首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photopolymerization of methacrylated dental resins at room temperature leads to the appearance of long‐life free radicals because of system vitrification. These free radicals were observed by electronic paramagnetic resonance (EPR), and their characterization was undertaken by reference to the reactional mechanism, from the comparison with the model EPR signal and from theoretical simulation. Overlapping of two EPR signals assigned to two different kinds of radicals because of methacrylate end groups accounted for all the experimental and theoretical results. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1691–1699, 2003  相似文献   

2.
3.
The warpage of injection–compression‐molded optical media, such as compact discs and digital video discs, due to asymmetric cooling during production is predicted. Thermally induced stress is calculated with a nonisothermal compressible flow simulation with a viscoelastic constitutive model. A finite element analysis is formulated with axisymmetric plate elements based on Kirchhoff thin‐plate theory to simulate the warpage of the disc due to the asymmetric thermal stress and gravity after demolding. Simulation results of warpage for compact‐disc‐recordable moldings are compared with experimental observations under different processing conditions, such as the melt temperature, mold temperature, and packing pressure, with an optical grade of polycarbonate. The comparison shows that the simulation well predicts the effects of various processing conditions. Both the simulation and experiment indicate that of the processing conditions, the mold temperature has the greatest effect on warpage. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 859–872, 2003  相似文献   

4.
The nonlinear stress relaxation of a nearly monodisperse, moderately entangled polystyrene solution (i.e., roughly seven entanglements per chain at equilibrium) in single step‐strain flow is investigated quantitatively by a detailed comparison of an existing set of experimental data with a simulation based on the tube model. The proposed simulation enables the effects of primary nonlinear relaxation mechanisms other than chain retraction to be identified more clearly and investigated individually. Two peculiar nonlinear relaxation behaviors are observed in this experiment. One is concerned with an apparent enhancement in the stress relaxation at short times, and the other is responsible for a seeming slowdown of the stress relaxation at long times. These findings are discussed within the tube model, in view of the effects of convective constraint release, partial strand extension, and nonaffine deformation. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1281–1293, 2003  相似文献   

5.
Fluorescence polarization and quenching measurements were used to examine intramolecular energy migration for poly(N‐vinyl carbazole) and copolymers of N‐vinyl carbazole with methyl methacrylate. Quenching measurements of the carbazole fluorescence by CCl4 were performed in dilute solution in toluene, and fluorescence anisotropy, r, was measured for the chains dispersed in a solid matrix of poly(methyl methacrylate) (PMMA). The results suggested that the chains with a high carbazole content, that is, a high content of excimer trapping sites, do not show the highest values of the singlet energy‐migration rate. Isotropies, r?1, of the samples in vitrified PMMA corroborated such conclusions. Molecular dynamics simulations on isotactic and syndiotactic trichromophoric copolymer fragments were used to obtain parameters related to the energy‐transfer process as a function of the methyl methacrylate content. The parameters from the simulations supported the interpretation of the experiments. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1615–1626, 2003  相似文献   

6.
On banded spherulites of poly(3‐hydroxybutyrate) and its copolymers, fine circles were observed between either cross‐polarizers or without polarizers. Atomic force microscopy was applied to confirm that these circles are terraces with heights up to several hundred nanometers rather than cracks. Real‐time observation demonstrated that the terrace forms at the front of the growing spherulites just before or exactly when two spherulites impinge on each other. Terraces were observed on the spherulites crystallized from melt confined between glass or polyimide slides rather than poly(ethylene terephthalate) slides. The formation of the terraces may have resulted from instability of the moving boundary of the melt film confined between the spherulite surface and cover slide. Wettability of the substrate played an important role in the formation of the terraces. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2128–2134, 2003  相似文献   

7.
An Erratum has been published for this article in J Polym Sci Part A: Polym Chem (2004) 42 213 In this article, recent examples are reviewed of late-transition-metal catalysis applied to polymer topology control. By the judicious selection or design of late-transition-metal catalysts, polymers with a broad range of topologies, including linear, short-chain-branched, hyperbranched, dendritic, and cyclic topologies, have been successfully synthesized. A distinctive advantage of the catalyst approach is that polymers with complex topologies can be prepared in one pot from simple commercial monomers. A fundamental difference of the catalyst approach with respect to other approaches is that the polymer topology is controlled by the catalysts instead of the monomer structure. In our own laboratory, we have successfully used two strategies to control the polymer topology with late-transition-metal catalysts. In the first strategy, hyperbranched polymers are prepared by the direct free-radical polymerization of divinyl monomers through control of the competition between propagation and chain transfer with a cobalt chain-transfer catalyst. In the second strategy, polyethylene topology is successfully controlled by the regulation of the competition between propagation and chain walking with the Brookhart PdII-α-bisimine catalyst. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3680–3692, 2003  相似文献   

