首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this study, a silicic acid and tetra isopropyl ortho titanate ceramic precursor and a metallocene polyethylene‐octene elastomer (POE) or acrylic acid grafted metallocene polyethylene‐octene elastomer (POE‐g‐AA) were used in the preparation of hybrids (POE/SiO2? TiO2 and POE‐g‐AA/SiO2? TiO2) using an in situ sol‐gel process, with a view to identifying a hybrid with improved thermal and mechanical properties. Hybrids were characterized using Fourier transform infrared spectroscopy, 29Si solid‐state nuclear magnetic resonance (NMR), X‐ray diffraction, differential scanning calorimetry, thermogravimetry analysis, dynamic mechanical thermal analysis, and Instron mechanical testing. Properties of the POE‐g‐AA/SiO2? TiO2 hybrid were superior to those of the POE/SiO2? TiO2 hybrid. This was because the carboxylic acid groups of acrylic acid acted as coordination sites for the silica‐titania phase to allow the formation of stronger chemical bonds. 29Si solid‐state NMR showed that Si atoms coordinated around SiO4 units were predominantly Q3 and Q4. The 10 wt % SiO2? TiO2 hybrids gave the maximum values of tensile strength and glass transition temperature in both POE/SiO2? TiO2 and POE‐g‐AA/SiO2? TiO2. It is proposed that above this wt %, excess SiO2? TiO2 particles caused separation between the organic and inorganic phases. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1690–1701, 2005  相似文献   

2.
In this study, the properties of polyethylene–octene elastomer/chitosan (POE/chitosan) and acrylic acid (AA)‐grafted‐polyethylene–octene elastomer/chitosan (POE‐g‐AA/chitosan) were examined using various characterizing instruments. Mechanical and thermal properties of POE deteriorated noticeably when it was blended with chitosan, due to the unsatisfactory compatibility between the two phases. The greater compatibility of POE‐g‐AA with chitosan, due to the formation of ester carbonyl and imide groups, led to a much better dispersion and homogeneity of chitosan in the POE‐g‐AA matrix and consequently to noticeably better mechanical properties. Furthermore, with a lower melting point temperature, the POE‐g‐AA/chitosan blend was more easily processed than POE/chitosan. POE‐g‐AA/chitosan had a higher water resistance than POE/chitosan. Both blends suffered weight loss when buried in soil, especially at high levels of chitosan substitution, indicating that both were biodegradable. The mechanical properties of both blends, such as tensile strength and elongation at break, also deteriorated after being buried in soil. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3882–3891, 2003  相似文献   

3.
The new nanocomposites, by means of an in situ sol–gel process consisting of metallocene polyethylene–octene elastomer (POE) and titanium tetraisopropylate (TTIP), were investigated. In addition, the acrylic acid grafted POE (POE‐g‐AA) was studied as an alternative to POE. Fourier transform infrared (FTIR) spectroscopy, a dynamic mechanical analyzer (DMA) spectrometer, an X‐ray diffractometer (XRD), differential scanning calorimetry (DSC), a thermogravimetric analyzer (TGA), an Instron mechanical tester, and a scanning electron microscope (SEM) were used to characterize and examine the samples. The results indicate that the POE‐g‐AA/TiO2 hybrid could have a positive effect on the properties of the POE/TiO2 hybrid because the carboxylic acid groups of acrylic acid should act as coordination sites for the titania phase to form a Ti? O? C chemical bond. The strength of interfacial bonding between the polymer chains and the ceramic phase depended on the amount of TiO2, as shown by the change in glass‐transition temperature (Tg) with TiO2 content. The result of mechanical and thermal tests showed that both the tensile strength and the Tg increased to a maximum value and then decreased with an increasing of TiO2 because excess particles (e.g., greater than 10 wt % TiO2) might cause separation or segregation between the organic and inorganic phases. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4272–4280, 2004  相似文献   

