首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pure yellow (CuI)P4Se4 was prepared by reaction of stoichiometric amounts of CuI, red P, and gray Se in evacuated silica ampoules. The crystal structure was determined from single crystals at room temperature. (CuI)P4Se4 crystallizes in the orthorhombic system, space group Cmca with a = 14.770 (1) Å, b = 12.029 (1) Å, c = 12.449 (1) Å, V = 2211.9(6) Å3, and Z = 8. The structure refinement converged to R = 0.0190 (wR = 0.0272) for 1020 independent reflections and 51 parameters. A prominent feature of the crystal structure are neutral polymeric P4Se4 strands which are connected by copper iodide. These strands consist of norbornane analogous P4Se3 cages which are linked by selenium bridges. The polymers are achiral since a mirror plane exists perpendicular to the strands. The single polymers are connected by [Cu2I2] units to form layers. These layers are stacked along the b axis and are connected by van der Waals-interactions only. Raman spectra of (CuI)P4Se4 differ significantly from Raman spectra of (CuI)3P4Se4 and catena-(P4Se4)x.  相似文献   

2.
Novel Gold Selenium Complexes: Syntheses and Structures of [Au10Se4(dpppe)4]Br2, [Au2Se(dppbe)], [(Au3Se)2(dppbp)3]Cl2, and [Au34Se14(tpep)6(tpepSe)2]Cl6 The reaction of gold phosphine complexes [(AuX)(PR3)] (X= halogen; R = org. group) with Se(SiMe3)2 yield to new chalcogeno bridged gold complexes. Especially within the use of polydentate phosphine ligands cluster complexes like [Au10Se4(dpppe)4]Br2 ( 1 ) (dpppe = 1, 5‐Bis(diphenylphosphino)pentane), [Au2Se(dppbe)] ( 2 ) (1, 4‐Bis(diphenylphosphino)benzene), [(Au3Se)2(dppbp)3]Cl2 ( 3 ) (dppbp = 4, 4′‐Bis‐diphenylphosphino)biphenyl) und [Au34Se14(tpep)6(tpepSe)2]Cl6 ( 4 ) (tpep = 1, 1, 1‐Tris(diphenylphosphinoethyl)phosphine, tpepSe = 1, 1‐Bis(diphenylphosphinoethyl)‐1‐(diphenylselenophosphinoethylphosphine) could be isolated and their structures could be determined by X‐ray diffraction. ( 1: Space group P1 (No. 2), Z = 2, a = 1642.1(11), b = 1713.0(9), c = 2554.0(16) pm, α = 80.41(3)°, β = 76.80(4)°, γ = 80.92(4)°; 2: Space group P21/n (No. 14), Z = 4, a = 947.3(2), b = 1494.9(3), c = 2179.6(7) pm, β = 99.99(3)°; 3: Space group P21/c (No. 14), Z = 8, a = 2939.9(6), b = 3068.4(6), c = 3114.5(6) pm, β = 109.64(3)°; 4: Space group P1 (No. 2), Z = 1, a = 2013.7(4), b = 2420.6(5), c = 2462.5(5) pm, α = 77.20(3), β = 74.92(3), γ = 87.80(3)°).  相似文献   

3.
Reactions of rubidium or barium salts of the ortho‐selenostannate anion, [Rb4(H2O)4][SnSe4] ( 1 ) or [Ba2(H2O)5][SnSe4] ( 2 ) with Zn(OAc)2 or ZnCl2 in aqueous solution yielded two novel compounds with different ternary Zn/Sn/Se anions, [Rb10(H2O)14.5][Zn4(μ4‐Se)2(SnSe4)4] ( 3 ) and [Ba5(H2O)32][Zn5Sn(μ3‐Se)4(SnSe4)4] ( 4 ). 1 – 4 have been determined by means of single crystal X‐ray diffraction: 1 : triclinic space group lattice dimensions at 203 K: a = 8.2582(17) Å, b = 10.634(2) Å, c = 10.922(2) Å, α = 110.16(3)°, β = 91.74(3)°, γ = 97.86(3)°, V = 888.8(3) Å3; R1 [I > 2σ(I)] = 0.0669; wR2 = 0.1619; 2 : orthorhombic space group Pnma; lattice dimensions at 203 K: a = 17.828(4) Å, b = 11.101(2) Å, c = 6.7784(14) Å, V = 1341.5(5) Å3; R1 [I > 2σ(I)] = 0.0561; wR2 = 0.1523; 3 : triclinic space group ; lattice dimension at 203 K: a = 17.431(4) Å, b = 17.459(4) Å, c = 22.730(5) Å, α = 105.82(3)°, β = 99.17(3)°, γ = 90.06(3)°, V = 6563.1(2) Å3; R1 [I > 2σ(I)] = 0.0822; wR2 = 0.1782; 4 : monoclinic space group P21/c; lattice dimensions at 203 K: a = 25.231(5) Å, b = 24.776(5) Å, c = 25.396(5) Å, β = 106.59(3)°, V = 15215.0(5) Å3; R1 [I > 2σ(I)] = 0.0767; wR2 = 0.1734. The results serve to underline the crucial role of the counterion for the type of ternary anion to be observed in the crystal. Whereas Rb+(aq) stabilizes a P1‐type Zn/Sn/Se supertetrahedron in 3 like K+, the Ba2+(aq) ions better fit to an anionic T3‐type Zn/Sn/Se cluster arrangement as do Na+ ions. It is possible to estimate a radius:charge ratio for the stabilization of the two structural motifs.  相似文献   

