首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The title hydrated ionic complex, [Ni(CH3COO)(C12H12N2)2]ClO4·H2O or [Ni(ac)(5,5′‐dmbpy)2]ClO4·H2O (where 5,5′‐dmbpy is 5,5′‐dimethyl‐2,2′‐bipyridine and ac is acetate), (1), was isolated as violet crystals from the aqueous ethanolic nickel acetate–5,5′‐dmbpy–KClO4 system. Within the complex cation, the NiII atom is hexacoordinated by two chelating 5,5′‐dmbpy ligands and one chelating ac ligand. The mean Ni—N and Ni—O bond lengths are 2.0628 (17) and 2.1341 (15) Å, respectively. The water solvent molecule is disordered over two partially occupied positions and links two complex cations and two perchlorate anions into hydrogen‐bonded centrosymmetric dimers, which are further connected by π–π interactions. The magnetic properties of (1) at low temperatures are governed by the action of single‐ion anisotropy, D, which arises from the reduced local symmetry of the cis‐NiO2N4 chromophore. The fitting of the variable‐temperature magnetic data (2–300 K) gives giso = 2.134 and D/hc = 3.13 cm−1.  相似文献   

2.
The design and synthesis of metal coordination and supramolecular frameworks containing N‐donor ligands and dicyanidoargentate units is of interest due to their potential applications in the fields of molecular magnetism, catalysis, nonlinear optics and luminescence. In the design and synthesis of extended frameworks, supramolecular interactions, such as hydrogen bonding, π–π stacking and van der Waals interactions, have been exploited for molecular recognition associated with biological activity and for the engineering of molecular solids.The title compound, [Ag(CN)(C12H12N2)]n, crystallizes with the AgI cation on a twofold axis, half a cyanide ligand disordered about a centre of inversion and half a twofold‐symmetric 5,5′‐dimethyl‐2,2′‐bipyridine (5,5′‐dmbpy) ligand in the asymmetric unit. Each AgI cation exhibits a distorted tetrahedral geometry; the coordination environment comprises one C(N) atom and one N(C) atom from substitutionally disordered cyanide bridging ligands, and two N atoms from a bidentate chelating 5,5′‐dmbpy ligand. The cyanide ligand links adjacent AgI cations to generate a one‐dimensional zigzag chain. These chains are linked together via weak nonclassical intermolecular interactions, generating a two‐dimensional supramolecular network.  相似文献   

3.
The title dicadmium compound, [Cd2(C10H8N2)5(H2O)6](C7H6NO2)2(ClO4)2·2H2O, is located around an inversion centre. Each CdII centre is coordinated by three N atoms from three different 4,4′‐bipyridine ligands and three O atoms from three coordinating water molecules in a distorted octahedral coordination environment. In the dicadmium cation unit, one 4,4′‐bipyridine (4,4′‐bipy) molecule acts as a bidentate bridging ligand between two Cd metal ions, while the other four 4,4′‐bipy molecules act only as monodentate terminal ligands, resulting in a rare `H‐type' [Cd2(C10H8N2)5(H2O)6] host unit. These host units are connected to each other viaπ–π stacking interactions, giving rise to a three‐dimensional supramolecular grid network with large cavities. The 3‐aminobenzoate anions, perchlorate anions and water molecules are encapsulated in the cavities by numerous hydrogen‐bonding interactions. To the best of our knowledge, this is the first example of a coordination compound based on both 4,4′‐bipyridine ligands together with discrete 3‐aminobenzoate anions.  相似文献   

4.
One of most interesting systems of coordination polymers constructed from the first‐row transition metals is the porous ZnII coordination polymer system, but the numbers of such polymers containing N‐donor linkers are still limited. The title double‐chain‐like ZnII coordination polymer, [Ag2Zn(CN)4(C10H10N2)2]n, presents a one‐dimensional linear coordination polymer structure in which ZnII ions are linked by bridging anionic dicyanidoargentate(I) units along the crystallographic b axis and each ZnII ion is additionally coordinated by a terminal dicyanidoargentate(I) unit and two terminal 1‐benzyl‐1H‐imidazole (BZI) ligands, giving a five‐coordinated ZnII ion. Interestingly, there are strong intermolecular AgI…AgI interactions between terminal and bridging dicyanidoargentate(I) units and C—H…π interactions between the phenyl rings of BZI ligands of adjacent one‐dimensional linear chains, providing a one‐dimensional linear double‐chain‐like structure. The supramolecular three‐dimensional framework is stabilized by C—H…π interactions between the phenyl rings of BZI ligands and by AgI…AgI interactions between adjacent double chains. The photoluminescence properties have been studied.  相似文献   