4.
A study on poly(tetrafluoroethylene) (PTFE) reinforced with tetraethoxysilanes (TEOS) derived SiO2 is described. It included the manufacturing process of SiO2‐reinforced PTFE and the effects of silylation agent on the properties of the hybrid material, such as porosity, hydrophobic, thermal resistance, dielectric and mechanical properties, and microstructure. PTFE/SiO2 hybrids of 50 wt % SiO2 loading were prepared via a sol–gel process and were shaped by a two‐roll milling machine. Trimethylchlorosilane and hexamethydisilazane were used as the silylation agents. Our results showed that the water absorption and dielectric loss of PTFE/SiO2 hybrid had significantly improved with silylation agent. The silylation process replaced Si? OH with Si? CH3 on the surface of the TEOS‐derived silica colloidal particle. The existence of trimethylsilyl [? Si(CH3)3] on the surface of the modified PTFE/SiO2 hybrid was confirmed via infrared and solid‐state 29Si magic‐angle spinning nuclear magnetic resonance spectra. Nitrogen‐sorption techniques were used to characterize the modified and unmodified PTFE/SiO2 hybrids. The microstructure of SiO2 in the matrix was also evaluated with scanning electron microscopy and transmission electron microscopy. Our results showed that the silylated sol–gel‐derived PTFE/SiO2 hybrids had exhibited high porosity (53.7%) with nanosize pores (10–40 nm) and nanosize colloidal particles (20–50 nm). This manifests itself as have the ultralow dielectric properties (Dk = 1.9 and Df = 0.0021), low coefficient of thermal expansion (66.5 ppm/°C), high tensile modulus (141 MPa), excellent thermal resistance (Td = 612 °C), and an increased hydrophobia (θ = 114°); moreover, the hydrophobic property of the PTFE/SiO2 hybrid was thermally stable up to 400 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1789–1807, 2004  相似文献   

5.
The influence of an in situ‐grown, sol → gel‐derived silicon oxide filler on mechanical, gas permeation and solvent affinity properties of Surlyn® materials, and melt processibility of Surlyn®/[silicon oxide] hybrid resin, was studied. Tensile modulus increases while elongation‐at‐break decreases with increasing silicon oxide uptake. He gas permeation vs. pressure profiles imply dual mode sorption. Swelling in n‐hexane, 1‐PrOH and xylene decreases as silicon oxide loading increases, the highest uptake being that of xylene. [Surlyn®Zn+2]/[silicon oxide] has better solvent resistance than the H‐form hybrid for each solvent. Affinity of the Zn‐form hybrid for xylene is considerably greater than that for 1‐PrOH and n‐hexane. Melt flow index of the filled H‐form is lower than that of the unfilled H‐form but higher than that of the partially Zn neutralized unfilled form. FTIR analysis of hybrids previously subjected to the melt flow index experiment shows that the silicon oxide phase remained intact but that the high temperatures drove condensation reactions between SiOH groups. After in situ sol–gel reactions and drying [Surlyn®‐H]/[silicon oxide] flakes were passed through an extruder to assess the effect on silicon oxide structure of melt‐processing conditions. All silicon oxide IR fingerprint bands for the processed hybrid persist, the spectrum closely resembling that of a nonextruded hybrid including the signature of Si–OH groups. 29Si solid‐state NMR spectroscopy was used to probe degree of molecular connectivity within the silicon oxide phase. The spectrum is consistent with those of nonextruded hybrids in that Si atom coordination around SiO4 units is predominantly Q3 and Q4, the bias in the distribution toward Q3 being in harmony with the IR results. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 143–154, 1999  相似文献   

6.
Poly(methyl methacrylate)–silica hybrid materials (PMMA–SiO2) were prepared by in situ polycondensation of alkoxysilane in the presence of trialkoxysilane‐functional PMMA. Infrared, differential scanning calorimetry, 29Si and 13C nuclear magnetic resonance spectroscopy, and thermogravimetric analysis were used to study the PMMA–SiO2 hybrids. The effects of the content and kind of the alkoxysilane on the dynamics and stability of the PMMA–SiO2 hybrids were investigated in this study.The dynamics of SiO2within hybrids were investigated with 29Si–1H cross‐polarization. The spin‐diffusion path length was on a nanometer scale estimated with the spin–lattice relaxation time in the rotating frame (T). The apparent activation energies for the degradation of the hybrids under air and nitrogen were evaluated by the van Krevelen method. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1972–1980, 2000  相似文献   