4.
The reaction of one equivalent of In with a molten flux of (Ph4P)2Se5 and P2Se5 (1 : 2), at 250 °C gave the (Ph4P)[In(P2Se6)] ( I ). Stoichiometric elemental synthesis at 750 °C produced the Cs5In(P2Se6)2 ( II ). The thin, yellow crystals of ( I ), and the irregular, dark orange crystals of ( II ), appear to be air- and water-stable. Compound ( I ) crystallizes in the monoclinic space group C2/c (no. 15) and at 23 °C: a = 23.127(7) Å, b = 6.564(1) Å, c = 19.083(3) Å, β = 97.42(2)°, V = 2873(1) Å3, Z = 4, final R/Rw = 4.4/5.2%. Compound ( II ) crystallizes in the tetragonal space group P42/m (no. 84) and at 23 °C: a = b = 13.886(1) Å, c = 7.597(2) Å, V = 1464.9(3) Å3, Z = 2, final R/Rw = 3.9/5.1%. Compound ( I ) contains infinite [In(P2Se6)]nn– with a structure related to that of K2FeP2Se6. Compound ( II ) contains the discrete [In(P2Se6)2]5– which can be viewed as a fragment of the [In(P2Se6)]nn– chain.  相似文献   

5.
Chloro- and Polyselenoselenates(II): Synthesis, Structure, and Properties of [Ph3(C2H4OH)P]2[SeCl4] · MeCN, [Ph4P]2[Se2Cl6], and [Ph4P]2[Se(Se5)2] By symproportionation of elemental selenium and SeCl4 in polar protic solvents the novel chloroselenates(+II), [SeCl4]2? and [Se2Cl6]2?, could be stabilized; they were crystallized with voluminous organic cations. They were characterized from complete X-ray structure analysis. Yellow-orange [Ph3(C2H4OH)P]2[SeCl4] · MeCN (space group P1 , a = 10.535(4), b = 12.204(5), c = 16.845(6) Å, α = 77.09(3)°, β = 76.40(3)°, γ = 82.75(3)° at 140 K) contains in its crystal structure monomeric [SeCl4]2? anions with square-planar coordination of Se(+II). The mean Se? Cl bond length is 2.441 Å. In yellow [Ph4P]2[Se2Cl6] (space group P1 , a = 10.269(3), b = 10.836(4), c = 10.872(3) Å, α = 80.26(3)°, β = 79.84(2)°, γ = 72.21(3)° at 140 K) a dinuclear centrosymmetric [Se2Cl6]2? anion, also with square-planar coordinated Se(+II), is observed. The average terminal and bridging Se? Cl bond distances are 2.273 and 2.680 Å, respectively. From redox reactions of elemental Se with boranate/thiolate in ethanol/DMF the bis(pentaselenido)selenate(+II) anion [Se(Se5)2]2? was prepared as a novel type of a mixed-valent chalcogenide. In dark-red-brown [Ph4P]2[Se(Se5)2] (space group P21/n, a = 12.748(4), b = 14.659(5), c = 14.036(5) Å, β = 108.53(3)° at 140 K) centrosymmetric molecular [Se(Se5)2]2? anions with square-planar coordination of the central Se(+II) by two bidentate pentaselenide ligands is observed (mean Se? Se bond lengths: 2.658 Å at Se(+II), 2.322 Å in [Se5]2?). The resulting six-membered chelate rings with chair conformation are spirocyclically linked through the central Se(+II). The vibrational spectra of the new anions are reported.  相似文献   