5.
The structure of the title compound, [NiCu(CN)4(C10H8N2)(H2O)2]n or [{Cu(H2O)2}(μ‐C10H8N2)(μ‐CN)2{Ni(CN)2}]n, was shown to be a metal–organic cyanide‐bridged framework, composed essentially of –Cu–4,4′‐bpy–Cu–4,4′‐bpy–Cu– chains (4,4′‐bpy is 4,4′‐bipyridine) linked by [Ni(CN)4]2− anions. Both metal atoms sit on special positions; the CuII atom occupies an inversion center, while the NiII atom of the cyanometallate sits on a twofold axis. The 4,4′‐bpy ligand is also situated about a center of symmetry, located at the center of the bridging C—C bond. The scientific impact of this structure lies in the unique manner in which the framework is built up. The arrangement of the –Cu–4,4′‐bpy–Cu–4,4′‐bpy–Cu– chains, which are mutually perpendicular and non‐intersecting, creates large channels running parallel to the c axis. Within these channels, the [Ni(CN)4]2− anions coordinate to successive CuII atoms, forming zigzag –Cu—N[triple‐bond]C—Ni—C[triple‐bond]N—Cu– chains. In this manner, a three‐dimensional framework structure is constructed. To the authors' knowledge, this arrangement has not been observed in any of the many copper(II)–4,4′‐bipyridine framework complexes synthesized to date. The coordination environment of the CuII atom is completed by two water molecules. The framework is further strengthened by O—H...N hydrogen bonds involving the water molecules and the symmetry‐equivalent nonbridging cyanide N atoms.  相似文献   

6.
The title compound, {[Ag2(C10H14N4)2](ClO4)2}n, is a one‐dimensional coordination polymer formed by AgI atoms linearly bridged by 1,1′‐(butane‐1,4‐diyl)diimidazole molecules. The chains have a helical arrangement and pairs of chains are held together by the rarely reported ligand‐unsupported Ag—Ag interaction [2.966 (1) Å], which results in a double‐helix structure. The double helix contains twisted 24‐membered metallomacrocycles, which are composed of four Ag atoms and two ligands. The Ag atoms lie on twofold axes.  相似文献   

7.
The title complex, [CdCl(NCS)(C10H8N2)]n, represents an unusual CdII coordination polymer constructed by two types of anionic bridges and 2,2′‐bipyridyl (bipy) terminal ligands. These two types of bridges are arranged around inversion centers. The distorted octahedral coordination of the CdII center is provided by two chloride ions, one N‐ and one S‐donor atom from two thiocyanate ions, and a pair of N atoms from the chelating bipy ligand. Interestingly, adjacent CdII ions are interconnected alternately by paired chloride [Cd...Cd = 3.916 (1) Å] and thiocyanate bridges [Cd...Cd = 5.936 (1) Å] to generate an infinite one‐dimensional coordination chain. Furthermore, weak interchain C—H...S interactions between the bipy components and thiocyanate ions lead to the formation of a layered supramolecular structure.  相似文献   

8.
The title metal–organic framework, [Cd3(C12H9O6)2(C10H8N2)2]n, has been synthesized by a solvothermal reaction. The CdII ions are located in CdO4N2 and CdO6 six‐coordinated environments, with the latter CdII ion lying on an inversion centre. The 2,4,6‐trimethylbenzene‐1,3,5‐tricarboxylate ligand (TMBTC) connects the CdII ions to form a two‐dimensional sheet incorporating hourglass‐like [Cd3(COO)6] secondary building units (SBUs). Topologically, taking the TMBTC ligand and the [Cd3(COO)6] SBU as 3‐ and 6‐connected nodes, respectively, the overall two‐dimensional sheet can be simplified to a rare (3,6)‐connected 2‐nodal kgd (Kagomé dual) net with a short Schläfli vertex notation of {43}2{46.66.83}, which further stacks into a three‐dimensional supramolecular framework through π–π stacking interactions.  相似文献   