7.
An acrylic polymer/silica hybrid resist film was investigated for fabricating a microstructure by electron‐beam (EB) lithography. EB lithography on the hybrid thin film afforded a positive pattern whose depth corresponded to the EB exposure dose; this indicated that the hybrid was an analog resist and could fabricate a three‐dimensional microstructure. The resist film had high heat resistance and compatibility with the underlying quartz plate, probably because of the silica component. The acrylic polymer/(RSiO1.5)n hybrid film showed higher EB sensitivity than a film of the crosslinked acrylic polymer and an acrylic polymer/(SiO2)n hybrid. Atomic force microscopy observation of the hybrid film surface showed the homogeneous dispersion of the acrylic polymer and the silica components in the hybrid film. The acrylic polymer component was EB‐sensitive, whereas dispersing the acrylic polymer and silica components homogeneously also played an important role in increasing the EB sensitivity. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2107–2116, 2006  相似文献   

8.
Direct sulfonation and styrene‐mediated sulfonation were carried out onto metallocene‐based poly(ethylene‐co‐octene) (POE) and poly(ethylene‐co‐butene) (PBE) elastomers to impart polarity on the completely nonpolar rubbery matrices and to prepare a new class of elastomer. The influence of styrene‐grafting and pendant chain length on the degree of sulfonation was also studied. The effects of sulfonation, styrene grafting and styrene‐mediated sulfonation at their optimized levels on various physicomechanical properties were thoroughly investigated, and the resultant properties were correlated with structures of the modified elastomers. Higher extent of sulfonic acid groups were introduced through direct sulfonation in comparison with the styrene‐mediated sulfonation, whereas better thermal and mechanical properties were obtained through styrene‐mediated sulfonation in comparison with the direct sulfonation process. PBE had shown higher degree of sulfonation and percentage grafting than POE. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 8023–8040, 2008  相似文献   

9.
The polymerization of acrylic acid (AA) was performed under 60Co irradiation in the presence of dibenzyl trithiocarbonate at room temperature, and well‐defined poly(acrylic acid) (PAA) with a low polydispersity index was successfully prepared. The gel permeation chromatographic and 1H NMR data showed that this polymerization displays living free‐radical polymerization characteristics: a narrow molecular weight distribution (Mw/Mn = 1.07–1.22), controlled molecular weight, and constant chain‐radical concentration during the polymerization. Using PAA? S? C(?S)? S? PAA as an initiator, the extension reaction of PAA with fresh AA was carried out under 60Co irradiation, and the results indicated that this extension polymerization displayed controlled polymerization behavior. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3934–3939, 2001  相似文献   

10.
Lihua Hu  Wenfang Shi 《中国化学》2011,29(9):1961-1968
The UV‐cured organic‐inorganic hybrid nanocomposite (nano‐Si‐m‐PI) was prepared through the photopolymerization of acrylic resin initiated by ethoxysilane‐modified multifunctional oligomeric photoinitiator (Si‐m‐PI). The esterification reaction of 2‐hydroxy‐4′‐(2‐hydroxyethoxy)‐2‐methylpropiophenone (Irgacure 2959) with thioglycolic acid, and the following addition reactions with dipentaerythritol hexaacrylate and then 3‐aminopropyltriethoxysilane were carried out for preparing the Si‐m‐PI. The Si‐m‐PI exhibits the similar UV absorption and molar extinction coefficient with Irgacure 2959. The photoinitiating activity study by photo‐DSC analysis showed that the Si‐m‐PI possesses high photopolymerization rate at the peak maximum (Rpmax) and final unsaturation conversion (Pf) in the cured hybrid films. From the scanning electron microscope (SEM) observation, the SiO2 nanoparticles dispersed uniformly in the formed nano‐Si‐m‐PI, whereas the aggregation of nanoparticals occurred in nano‐Irg, which was prepared through the photopolymerization of acrylic resin initiated by Irgacure 2959. Moreover, compared with the UV‐cured pure polymer and nano‐Irg, the nano‐Si‐m‐PI showed remarkably enhanced thermal stability and mechanical properties.  相似文献   

