alloy ASTM A213 grade T22 boiler steel were monitored in aerated stagnant 0.50 M HCl solutions at different temperatures (283–303 K) using Tafel extrapolation method and the non-destructive electrochemical frequency modulation (EFM) technique, complemented with XPS examinations. Serine (Ser) was introduced as a corrosion-safe inhibitor. Corrosion rates (in μm y?1) obtained from these two methods was in good agreement. Tafel plots showed that Ser acted mainly as a cathodic-type inhibitor. The inhibition process was attributed to the formation of an adsorbed film on the metal surface that protects the metal against corrosive agents. XPS examinations of the electrode surface confirmed the existence of such adsorbed film. The inhibition efficiency increased with increase in Ser concentration, while it decreased with temperature, suggesting physical adsorption. Activation energies have been calculated in the absence and presence of various concentrations of Ser by measuring the temperature dependence of the corrosion rate obtained from the two methods employed. It was found that the activation energy in the presence of Ser is higher than that in bare HCl solution. The adsorptive behaviour of Ser followed Temkin-type isotherm. The standard free energy of adsorption was estimated to be ?25 kJ mol?1 at 303 K. These results confirmed the occurrence of physical adsorption. 相似文献
10.
《Journal of Saudi Chemical Society》2022,26(4):101501
Recently, the hydrolysis of Schiff bases under experimental conditions gives suspicion for their corrosion inhibition performance. The current study employs a stable Schiff base namely, 2,2′-{propane-1,3-diylbis[azanylylidene (E) methanylylidene]}bis(6-methoxyphenol) (LPD) as corrosion inhibitor for mild steel (MS) in 1 M HCl solution. The presence of the characteristic peak of the imine group in UV-visible spectra was taken as an indicator for LPD stability in acidic media. The inhibition action was examined using electrochemical techniques including potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) besides gravimetric measurement. The inhibition efficiency reached 95.93 % for 0.75 mM LPD after 24 h of immersion at 25 °C. This high efficiency is owing to the presence of the characteristic imine group and other heteroatoms and π- electrons of the aromatic benzene rings. The mechanism of inhibition depends on adsorption phenomena on mild steel surface which obeys Langmuir isotherm model. The calculated values of adsorption equilibrium constant (Kads), adsorption free energy ΔGads, adsorption enthalpy ΔHads and adsorption entropy ΔSads indicated spontaneous exothermic adsorption process of both physical and chemical nature. By rising temperature, the inhibition efficiency of LPD was decreased. The calculated activation energy was increased as the concentration of LPD increased. LPD was considered as a mixed-type inhibitor as indicated from PDP measurements. The obtained surface morphology and composition analysis using SEM/EDS, AFM and FTIR techniques ensures the high efficiency of LPD as corrosion inhibitor. 相似文献
11.
《Surface and interface analysis : SIA》2004,36(11):1484-1490
The ability of silane groups to chemosorb on mechanically polished stainless‐steel surfaces has been investigated. Accordingly, tridecafluoro‐1,1,2,2‐tetrahydrooctyltrichlorosilane and the tridecafluoro‐1,1,2,2‐tetrahydrooctyltriethoxysilane, two organosilanes of similar chain length terminated with hydrophobic non‐reactive functions, have been tested as probe molecules. X‐ray photoelectron spectroscopy characterization, optical microscopy imaging, electrochemistry and contact angle measurements have been performed to characterize bare and modified samples. Results reported in this work show the influence of time of immersion and coupling agent reactive group on self‐assembled monolayer formation. It emerges that silanization by triethoxysilanes in millimolar solutions is not suitable for producing chemically bonded organic films with high density. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
12.
Ana Maria Popescu Elena Ionela Neacşu Kazimir Yanushkevich Virgil Constantin 《Surface and interface analysis : SIA》2014,46(6):378-386
Electroless Zn–Ni–P thin films were deposited on low carbon steel from an alkaline non‐cyanide aqueous electrolyte. The newly developed ternary alloys structure and microstructure investigations were carried out via X‐ray diffraction and SEM. Chemical composition of the coatings was investigated via energy dispersive spectroscopy. Polarization tests were used to study the corrosion properties of the coatings in a 3.5 wt.% NaCl solution. The results confirmed the high corrosion resistance of Zn–Ni–P alloy plated steel sheet. The surface analysis of the thin film samples before and after corrosion was performed by XPS. The incorporation of Zn in Ni–P thin film is proven for all initial samples to be as a mixture of zinc and zinc oxide, while nickel exists in +2 and +3 oxidized states. A passive film of a mixture of oxide and hydroxide of zinc and nickel forms on the surface and prevents the Zn–Ni–P thin films from corrosion. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
13.