9.
The complex cis‐[RuIII(dmbpy)2Cl2](PF6) ( 2 ) (dmbpy = 4, 4′‐dimethyl‐2, 2′‐bipyridine) was obtained from the reaction of cis‐[RuII(dmbpy)2Cl2] ( 1 ) with ammonium cerium(IV) nitrate followed by precipitation with saturated ammonium hexafluoridophosphate. The 1H NMR spectrum of the RuIII complex confirms the presence of paramagnetic metal atoms, whereas that of the RuII complex displays diamagnetism. The 31P NMR spectrum of the RuIII complex shows one signal for the phosphorus atom of the PF6 ion. The perspective view of each [RuII/III(dmbpy)2Cl2]0/+ unit manifests that the ruthenium atom is in hexacoordinate arrangement with two dmbpy ligands and two chlorido ligands in cis position. As the oxidation state of the central ruthenium metal atom becomes higher, the average Ru–Cl bond length decreases whereas the Ru–N (dmbpy) bond length increases. The cis‐positioned dichloro angle in RuIII is 1.3° wider than that in the RuII. The dihedral angles between pair of planar six‐membered pyridyl ring in the dmbpy ligand for the RuII are 4.7(5)° and 5.7(4)°. The observed inter‐planar angle between two dmbpy ligands in the RuII is 89.08(15)°, whereas the value for the RuIII is 85.46(20)°.  相似文献   

10.
Colourless crystals of the title compound, [Cd2(C7H4IO2)4(C12H10N2)(H2O)2]n, were obtained by the self‐assembly of Cd(NO3)2·4H2O, 1,2‐bis(pyridin‐4‐yl)ethene (bpe) and 4‐iodobenzoic acid (4‐IBA). Each CdII atom is seven‐coordinated in a pentagonal–bipyramidal coordination environment by four carboxylate O atoms from two different 4‐IBA ligands, two O atoms from two water molecules and one N atom from a bpe ligand. The CdII centres are bridged by the aqua molecules and bpe ligands, which lie across centres of inversion, to give a two‐dimensional net. Topologically, taking the CdII atoms as nodes and the μ‐aqua and μ‐bpe ligands as linkers, the two‐dimensional structure can be simplified as a (6,3) network.  相似文献   

11.
Yellow needle‐shaped crystals of the title compound, {[Ag(C30H22N4)][Ag(NO3)2]}n, were obtained by the reaction of AgNO3 and 9,10‐bis(benzimidazol‐1‐ylmethyl)anthracene (L) in a 2:1 ratio. The asymmetric unit consists of two AgI cations, one half L ligand and one nitrate anion. One AgI cation occupies a crystallographic inversion centre and links two N‐atom donors of two distinct L ligands to form an infinite one‐dimensional coordination polymer. The second AgI cation lies on a crystallographic twofold axis and is coordinated by two O‐atom donors of two nitrate anions to form an [Ag(NO3)2] counter‐ion. The polymeric chains are linked into a supramolecular framework via weak Ag...O [3.124 (5) Å] and Ag...π (2.982 Å) interactions (π is the centroid of an outer anthracene benzene ring). The π interactions contain two short Ag...C contacts [2.727 (6) and 2.765 (6) Å], which can be considered to define Ag–η2‐anthracene bonding interactions. In comparison with a previously reported binuclear AgI complex [Du, Hu, Zhang, Zeng & Bu (2008). CrystEngComm, 10 , 1866–1874], this new one‐dimensional coordination polymer was obtained by changing the metal–ligand ratio during the synthesis.  相似文献   

12.
The title complex, {[Cd(C8H11O4)2(C10H8N2)(H2O)]·H2O}n, consists of linear chains formed through 4,4′‐bipyridine ligands linking seven‐coordinated CdII ions. Each CdII ion is in a distorted penta­gonal–bipyramidal environment, coordinated by one water ligand, two 4‐carboxy­cyclo­hexane‐1‐carboxyl­ate ligands and one bridging 4,4′‐bipyridine ligand to generate linear chains. The water mol­ecules and the Cd atom on one side, and the 4,4′‐bipyridine unit on the other, are bisected by two sets of twofold axes. The carboxylate group of the 4‐carboxy­cyclo­hexane‐1‐carboxyl ligand chelates a CdII ion, while the (protonated) carboxyl group forms hydrogen bonds with adjacent chains, resulting in a layered structure. This is the first reported occurrence of a dicarboxycyclo­hexane ligand exhibiting a non‐bridging coordination mode.  相似文献   