11.
A series of amphiphilic silica/fluoropolymer nanoparticles of SiO2g‐P(PEGMA)‐b‐P(12FMA) were prepared by silica surface‐initiating atom transfer radical polymerization (SI‐ATRP) of poly(ethylene glycol) methyl ether methacrylate (PEGMA) and poly dodecafluoroheptyl methacrylate (P12FMA). Their amphiphilic behavior, lower critical solution temperature (LCST), and surface properties as protein‐resistance coatings were characterized. The introduction of hydrophobic P(12FMA) block leads SiO2‐g‐P(PEGMA)‐b‐P(12FMA) to form individual spherical nanoparticles (~150 nm in water and ~170 nm in THF solution) as P(PEGMA)‐b‐P(12FMA) shell grafted on SiO2 core (~130 nm), to gain obvious lower LCST at 36–52 °C and higher thermostability at 290–320 °C than SiO2‐g‐P(PEGMA) (LCST = 78–90 °C, Td = 220 °C). The water‐casted SiO2‐g‐P(PEGMA)‐b‐P(12FMA) films obtain much rougher surface (125.3–178.4 nm) than THF‐casted films (11.5–16.9 nm) and all SiO2‐g‐P(PEGMA) films (26.8–31.3 nm). Therefore, the water‐casted surfaces exhibit obvious higher water adsorption amount (Δf = ?494 ~ ?426 Hz) and harder adsorbed layer (viscoelasticity of ΔDf = ?0.28 ~ ?0.36 × 10?6/Hz) than SiO2‐g‐P(PEGMA) films, but present loser adsorbed layer than THF‐casted films (ΔDf = ?0.29 ~ ?0.63 × 10?6/Hz). While, the introduction of P(12FMA) segments does not show obviously reduce in the protein‐repelling adsorption of SiO2‐g‐P(PEGMA)‐b‐P(12FMA) films (△f = ?15.7 ~ ?22.3 Hz) compared with SiO2‐g‐P(PEGMA) films (△f = ?8.3 ~ ?11.3 Hz) and no obvious influence on water adsorption of ancient stone. Therefore, SiO2‐g‐P(PEGMA)‐b‐P(12FMA) is suggested to be used as protein‐resistance coatings. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 381–393  相似文献   

12.
This work dealt with the effect of using an acrylic acid modified polypropylene (PP‐g‐AA) as a compatibilizing agent for the intercalation/exfoliation of an organically modified montmorillonite (o‐MMT) in a polypropylene matrix (PP). Two PP‐g‐AA containing the same AA content (6 wt %) and having different molar masses were used. The o‐MMT content was 0, 1, or 5 wt % of total mass and the PP‐g‐AA/o‐MMT mass ratio was 0/1, 1/1, 2/1, or 5/1. Results of wide angle X‐ray scattering (WAXS) and transmission electronic microscopy (TEM) showed that without the PP‐g‐AA, the o‐MMT was dispersed in the PP/o‐MMT in a micrometer scale, similar to a conventional microcomposite. With the PP‐g‐AA, the o‐MMT was much better dispersed and its interlayers were intercalated and partly exfoliated by the polymer chains. Compared with the neat PP, some PP/PP‐g‐AA/o‐MMT systems exhibited higher G′ values and a yield stress at low frequencies, indicating that the PP‐g‐AA promoted the intercalation/exfoliation of the o‐MMT. The compatibilizing efficiency of those two PP‐g‐AA was very similar. Generally speaking, the higher the PP‐g‐AA/o‐MMT mass ratio, the better the state of dispersion and the degree of intercalation/exfoliation. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1811–1819, 2008  相似文献   

13.
The effect of the chain constraint on the glass‐transition temperature of polystyrene (pS) was studied in the context of polymer tethering to curved surfaces. The synthesis and characterization of silica‐graft‐polystyrene (SiO2g‐pS) hybrid nanoparticles is reported. Silica nanoparticles possessing covalently bound pS chains were prepared by the atom transfer radical polymerization of styrene from functionalized colloidal surfaces. These hybrid nanoparticles serve as interesting examples of spherical polymer brushes, as a high density of grafted pS was achieved on the inorganic colloid. The confirmation of a brushlike extension of immobilized chains in a good solvent was obtained with dynamic light scattering in toluene of SiO2g‐pS colloids possessing various molar masses of tethered pS. The solid‐state morphology of SiO2g‐pS ultrathin films was assessed with transmission electron microscopy, and this confirmed that the silica colloids were well‐dispersed in a matrix of the tethered polymer. Differential scanning calorimetry was used to study the effects of tethering and chain immobilization on the glass‐transition temperature of pS. The measured glass‐transition temperature of annealed bulk films of the hybrid nanoparticles was elevated with respect to the value for pure bulk pS. The enhancements ranged from 13 to 2 K for SiO2g‐pS brushes possessing tethered pS with number‐average molecular weights of 5230 and 32,670 g/mol, respectively. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2667–2676, 2002  相似文献   