6.
Neptunium triselenide, NpSe3, was synthesized in high yield by the reaction of the elements in a Sb2Se3 flux at 1223 K. Its structure has been determined by single‐crystal X‐ray diffraction methods. Thecompound crystallizes with two formula units in space group C$\rm^{2}_{2h}$ –P21/mof the monoclinic system in the TiS3 structure type with cell constants at 100 K of a = 5.592(3) Å, b = 4.002(2) Å, c = 9.422(5) Å,β = 97.40(1) °. The asymmetric unit comprises one neptunium and three selenium atoms, each with site symmetry m. Np–Se interatomic distances range from 2.859(2) to 2.927(3) Å; the Se–Se bond length of 2.340(3) Å is typical of a single bond. The compound may thus be charge‐balanced and formulated as Np4+Se2–Se22–.  相似文献   

7.
Brown crystals of [NMe4]4[(Se4Br10)2(Se2Br2)2] ( 1 ) were obtained from the reaction of selenium and bromine in acetonitrile in the presence of tetramethylammonium bromide. The crystal structure of 1 was determined by X‐ray diffraction and refined to R = 0.0297 for 8401 reflections. The crystals are monoclinic, space group P21/c with Z = 4 and a = 12.646(3) Å, b = 16.499(3) Å, c = 16.844(3) Å, β = 101.70(3)° (123 K). In the solid‐state structure, the anion of 1 is built up of two [Se4Br10]2– ions. Each shows a triangular arrangement of three planar SeBr4 units sharing a common edge through two μ3‐bridging bromine atoms, and one SeBr2 molecule, which is linked to the SeII atoms of two SeBr4 units; between the Se4Br102– ions a dimerized Se2Br2 molecule (Se4Br4) is situated and one SeI atom of each Se2Br2 molecule has two weak contacts [3.3514(14) Å and 3.3952(11) Å] to two bromine atoms of one SeBr4 unit. Four SeI atoms of a dimerized Se2Br2 molecule are in a almost regular planar tetraangular arrangement. Contacts between the SeII atom of the SeBr2 molecule and the SeII atoms of two SeBr4 units are 3.035(1) Å and 3.115(1) Å, and can be interpreted as donor‐acceptor type bonds with the SeII atoms of SeBr4 units as donors and the SeBr2 molecule as acceptor. The terminal SeII–Br and μ3‐Br–SeII bond lengths are in the ranges 2.3376(10) to 2.4384(8) Å and 2.8036(9) to 3.3183(13) Å, respectively. The bond lengths in the dimerized Se2Br2 molecule are: SeI–SeI = 2.2945(8) Å and 3.1398(12), SeI–Br = 2.3659(11) and 2.3689(10) Å.  相似文献   

8.
The Rare Earth Metal Polyselenides Gd8Se15, Tb8Se15?x, Dy8Se15?x, Ho8Se15?x, Er8Se15?x, and Y8Se15?x – Increasing Disorder in Defective Planar Selenium Layers Single crystals of the rare earth metal polyselenides Gd8Se15, Tb8Se15?x, Dy8Se15?x, Ho8Se15?x, Er8Se15?x, and Y8Se15?x (0 < x ≤ 0.3) have been prepared by chemical transport reactions (1120 K→ 970 K, 14 days, I2 as carrier) starting from pre‐annealed powders of nominal compositions between LnSe2 and LnSe1.9. The isostructural title compounds adopt a 3 × 4 × 2 superstructure of the ZrSSi type and can be described in space group Amm2 with lattice parameters of a = 12.161(1) Å, b = 16.212(2) Å and c = 16.631(2) Å (Gd8Se15), a = 12.094(2) Å, b = 16.123(2) Å and c = 16.550(2) Å (Tb8Se15?x), a = 12.036(2) Å, b = 16.060(2) Å and c = 16.475(2) Å (Dy8Se15?x), a = 11.993(2) Å, b = 15.999(2) Å and c = 16.471(2) Å (Ho8Se15?x), a = 11.908(2) Å, b = 15.921(2) Å and c = 16.428(2) Å (Er8Se15?x), and a = 12.045(2) Å, b = 16.072(3) Å and c = 16.626(3) Å (Y8Se15?x), respectively. The structure consists of puckered [LnSe] double slabs and planar Se layers alternating along [001]. The planar Se layers contain a disordered arrangement of dimers, Se2? and vacancies. All compounds are semiconducting and contain trivalent rare earth metals (Ln3+).  相似文献   