13.
The title compound, [Cd(NO3)2(C9H12N4)2]n, has a one‐dimensional double‐bridged chain polymer structure with a 16‐membered macrometallacyclic tetragonal structural motif. The CdII ion occupies a crystallographic inversion centre and is coordinated by four equatorial N atoms from four distinct bis(2‐methylimidazol‐1‐yl)methane ligands and two apical nitrate O atoms to form a slightly distorted octahedral coordination geometry.  相似文献   

14.
The structure of the title compound, [Cu(C6H7N)2{Ag(CN)2}2]n, is made up of neutral zigzag chains of [–NC–Ag–CN–Cu(4‐Mepy)2{Ag(CN)2}–NC–Ag–CN–] (4‐Mepy is 4‐methyl­pyridine). Neighbouring chains are linked by weak argentophilic interactions, with Ag?Ag distances of 3.2322 (12) Å. The Cu atom, which lies on a twofold rotation axis, is pentacoordinated by one monodentate Ag(CN)2? anion [Cu—N 1.985 (3) Å], the atoms of which lie on the same rotation axis, and by bridging di­cyano­argentate anions [2 × Cu—N 2.0827 (19) Å], with Ag atoms on inversion centres. The coordination polyhedron is completed by two 4‐Mepy mol­ecules [2 × Cu—N 2.038 (2) Å], which occupy the axial positions of a distorted trigonal bipyramid.  相似文献   

15.
The title compound, [Cd(C8H7N4O2)2]n, crystallizes in the centrosymmetric triclinic space group P with an asymmetric unit consisting of a bivalent CdII atom and two 2‐(2,2′‐bi‐1H‐imidazol‐1‐yl)acetate (BDAC) anions. Two inversion‐related BDAC ligands are oppositely arranged and bind two CdII ions to form a [Cd2(BDAC)2] rhomboid subunit which is bridged by another BDAC ligand to form an infinite ladder along the a direction containing parallelogram grids. The three‐dimensional supramolecular architecture is formed by hydrogen bonds and C—H...π and π–π interactions.  相似文献   

16.
The title compound, {[Cu(NH3)4][Cu(CN)3]2}n, features a CuI–CuII mixed‐valence CuCN framework based on {[Cu2(CN)3]}n anionic layers and [Cu(NH3)4]2+ cations. The asymmetric unit contains two different CuI ions and one CuII ion which lies on a centre of inversion. Each CuI ion is coordinated to three cyanide ligands with a distorted trigonal–planar geometry, while the CuII ion is ligated by four ammine ligands, with a distorted square‐planar coordination geometry. The interlinkage between CuI ions and cyanide bridges produces a honeycomb‐like {[Cu2(CN)3]}n anionic layer containing 18‐membered planar [Cu(CN)]6 metallocycles. A [Cu(NH3)4]2+ cation fills each metallocyclic cavity within pairs of exactly superimposed {[Cu2(CN)3]}n anionic layers, but there are no cations between the layers of adjacent pairs, which are offset. Pairs of N—H...N hydrogen‐bonding interactions link the N—H groups of the ammine ligands to the N atoms of cyanide ligands.  相似文献   

17.
New complexes containing the 1,4‐bis(pyridazin‐4‐yl)benzene ligand, namely diaquatetrakis[1,4‐bis(pyridazin‐4‐yl)benzene‐κN2]cadmium(II) hexaiodidodicadmate(II), [Cd(C14H10N4)4(H2O)2][Cd2I6], (I), and poly[[μ‐1,4‐bis(pyridazin‐4‐yl)benzene‐κ2N2:N2′]bis(μ‐thiocyanato‐κ2N:S)cadmium(II)], [Cd(NCS)2(C14H10N4)]n, (II), demonstrate the adaptability of the coordination geometries towards the demands of slipped π–π stacking interactions between the extended organic ligands. In (I), the discrete cationic [Cd—N = 2.408 (3) and 2.413 (3) Å] and anionic [Cd—I = 2.709 (2)–3.1201 (14) Å] entities are situated across centres of inversion. The cations associate via complementary O—H...N2′ hydrogen bonding [O...N = 2.748 (4) and 2.765 (4) Å] and extensive triple π–π stacking interactions between pairs of pyridazine and phenylene rings [centroid–centroid distances (CCD) = 3.782 (4)–4.286 (3) Å] to yield two‐dimensional square nets. The [Cd2I6]2− anions reside in channels generated by packing of successive nets. In (II), the CdII cation lies on a centre of inversion and the ligand is situated across a centre of inversion. A two‐dimensional coordination array is formed by crosslinking of linear [Cd(μ‐NCS)2]n chains [Cd—N = 2.3004 (14) Å and Cd—S = 2.7804 (5) Å] with N2:N2′‐bidentate organic bridges [Cd—N = 2.3893 (12) Å], which generate π–π stacks by double‐slipped interactions between phenylene and pyridazine rings [CCD = 3.721 (2) Å].  相似文献   