铀与稀土元素同属大离子亲石元素,尤其与钇组稀土关系更密切,因此南岭高铀花岗岩往往同时是铀和离子型重稀土矿床的成矿母岩。国内外研究资料表明,高铀花岗岩中的铀主要以原生铀的形式存在于晶质铀矿中,在强烈风化过程中大部分发生活化转移,而采矿活动对此有显著促进作用;国外众多含铀湿地的发现及其研究资料表明,山区湿地是铀的"高效过滤器"和"沉淀池",花岗岩风化转移到水体中的微量铀经长期累积,可在湿地富有机质土壤和沉积物中富集至(3000~4000)×10^-6,而采矿和农垦活动可将湿地经几千年累积富集起来的铀释放到居民的生活环境中,因而被视为是一种环境风险。因此建议加强母岩高铀离子型稀土矿区的湿地放射性调查和环境保护,以保障湿地对重金属的天然过滤功能,避免湿地束缚铀的释放,这对保护矿区水质和生态环境都具有重要意义。 相似文献
14.
Corrosion inhibition and mechanism of mild steel in hydrochloric acid by ceftriaxone and amoxicillin
PANG XueHui GONG Min ZHANG YuXuan WEI Qin & HOU BaoRong Institute of Oceanology Chinese Academy of sciences Qingdao China College of Materials Chemical Engineering Sichuan University of Science & Engineering Zigong China School of Chemistry Engineering University of Jinan Jinan China 《中国科学B辑(英文版)》2011,(9)
Corrosion inhibition of mild steel in 1 mol/L HCl by amoxicillin and ceftriaxone in the concentration range of 1.00×10-5-1.00×10-2 mol/L has been studied using weight loss,electrochemical potentiodynamic polarization,electrochemical impedance spectroscopy(EIS),scanning electron microscopy(SEM) and quantum chemistry tests at 298 K.The weight loss experiment showed that the inhibition efficiency increased with amoxicillin and ceftriaxone concentrations to attain the maximums of 80.3% and 94.1%,respectively at... 相似文献
15.
Initial atmospheric corrosion of copper, silver, and iron induced by humidity and oxidizing agents was studied in situ by three highly surface‐sensitive and complementary techniques: infrared reflection‐absorption spectroscopy (IRRAS), quartz crystal microbalance (QCM), and tapping‐mode atomic force microscopy (TM‐AFM). These techniques deliver information about the change of the topography of the sample surfaces with emphasis on the shape and lateral distribution of the corrosion products grown within the first 1300–2800 min of weathering (TM‐AFM), as well as chemical (IRRAS) and kinetic (QCM) data. A completely different mechanism of the initial stages of atmospheric corrosion of the three investigated metals could be observed. A uniform growth of corrosion products was seen on the copper surface (identified by IRRAS and XPS to be cuprite‐like) during exposure to synthetic air with 80% relative humidity (RH), whereas the iron surface remained unattacked. The investigations of the silver surface exposed to humidity revealed that silver is attacked by humidity and tends to form oxide and hydroxide surface species. While an increased humidity content of the surrounding atmosphere causes higher corrosion rates on copper, on the exposed silver sample only a change in the degradation mechanism could be observed. The addition of SO2 to the humidified air causes the growth of so‐called ‘second‐order’ features on copper, identified to be CuSO3 · xH2O‐like, which reveals the formation of a new chemical species on the investigated surface. These features are placed on top of the homogeneous formed oxide layer and tend to form well‐defined islands. In contrast to copper, on a silver surface exposed to humidity and SO2 no new chemical species are formed; nevertheless an increased corrosion rate could be observed owing to a change of the chemistry in the physisorbed water layer. Iron exposed to humidity and SO2 still remains unattacked. An iron surface is attacked only if exposed to humidity and SO2 and NO2, which show a synergistic effect by the oxidation of four‐valent sulfur‐oxygen species by NO2. Such an attack leads to the formation of pitting corrosion, which was observed in situ and time‐resolved. The pits mainly occur on predamaged surface structures, such as scratches caused from the polishing process of the samples, and therefore promote the initiation of the corrosion. The results obtained demonstrate the high potential of the surface‐sensitive methods applied for investigating the early stages of corrosion of different metals and for obtaining a better understanding of the molecular mechanisms during degradation. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
16.
The usefulness of aniline formaldehyde (AF), a modern water-soluble composite in 0.5 ?N hydrochloric acid as inhibitor of corrosion for mild steel, has been studied using weight reduction method, test of electrochemical impedance and potentiodynamic polarization methods. According to the findings by weight loss methods, 12ppm of AF co-polymer at room temperature i.e. about 35° ?± ?1°C for 3h duration shows best performance on metal surface and exhibit 93.44% Inhibitor efficiency. The above said results has also being reviled from other examination methods, which shows that the AF follows the Langmuir isotherm, as well as the adsorption properties of the sampling supports the results as maximum IE of 95.05%, using EIS. The tafel and linear polarization results of maximum IE was found to be 94.81% and 94.96% respectively which was well aligned with an atomic force microscope (AFM) for surface morphology and found AF to be best suited corrosion inhibitor showing mixed type of nature, at defined parameters. 相似文献
17.