9.
The new compounds A2ZnP2Se6 (A = K, Rb, Cs) were synthesized via molten salt flux syntheses. The crystals feature one‐dimensional 1/[ZnP2Se6]2– chains charge balanced by alkali metal ions between the chains. K2ZnP2Se6 crystallizes in the monoclinic space group P21/c; cell parameters a = 12.537(3) Å, b = 7.2742(14) Å, c = 14.164(3) Å, β = 109.63(3)°, Z = 4, and V = 1216.7(4) Å3. Rb2ZnP2Se6 and Cs2ZnP2Se6 are isotypic, crystallizing in the triclinic space group P$\bar{1}$ . Rb2ZnP2Se6 has cell parameters of a = 7.4944(15) Å, b = 7.6013(15) Å, c = 12.729(3) Å, α = 96.57(3)°, β = 105.52(3)°, γ = 110.54(3)°, Z = 2, and V = 636.6(2) Å3. Cs2ZnP2Se6 has cell parameters of a = 7.6543(6) Å, b = 7.7006(6) Å, c = 12.7373(11) Å, α = 97.007(7)°, β = 104.335(7)°, γ = 109.241(6)°, Z = 2, and V = 669.54(10) Å3.  相似文献   

10.
A new phase in europium‐tin‐chalcogenide chemistry has been prepared using the reactive flux method: Eu8(Sn4Se14)(Se3)2. The compound crystallizes in the orthorhombic space group P21212 with cell parameters a = 11.990(2) Å, b = 16.425(4) Å, c = 8.543(1) Å, and Z = 2. Eu8(Sn4Se14)(Se3)2 is a three dimensional structure with EuII cations linked together with an unusual (Sn4Se14)12– anionic unit and (Se3)2– chains. UV‐VIS‐NIR band‐gap analysis shows that these black metallic crystals are likely semiconductors with an optical band‐gap of 1.07 eV.  相似文献   

11.
The tetraphosphorus tetraselenide P4Se4 is prepared and described for the first time. It is synthetised easily by heating between 250°C and 300°C a mixture of selenide P4Se3 and selenium. It exists under two allotropie forms, α P4Se4 transforming in β P4Se4 at 300°C. α P4Se4 cristallises in the orthorhombie system (a = 7.199 Å; b = 8.661 Å; c = 12.619 Å) as β P4Se4 (a = 9.3200 Å; b = 16.8601 Å; c = 14.3399 Å). The results of the mass spectrometry and the infra-red spectrometry suggest that the structure of the new compound derives from the tetrahedral structure of white phosphorus.  相似文献   

12.
The new compound LiCd2(SeO3)2(OH) has been hydrothermally synthesized and characterized by single‐crystal X‐ray diffraction and IR spectroscopy. It is built up from a network of edge‐ and vertex‐sharing pyramidal [SeO3]2— groups, distorted CdO6 octahedra, and CdO7 monocapped trigonal prisms. The cadmium‐centred groups form infinite columns, onto which Se atoms (as [SeO3]2— groups) are grafted. Cross‐linking between the columns results in a three‐dimensional framework which encapsulates [100] channels occupied by the tetrahedrally‐coordinated lithium cations. The H atom of the hydroxyl group appears to participate in a weak, bifurcated, hydrogen bond. Crystal data: LiCd2(SeO3)2(OH), Mr = 502.67, monoclinic, P21/c (No. 14), a = 5.8184 (3)Å, b = 10.2790 (5)Å, c = 11.5021 (5)Å, β = 90.446(1)°, V = 687.89 (9)Å3, Z = 4, R(F) = 0.021, wR(F2) = 0.046.  相似文献   