14.
The soluble poly(methyl methacrylate‐co‐octavinyl‐polyhedral oligomeric silsesquioxane) (PMMA–POSS) hybrid nanocomposites with improved Tg and high thermal stability were synthesized by common free radical polymerization and characterized using FTIR, high‐resolution 1H NMR, 29Si NMR, GPC, DSC, and TGA. The POSS contents in the nanocomposites were determined based on FTIR spectrum, revealing that it can be effectively adjusted by varying the feed ratio of POSS in the hybrid composites. On the basis of the 1H NMR analysis, the number of the reacted vinyl groups on each POSS molecules was determined to be about 6–8. The DSC and TGA measurements indicated that the hybrid nanocomposites had higher Tg and better thermal properties than the pure PMMA homopolymer. The Tg increase mechanism was investigated using FTIR, displaying that the dipole–dipole interaction between PMMA and POSS also plays very important role to the Tg improvement besides the molecular motion hindrance from the hybrid structure. The thermal stability enhances with increase of POSS content, which is mainly attributed to the incorporation of nanoscale inorganic POSS uniformly dispersed at molecular level. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5308–5317, 2007  相似文献   

15.
Air‐stable hybrid catalysts of silicon dioxide/double metal cyanide complexes (Si‐DMCCs) based on Zn3[Co(CN)6]2 (ZHCC) were prepared by an in situ sol–gel method. The Si‐DMCCs showed low crystallinity and a nanolamellar structure with a thickness of ~40–60 nm. In particular, a lamellar structure of regular hexagonal shape was observed for Si‐DMCCs with low SiO2 content. These catalysts had very high catalytic activity for alternating copolymerization of cyclohexene oxide (CHO) and carbon dioxide. A turnover number of 11,444, turnover frequency of 3815 h?1, and apparent efficiency of 7.5 kg polymer/g ZHCC (~24.0 kg polymer/g Zn) were achieved at 3.8 MPa and 100 °C. The poly(cyclohexenylene carbonate) (PCHC) polymers obtained were completely atactic with a molecular weight (Mn) of ~10 kg/mol and polydispersity of 2.0–3.0. The PCHCs had a structure of nearly alternating CHO and CO2 units, with a molar fraction of carbonate units of 0.44–0.47. Preliminary investigations of the mechanism suggest that nucleophilic attack by neighboring oxygen atoms is involved in copolymerization initiation with Zn? CoIII DMCCs. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3128–3139, 2008  相似文献   

16.
We report on the electrical conductance of nanofibers of regioregular poly(3‐hexylthiophene) (RRP3HT) as a function of gate‐induced charge. Nanofibers of RRP3HT were deposited onto SiO2/Si substrates by casting from dilute p‐xylene solutions. An analysis of the nanofibers by atomic force microscopy revealed fiber lengths of 0.2–5 μm, heights of 3–7 nm, and widths of approximately 15 nm. A field effect transistor geometry was used to probe the conductance of webs of nanofibers and single nanofibers; in these measurements, gold electrodes served as source and drain contacts, and the doped SiO2/Si substrate served as the gate. Temperature‐dependent transport studies on webs of nanofibers revealed an activation energy of 108 meV at a gate‐induced hole density of 3.8 × 1012 charges/cm2. Pretreating SiO2 with a hydrophobic hexamethyldisilazane (HMDS) layer reduced the activation energy to 65 meV at the same charge density. The turn‐on gate voltage on treated and untreated substrates increased in magnitude with decreasing temperature. Conductance measurements on single nanofibers on HMDS‐treated SiO2 yielded hole mobilities as high as 0.06 cm2/Vs with on/off current ratios greater than 103. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2674–2680, 2003  相似文献   

17.
Block, random, and gradient copolymers of styrene (S) and acrylic acid (AA) are synthesized by conventional or controlled radical polymerization, and their glass transition temperature (Tg) behaviors are compared. The location and breadth of the Tgs are determined using derivatives of differential scanning calorimetry heating curves. Each S/AA random copolymer exhibits one narrow Tg, consistent with a single phase of limited compositional nanoheterogeneity. Block copolymers exhibit two narrow Tgs originating from nanophase separation into ordered domains with nearly pure S or nearly pure AA repeat units. Each gradient copolymer exhibits a Tg response with a ~50–56 °C breadth that extends beyond the upper Tg of the block copolymers. For copolymers of similar composition, the maximum value in the gradient copolymer Tg response is consistent with that of a random copolymer, which has an enhanced Tg relative to poly(acrylic acid) due to more effective hydrogen bonding when AA units are separated along the chain backbone by S units. These results indicate that gradient copolymers with ordered nanostructures can be rationally designed, which exhibit broad glass transitions that extend to higher temperature than the Tgs observed with block copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2842–2849, 2007  相似文献   