Landoulsi J Genet MJ Richard C El Kirat K Rouxhet PG Pulvin S 《Journal of colloid and interface science》2008,320(2):508-519
The ennoblement of the free corrosion potential (E(corr)) of AISI 316L stainless steel which did not occur in synthetic fresh water (SFW), was observed after introduction of glucose oxidase (Gox) and glucose, or of hydrogen peroxide (H(2)O(2)). The composition of the surface was monitored using AFM and XPS, a detailed XPS analysis being based on the discrimination between oxygen of organic and inorganic nature proposed in a previous study. In H(2)O(2) medium, the main changes regarding the inorganic phase were the increase of the oxygen concentration in the passive film, the increase of the molar concentration ratio of oxidized species Fe(ox)/Cr(ox) and the growth of nanoparticles, presumably made of ferric oxide/hydroxide. In Gox medium, no significant changes were observed in both oxygen concentration and Fe(ox)/Cr(ox) ratio, but the density of colloidal particles decreased, indicating a dissolution of Fe oxide/hydroxide under the influence of gluconate. In contrast with H(2)O(2), in SFW and Gox the amount of organic compounds increased due to the accumulation of polysaccharides and proteins. The influence of glucose oxidase on the ennoblement of stainless steel is not due to indirect effects of H(2)O(2) through the change of surface composition. The E(corr) ennoblement seems to be directly due to the presence of H(2)O(2) and to the electrochemical behavior of H(2)O(2) and related oxygen species. This consideration is important for understanding and controlling microbial influenced corrosion. 相似文献
18.
C. Herrero-Latorre J. Álvarez-MéndezAuthor VitaeJ. Barciela-GarcíaAuthor Vitae S. García-MartínAuthor VitaeR.M. Peña-CrecenteAuthor Vitae 《Analytica chimica acta》2015
In the present paper, a critical overview of the most commonly used techniques for the characterization and the determination of carbon nanotubes (CNTs) is given on the basis of 170 references (2000–2014). The analytical techniques used for CNT characterization (including microscopic and diffraction, spectroscopic, thermal and separation techniques) are classified, described, and illustrated with applied examples. Furthermore, the performance of sampling procedures as well as the available methods for the determination of CNTs in real biological and environmental samples are reviewed and discussed according to their analytical characteristics. In addition, future trends and perspectives in this field of work are critically presented. 相似文献
19.
The practical importance of alloy surfaces in catalysis, corrosion andother aspects of materials performance is widely recognized. What is needed now is sufficient knowledge of the relationship between externally controllable factors — alloy composition, temperature, environment — and surface properties — composition, structure, chemical activity — to control materials performance in these applications. Our purpose here is to review progress in determining and predicting the relationship between one surface property, composition, and certain externally controllable variables: overall composition, temperature, environment and physical form.We find that theoretical treatments of metal alloy surface composition now include essentially all significant physical effects and can predict values for most parameters of interest. Though improvements are still possible, the accuracy of predictions is more often limited by uncertainties or absence of the basic data for the calculations (e.g., thermochemical values) than by the models themselves.Alloy surface composition can now be measured well. The first monolayercomposition of large alloy slabs can be determined quantitatively over a wide temperature range in ultra-high vacuum. Difficulties with specimens of practical interest still challenge experimentalists. Among these are supported catalysts, surfaces under chemisorbed layers and composition of layers below the first. Significant progress is being made and we expect the next few years will see success. 相似文献
20.
Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater 总被引:1,自引:0,他引:1
Adsorption technology is widely considered as the most promising and robust method of purifying water at low cost and with high-efficiency. Carbon-based materials have been extensively explored for adsorption applications because of their good chemical stability, structural diversity, low density, and suitability for large scale production. Graphene – a single atomic layer of graphite – is the newest member in the family of carbon allotropes and has emerged as the “celeb” material of the 21st century. Since its discovery in 2004 by Novoselov, Geim and co-workers, graphene has attracted increased attention in a wide range of applications due to its unprecedented electrical, mechanical, thermal, optical and transport properties. Graphene's infinitely high surface-to-volume ratio has resulted in a large number of investigations to study its application as a potential adsorbent for water purification. More recently, other graphene related materials such as graphene oxide, reduced graphene oxide, and few-layered graphene oxide sheets, as well as nanocomposites of graphene materials have also emerged as a promising group of adsorbent for the removal of various environmental pollutants from waste effluents. In this review article, we present a synthesis of the current knowledge available on this broad and versatile family of graphene nanomaterials for removal of dyes, potentially toxic elements, phenolic compounds and other organic chemicals from aquatic systems. The challenges involved in the development of these novel nanoadsorbents for decontamination of wastewaters have also been examined to help identify future directions for this emerging field to continue to grow. 相似文献