13.
The metal thiophosphates Rb2AgPS4 ( 2 ), RbAg5(PS4)2 ( 3 ), and Rb3Ag9(PS4)4 ( 4 ) were synthesized by stoichiometric reactions, whereas Rb6(PS5)(P2S10) ( 1 ) was prepared with excess amount of sulfur. The compounds crystallize as follows: 1 monoclinic, P21/c (no. 14), a = 17.0123(7) Å, b = 6.9102(2) Å, c = 23.179(1) Å, β = 94.399(4)°; 2 triclinic, P$\bar{1}$ (no. 2), a = 6.600(1) Å, b = 6.856(1) Å, c = 10.943(3) Å, α = 95.150(2)°, β = 107.338(2)°, γ = 111.383(2)°; 3 orthorhombic, Pbca (no. 61), a = 12.607(1) Å, b = 12.612(1) Å, c = 17.759(2) Å; 4 orthorhombic, Pbcm (no. 57), a = 6.3481(2) Å, b = 12.5782(4) Å, c = 35.975(1) Å. The crystal structures contain discrete units, chains, and 3D polyanionic frameworks composed of PS4 tetrahedral units arranged and connected in different manner. Compounds 1 – 3 melt congruently, whereas incongruent melting behavior was observed for compound 4 . 1 – 4 are semiconductors with bandgaps between 2.3 and 2.6 eV and thermally stable up to 450 °C in an inert atmosphere.  相似文献   

14.
Metastable CuBrSe2 was prepared by the fast cooling of a melt (T ≥ 400°C) of copper(I) bromide and selenium in the ratio 1:2 to room temperature. The crystal structure was determined from single crystals separated from the solidified melt. The compound crystallizes isotypic to CuXTe2 (X = Cl, Br, I) and CuClSe2, space group P21/n (No. 14) with a = 7.8838(9) Å, b = 4.6439(4) Å, c = 11.183(1) Å, β = 103.44(1)°, V = 398.2(1) Å3, and Z = 4. The refinement converged to R = 0.0424 and wR = 0.0851 (all reflections), respectively. In the crystal structure formally neutral one‐dimensional selenium chains [Se] are coordinated to copper(I) bromide. Slow cooling of the melt or heating of solid CuBrSe2 to 250°C for some hours results in the decomposition of the compound, and a mixture of CuBrSe3 and CuBr is formed. DSC measurements indicate, that this decomposition starts at about 200°C. Nevertheless, a melting point of 342°C can be determined. In Raman spectra of CuBrSe2, selenium‐selenium stretching modes are found at νSe–Se = 241 and 219 cm–1.  相似文献   

15.
The brown crystals of [NEt4]2[Se3Br8(Se2Br2)] ( 1 ) were obtained when selenium and bromine reacted in the solution of acetonitrile in the presence of tetraethylammonium bromide. The crystal structure of 1 has been determined by the X‐ray methods and refined to R = 0.0308 for 10433 reflections. The crystals are monoclinic, space group P21 with Z = 2 and a = 12.0393(3) Å, b = 11.8746(3) Å, c = 13.1946(3) Å, β = 96.561(1)° (123 K). In the solid state structure the anion of 1 is built up of Se3Br8 unit which consists of a triangular arrangement of three planar SeBr4 units sharing a common edge through two μ3‐bridging Br atoms, and one Se2Br2 molecule which is linked to one of μ3‐bridging Br atoms. The three SeII atoms form a triangle which is almost perpendicular to the planes given by three SeBr4 moieties. The contact between the μ3Br and the SeI atom of the Se2Br2 molecule is 3.1711(8) Å and can be interpreted as a bond of the donor‐acceptor type with the μ3Br as donor and the Se2Br2 molecule as acceptor. The terminal SeII‐Br and μ3Br‐SeII bond lengths are in the ranges 2.3537(7)–2.4737(7) Å and 2.7628(7)–3.1701(7) Å, respectively. The bond lengths in coordinated Se2Br2 molecule are: SeI‐SeI = 2.2636(9) Å, SeI‐Br = 2.3387(11) and 2.3936(8) Å.  相似文献   

16.
Reaction of lithium phenylselenothiolate, generated in situ from the reductive cleavage of PhSe‐SiMe3 with alkyl lithium reagents and insertion of elemental sulfur, with triphenylphosphine solubilized CuCl affords the molecular cluster complex [Cu20Se43‐SePh)12(PPh3)6] ( 1 ). The analogous reaction with AgCl yields the extended structure [Ag(SePh)] ( 2 ) in which an infinite layer of AgI atoms is capped on either side by μ4‐SePh ligands. 1: space group P¯1, a = 17.9510(6), b = 18.1712(7), c = 31.4311(11) Å, a = 78.098(2), β = 82.905(2), γ = 70.012(2)°. 2: space group C2/c, a = 5.8762(6), b = 7.2989(7), c = 29.124(2) Å, β = 95.790(3)°.  相似文献   