18.
The free‐radical copolymerization of N‐phenylmaleimide (N‐PhMI) with acrylic acid was studied in the range of 25–75 mol % in the feed. The interactions of these copolymers with Cu(II) and Co(II) ions were investigated as a function of the pH and copolymer composition by the use of the ultrafiltration technique. The maximum retention capacity of the copolymers for Co(II) and Cu(II) ions varied from 200 to 250 mg/g and from 210 to 300 mg/g, respectively. The copolymers and polymer–metal complexes of divalent transition‐metal ions were characterized by elemental analysis, Fourier transform infrared, 1H NMR spectroscopy, and cyclic voltammetry. The thermal behavior was investigated with differential scanning calorimetry (DSC) and thermogravimetry (TG). The TG and DSC measurements showed an increase in the glass‐transition temperature (Tg) and the thermal stability with an increase in the N‐PhMI concentration in the copolymers. Tg of poly(N‐PhMI‐co‐AA) with copolymer composition 46.5:53.5 mol % was found at 251 °C, and it decreased when the complexes of Co(II) and Cu(II) at pHs 3–7 were formed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4933–4941, 2005  相似文献   

19.
In polypropylene (PP)/ethylene–octene copolymer (POE)/BaSO4 ternary composites, two different kinds of phase structures are assumed:(1) POE and BaSO4 filler are separately dispersed in the PP matrix and (2) POE‐encapsulated filler particles (core–shell structure) are dispersed in the matrix. This depends on the interfacial interaction of the composites. For the design of composites with different interfacial interactions, three routes for the preparation of BaSO4 master batches were developed. First, a mixture of BaSO4, POE, and maleic anhydride (MAH) in a certain ratio was extruded in the presence of dicumyl peroxide and then pelletized. In extrusion, MAH‐functionalized POE was in situ formed to enhance the interfacial interaction between POE and BaSO4. Second, a mixture of POE and BaSO4 was directly extruded and then pelletized. Third, after BaSO4 was treated with an organic titanate coupling agent, the treated BaSO4 and POE were blended in extrusion and then pelletized. Scanning electron microscopy observations showed that the core–shell structure in which POE encapsulates BaSO4 particles is formed through route 1, whereas POE and BaSO4 are separately dispersed into the PP matrix through routes 2 and 3. The rheological behavior of PP/POE/BaSO4 ternary composites was studied with a controlled stress rheometer. The results showed that the interfacial interaction in composites with core–shell morphology is the strongest. Interparticle interactions give rise to the formation of interparticle networks; the stronger the network is, the larger the shear yield stress is and the smaller the thixotropic loop area is. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1804–1812, 2002  相似文献   

20.
This article describes the synthesis and characterization of new amphiphilic polymer conetworks containing hydrophilic poly(methacrylic acid) (PMAA) or poly(acrylic acid) (PAA) and hydrophobic polyisobutylene (PIB) chains. These conetworks were prepared by a two‐step polymer synthesis. In the first step, a cationic copolymer of isobutylene (IB) and 3‐isopropenyl‐α,α‐dimethylbenzyl isocyanate (IDI) was prepared. The isocyanate groups of the IB–IDI random copolymer were subsequently transformed in situ to methacrylate (MA) groups in reaction with 2‐hydroxyethyl methacrylate (HEMA). In the second step, the resulting MA‐multifunctional PIB‐based crosslinker, PIB(MA)n, with an average functionality of approximately four methacrylic groups per chain, was copolymerized with methacrylic acid (MAA) or acrylic acid (AA) by radical mechanism in tetrahydrofuran giving rise to amphiphilic conetworks containing 31–79 mol % of MAA or 26–36 mol % of AA. The synthesized conetworks were characterized with solid‐state 13C‐NMR spectroscopy and differential scanning calorimetry. The amphiphilic nature of the conetworks was proven by swelling in both aqueous media with low and high pH and n‐heptane. The effect of varying pH on the swelling behavior of the synthesized conetworks is presented. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1284–1291, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号