8.
A gel permeation chromatography (GPC) calculation method has been developed to determine the absolute molecular weight of a star‐shaped styrenic block copolymer with GPC–ultraviolet/refractive index calibrated with linear polystyrene standards. To illustrate the simplicity of this method, we have synthesized nearly monodisperse, multiple‐arm model polymers either by linking living polymeric arms with multifunctional silicon halide or by oligomerizing the p‐chloromethylstyrene‐terminated polystyrene macromonomers. The good agreement between the absolute molecular weight determined with this calculation method and that actually measured with a multi‐angle laser light scattering device has corroborated the validity of the calculation method. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 976–983, 2003  相似文献   

9.
We employ atomistic computer modeling to investigate the structure and morphology of poly(ethylene oxide) (PEO) chains confined in 1-nm slit pores defined by montmorillonite silicate layers. Molecular dynamics computer simulations reveal the Li+ cations to be located in the immediate vicinity of the silicate surfaces and PEO to adopt highly amorphous conformations in a liquidlike bilayer across the slit pores. Despite the orienting influence of the parallel stacked silicate walls, PEO shows no indication of crystallinity or periodic ordering; in fact, for all temperatures simulated, it is less ordered than the most disordered bulk PEO system. These amorphous PEO film configurations are attributed to the combination of severe spatial confinement and the strong coordination of ether oxygens with the alkali cations present in the interlayer gallery. These conclusions challenge the picture traditionally proposed for intercalated PEO, but they agree with a plethora of experimental observations. Indicatively, the simulation predictions are confirmed by wide-angle neutron scattering and differential scanning calorimetry experiments on PEO/montmorillonite intercalates. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3285–3298, 2003  相似文献   

10.
This article provides an overview of the fundamental principles of the synthesis of metallocatenanes and metallorotaxanes. It also describes the synthesis and properties of electronic conducting polymers—polypyrrole and polythiophene—built around metallocatenanes and metallorotaxanes. The particular properties of this new class of polymers, including the possibility of transmetallation reactions being performed with them and the observation of electronic coupling between the metal centers and the conducting matrix, are discussed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3470–3477, 2003  相似文献   

11.
Free quenching experiments were performed on thin plates of polystyrene (PS) and polycarbonate (PC). The thermal birefringence distribution along the thickness direction of the plates was measured. The birefringence data were compared with the results of a numerical simulation based on the linear viscoelastic and photoviscoelastic constitutive equations for the mechanical and optical properties, respectively, and the first‐order rate equation for volume relaxation. The effects of the initial temperature, quenching temperature, and quenching media on the development of residual thermal stresses and birefringence were evaluated. At higher initial temperatures (>105 °C), the thermal birefringence in quenched PS plates was negative at the center and positive at the surface, whereas at lower temperatures (close to the glass‐transition temperature), the birefringence became positive at the core and negative at the surface or positive through the entire cross section of the plate. The birefringence in freely quenching PC plates was positive at the center and negative at the surface at any initial temperature. These observations were in fair agreement with predicted data. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1850–1867, 2003  相似文献   

12.
Experimental data are reported on moisture diffusion and the elastoplastic response of an intercalated nanocomposite with vinyl ester resin matrix and montmorillonite clay filler at room temperature. Observations in diffusion tests showed that water transport in the neat resin is Fickian, whereas it becomes anomalous (non‐Fickian) with the growth of the clay content. This transition is attributed to immobilization of penetrant molecules on the surfaces of hydrophilic clay layers. Observations in uniaxial tensile tests demonstrate that the response of vinyl ester resin is strongly elastoplastic, whereas an increase in the clay content results in a severe decrease of plastic strains observed as a noticeable reduction in the curvatures of the stress‐strain diagrams. This is explained by slowing down the molecular mobility in the host matrix driven by confinement of chains in galleries between platelets. Constitutive equations are developed for moisture diffusion through and the elastoplastic behavior of a nanocomposite. Adjustable parameters in these relations are found by fitting the experimental data. Fair agreement is demonstrated between the observations and the results of numerical simulation. A striking similarity is revealed among changes in diffusivity, ultimate water uptake, and the rate of plastic flow with an increased clay content. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 476–492, 2003  相似文献   

13.
We designed a new type of styrenyl compound applicable to conventional photopolymerization systems, aiming at the production of polymers with improved mechanical properties, resistance to chemicals, and elevated glass‐transition temperatures (Tg's). A series of styrenyl monomers bearing 2,5‐dithio‐1,3,4‐thiadiazole groups were prepared, and their reactivity was studied in solid‐state photopolymerization initiated by 2‐(4′‐methoxystyryl)‐4,6‐bis(trichloromethyl)‐1,3,5‐triazine. These monomers exhibited much higher polymerization rates than usual, and the final conversion nearly reached completion, despite the relatively high Tg of the solid‐state photopolymerization system. Even at temperatures below Tg, the polymerization proceeded without a ceiling phenomenon. These features were explained by intermolecular interactions between the monomers that induced monomer alignments effective for solid‐state polymerization, large excess free volumes arising from rotation around the methylthio groups, and intramatrix radical migration leading to encounters with the remaining monomers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3227–3242, 2003  相似文献   