17.
The Red crystals of [PPh4]2[Se2Br6(Se2Br2)2] ( 1 ) were obtained when selenium and bromine reacted in the solution of acetonitrile in the presence of tetraphenylphosphonium bromide. The crystal structure of 1 has been determined by X‐ray diffraction and refined to R = 0.0201 for 4024 reflections. The crystals are triclinic, space group with Z = 2 and a = 11.2757(4) Å, b = 12.3347(5) Å, c = 12.4948(5) Å, α = 113.152(4)°, β = 114.745(4)°, γ = 91.208(3)° (120(2) K). In the solid state the anion of 1 is built up of the Se2Br6 core and two Se2Br2 molecules each of which is linked to one of the trans‐positioned terminal Brt atoms of the Se2Br6 core. The central Se2Br6 part consists of a nearly planar arrangement of two planar SeBr4 units sharing a common edge through two μ2‐bridging Br atoms. The contact between the Brt and the SeI atom of the Se2Br2 molecule is 3.0872(5) Å and can be interpreted as a bond of the donor‐acceptor type with the Brt as donor and the Se2Br2 molecule as acceptor. The terminal SeII–Br and μ2Br–SeII bond lengths are 2.3654(4), 2.6699(5) Å and 2.5482(5), 3.0265(5) Å, respectively. The bond lengths in the coordinated Se2Br2 molecule are: SeI–SeI = 2.2686(5) Å, SeI–Br = 2.3779(5) and 2.3810(5) Å.  相似文献   

18.
In the selenium‐containing heterocyclic title compound {systematic name: N‐[5‐(morpholin‐4‐yl)‐3H‐1,2,4‐diselenazol‐3‐ylidene]benzamide}, C13H13N3O2Se2, the five‐membered 1,2,4‐diselenazole ring and the amide group form a planar unit, but the phenyl ring plane is twisted by 22.12 (19)° relative to this plane. The five consecutive N—C bond lengths are all of similar lengths [1.316 (6)–1.358 (6) Å], indicating substantial delocalization along these bonds. The Se...O distance of 2.302 (3) Å, combined with a longer than usual amide C=O bond of 2.252 (5) Å, suggest a significant interaction between the amide O atom and its adjacent Se atom. An analysis of related structures containing an Se—Se...X unit (X = Se, S, O) shows a strong correlation between the Se—Se bond length and the strength of the Se...X interaction. When X = O, the strength of the Se...O interaction also correlates with the carbonyl C=O bond length. Weak intermolecular Se...Se, Se...O, C—H...O, C—H...π and π–π interactions each serve to link the molecules into ribbons or chains, with the C—H...O motif being a double helix, while the combination of all interactions generates the overall three‐dimensional supramolecular framework.  相似文献   

19.
Abstract. The cadmium borophosphate compound Cd3[B2P4O14(OH)4] was synthesized under mild hydrothermal conditions. The crystal structure was determined by single‐crystal X‐ray diffraction [triclinic, space group P$\bar{1}$ (no. 2), a = 5.4362(11) Å, b = 8.2190(16) Å, c = 8.3918(17) Å, and α = 111.87(3)°, β = 104.63(3)°, γ = 90.73(3)°, V = 334.29(12) Å3 and Z = 1]. The 3D open framework of the title compound is constructed from BO3(OH) tetrahedra and 2D layers along the [100] direction. The resulting framework contains twisted eight‐membered rings that form 1D channels.  相似文献   

20.
Brown crystals of [PPh4]2[Se2Br6] ( 1 ) and [PEtPh3]2[Se2Br6] ( 2 ) were obtained when selenium and bromine reacted in acetonitrile solution in the presence of tetraphenylphosphonium bromide and ethyltriphenylphosphonium bromide, respectively. The crystal structure of 2 has been determined by X‐ray methods and refined to R = 0.0420 for 4161 reflections. The crystals are monoclinic, space group P21/n with Z = 2 and a = 13.055(3) Å, b = 12.628(3) Å, c = 13.530(3) Å, β = 92.40(3)° (293(2) K). In the solid state structure of 2 the dinuclear hexabromo‐diselenate(II) anion is centrosymmetric and consists of two distorted almost square‐planar SeBr4 units sharing a common edge through two bridging Br atoms. The terminal SeII–Br bond distances are found to be 2.419(1) and 2.445(1) Å, the bridging μBr–SeII bond distances 2.901(1) and 2.802(1) Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号