18.
In the title salt, (C6H8N4)[Mn(C14H8O4)2(C6H6N4)2]·6H2O, the MnII atom lies on an inversion centre and is coordinated by four N atoms from two 2,2′‐biimidazole (biim) ligands and two O atoms from two biphenyl‐2,4′‐dicarboxylate (bpdc) anions to give a slightly distorted octahedral coordination, while the cation lies about another inversion centre. Adjacent [Mn(bpdc)2(biim)2]2− anions are linked via two pairs of N—H...O hydrogen bonds, leading to an infinite chain along the [100] direction. The protonated [H2biim]2+ moiety acts as a charge‐compensating cation and space‐filling structural subunit. It bridges two [Mn(bpdc)2(biim)2]2− anions through two pairs of N—H...O hydrogen bonds, constructing two R22(9) rings, leading to a zigzag chain in the [2] direction, which gives rise to a ruffled set of [H2biim]2+[Mn(bpdc)2(biim)2]2− moieties in the [01] plane. The water molecules give rise to a chain structure in which O—H...O hydrogen bonds generate a chain of alternating four‐ and six‐membered water–oxygen R42(8) and R66(12) rings, each lying about independent inversion centres giving rise to a chain along the [100] direction. Within the water chain, the (H2O)6 water rings are hydrogen bonded to two O atoms from two [Mn(bpdc)2(biim)2]2− anions, giving rise to a three‐dimensional framework.  相似文献   

19.
The coordination geometry of the CdII atom in the title complex, [Cd(NCS)2(C12H12N6)2]n or [Cd(NCS)2(mbtz)2]n, where mbtz is 1,3‐bis­(1,2,4‐triazol‐1‐ylmeth­yl)benzene, is a distorted compressed octa­hedron in which the CdII atom lies on an inversion centre, coordinated by four N atoms from the triazole rings of four mbtz ligands and two N atoms from two monodentate NCS ligands. The structure is polymeric, with 24‐membered spiro‐fused rings extending along [100] and with the 24‐membered ring containing two inversion‐related mbtz mol­ecules.  相似文献   

20.
The title compound, [Cd3(C8H10O4)3(C12H9N3)2(H2O)2]n or [Cd3(chdc)3(4‐PyBIm)2(H2O)2]n, was synthesized hydrothermally from the reaction of Cd(CH3COO)2·2H2O with 2‐(pyridin‐4‐yl)‐1H‐benzimidazole (4‐PyBIm) and cyclohexane‐1,4‐dicarboxylic acid (1,4‐chdcH2). The asymmetric unit consists of one and a half CdII cations, one 4‐PyBIm ligand, one and a half 1,4‐chdc2− ligands and one coordinated water molecule. The central CdII cation, located on an inversion centre, is coordinated by six carboxylate O atoms from six 1,4‐chdc2− ligands to complete an elongated octahedral coordination geometry. The two terminal rotationally symmetric CdII cations each exhibits a distorted pentagonal–bipyramidal geometry, coordinated by one N atom from 4‐PyBIm, five O atoms from three 1,4‐chdc2− ligands and one O atom from an aqua ligand. The 1,4‐chdc2− ligands possess two conformations, i.e.e,etrans‐chdc2− and e,acis‐chdc2−. The cis‐1,4‐chdc2− ligands bridge the CdII cations to form a trinuclear {Cd3}‐based chain along the b axis, while the trans‐1,4‐chdc2− ligands further link adjacent one‐dimensional chains to construct an interesting two‐dimensional network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号