14.
The interaction of two polyampholyte systems, poly(1‐vinylimidazole‐co‐acrylic acid) and interpolymer complex poly(acrylic acid)/poly(1‐vinylimidazole) with copper(II) ions in water, was examined with potentiometry (pH‐metry and Cu‐selective electrode) and electron spin‐resonance spectroscopy. Coordination of Cu2+ with copolymer proceeded by carboxylic groups, whereas the interpolymer system azole units were also involved in the inner sphere of the complex. Synergism between coordination with metal ions and intramolecular hydrogen or ionic bonds was shown. The interpolymer complex was an effective system for binding, extracting, and concentrating copper ions from water. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2256–2263, 2003  相似文献   

15.
Light‐emitting devices made by organic or inorganic dielectric films placed between two metal electrodes emit light because of the radiative recombination of positive and negative charge carriers entering the dielectric from the anode and cathode sides, respectively, under applied voltage. Standard vapor‐deposition technology of the device construction suggests the remarkable disordering at the metal dielectric interface and in the structure of dielectric film. The structural imperfections strongly affect carrier injection and transport, device efficiency, performance, and stability. In this article we describe the effect of disordering on the injection current through the dielectric layer and discuss the implications for the device performance. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2601–2621, 2003  相似文献   

16.
The bulk polymerization of methyl methacrylate and styrene in the presence of an organically modified clay containing a vinyl group that can be involved in the polymerization produces exfoliated nanocomposites. These nanocomposites have been characterized by X‐ray diffraction, transmission electron microscopy, thermogravimetric analysis, mechanical properties, and cone calorimetry. The onset temperature of thermal degradation increases with the mechanical properties. The peak heat release rate is significantly reduced for nanocomposites containing 3 or 5% clay. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1124–1135, 2003  相似文献   

17.
The influence of experimental cure parameters on the diffusion of reactive species in polyester–melamine thermoset coatings during curing has been investigated with X‐ray photoelectron spectroscopy and attenuated total reflectance Fourier transform infrared. The diffusion of melamine plays a vital role in the curing process and, therefore, in the ultimate properties of coatings. At a low (<20%) hexamethoxymethylmelamine (HMMM) crosslinker concentration, the matrix composition is uniform, but at high HMMM concentrations, excess HMMM rapidly segregates to the air–coating interface. The rate of migration is governed by the difference in the surface free energies of polyester and HMMM and the concentration gradient of HMMM between the bulk and the surface. An increased rate of energy absorption also increases the rate of migration of HMMM to the surface. A physical model has been proposed to explain this surface segregation phenomenon in terms of cocondensation and self‐condensation reactions. It suggests that an appropriate amount of melamine can be segregated on the surface and allowed to self‐condense to form a desired thickness of a melamine topcoat through the control of the binder composition and cure conditions. This technique can be implemented to apply a melamine topcoat during cure. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 83–91, 2004  相似文献   

18.
A range of silanylene‐spaced divinylbenzene copolymers ( 1 ) and the corresponding monomers ( 2 ) have been synthesized by the rhodium‐catalyzed hydrosilylation of the corresponding bisalkynes with bissilyl hydrides, and the photophysical properties of 1 and 2 have been investigated. The silicon moiety in 1 serves as an insulating tetrahedral spacer that makes 1 highly folded. The two chromophores may be in close proximity such that a ground‐state intrachain interaction between two conjugated moieties through space might occur. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2218–2231, 2003  相似文献   

19.
Multifunctional molecules were designed to produce microgels with specific structures. Both static light scattering and dynamic light scattering were employed to determine the fractal dimension of the microgels. The protein, avidin, was strongly bound to four biotin moieties. Biotin was attached covalently to specifically engineered peptide nucleic acid (PNA) oligomers. Three designed DNA oligomers self‐assembled to produce a trifunctional three‐way junction (TWJ) with single‐stranded ends that were complementary to the PNA sequence. The sizes of the supramolecular aggregates were characterized by dynamic light scattering. The fractal dimension was obtained from the angular dependence of the scattered intensity when the microgels were large enough. When the microgels were formed via cooling from a temperature above the melting point of the PNA–DNA helices, reversible structures with a fractal dimension of approximately 1.86 were formed, which is consistent with a cluster–cluster aggregation mechanism. When the microgels were formed by the slow addition of biotinylated PNA bound to the TWJ to a solution of avidin at room temperature, the observed fractal dimension approached 2.6, which is consistent with a point–cluster aggregation mechanism. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3037–3046, 2003  相似文献   

20.
This study concerns a new group of low‐density polyethylenes (LDPEs)—unsaturated LDPE. The new LDPE is a copolymer between ethylene and 1,9‐decadiene and was polymerized in a commerical high‐pressure tubular reactor. The diene copolymerized with one double bond, leaving the other unreacted as a pendant side group. This yielded a copolymer containing a higher number of vinyl groups than ordinary LDPE. Fractionation of the copolymer and determination of the number of unsaturated structures in the different fractions by Fourier transform infrared spectroscopy revealed that the diene is homogeneously incorporated along the molar‐mass distribution curve. It is also possible to obtain copolymers with a varying vinyl content, without drastic changes in molar mass or molar‐mass distribution, by a controlled addition of 1,9‐decadiene to the reactor. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2974–2984, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号