首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 249 毫秒
1.
The ground state (S0) geometry of the firefly luciferin (LH2) was optimized by both DFT B3LYP and CASSCF methods. The vertical excitation energies (Tv) of three low-lying states (S1, S2, and S3) were calculated by TD-DFT B3LYP//CASSCF method. The S1 geometry was optimized by CASSCF method. Its Tv and the transition energy (Te) were calculated by MS-CASPT2//CASSCF method. Both the TD-DFT and MS-CASPT2 calculated S1 state Tv values agree with the experimental one. The IPEA shift greatly affects the MS-CASPT2 calculated Tv values. Some important excited states of LH2 and oxyluciferin (oxyLH2) are charge-transfer states and have more than one dominant configuration, so for deeply researching the firefly bioluminescence, the multireference calculations are desired.  相似文献   

2.
The photodissociation mechanism of benzyl chloride (BzCl) under 248 nm has been investigated by the complete active space SCF (CASSCF) method by calculating the geometries of the ground (S0) and lower excited states, the vertical (Tv) and adiabatic (T0) excitation energies of the lower states, and the dissociation reaction pathways on the potential energy surfaces (PES) of SI, TI and T2 states. The calculated results clearly elucidated the photodissociation mechanism of BzCl, and indicated that the photodissociation on the PES of T1 state is the most favorable.  相似文献   

3.
The working mechanism including the photoisomerization and thermal isomerization steps of a chiral N-alkyl imine-based motor synthesized by Lehn et al. are revealed by MS-CASPT2//CASSCF and MS-CASPT2//(TD-)DFT methods. For the photoisomerization process of the imine-based motor, it involves both the bright (π,π*) state and the dark (n,π*) state. In addition, the MECI has similar geometry and energy to the minimum of the S1 state, which shows that the process is barrierless and keeps the unidirectionality of rotation well; the result confirms the imine-based motor is a good candidate for a light-driven molecular rotary motor. For the thermal isomerization process of the imine-based motor, there are two even isomerization paths: one with the mechanism of the in-plane N inversion, the energy barriers of which are 29.6 kcal mol−1 at MS3-CASPT2//CAM-B3LYP level and 29.2 kcal mol−1 at MS3-CASPT2//CASSCF level; the other with the mechanism of ring inversion of the cycloheptatriene moiety, with energy barriers of 28.1 kcal mol−1 at MS3-CASPT2//CAM-B3LYP level and 18.1 kcal mol−1 at MS3-CASPT2//CASSCF level. According to the structural feature of the stator moiety, the imine molecule can be used as a two-step or a four-step light-driven rotary motor.  相似文献   

4.
Boron compound BOMes2 containing an internal B−O bond undergoes highly efficient photoisomerization, followed by sequential structural transformations, resulting in a rare eight-membered B, O-heterocycle (S. Wang, et al. Org. Lett. 2019 , 21, 5285–5289). In this work, the detailed reaction mechanisms of such a unique carbonyl-supported tetracoordinate boron system in the first excited singlet (S1) state and the ground (S0) state were investigated by using the complete active space self-consistent field and its second-order perturbation (MS-CASPT2//CASSCF) method combined with time-dependent density functional theory (TD-DFT). Moreover, an imine-substituted tetracoordinated organic boron system (BNMes2) was selected for comparative study to explore the intrinsic reasons for the difference in reactivity between the two types of compounds. Steric factor was found to influence the photoisomerization activity of BNMes2 and BOMes2. These results rationalize the experimental observations and can provide helpful insights into understanding the excited-state dynamics of heteroatom-doped tetracoordinate organoboron compounds, which facilitates the rational design of boron-based materials with superior photoresponsive performances.  相似文献   

5.
We analyzed the excited-state structures and emission spectra of firefly emitter, the anionic keto form of firefly oxyluciferin(keto-1), determined by the time dependent-density functional theory(TD-DFT) approach. The analysis is based on a direct comparison with the highly correlated CASSCF(MS-CASPT2) ab initio approach. 49 DFT functionals were considered and applied to the study. Among the tested functionals, mPW3PBE, B3PW91 and B3P86 give the best performance for ground-state geometry, absorption spectrum, excited-state geometry and emission spectrum.  相似文献   

6.
Adenine–cytosine (AC) mispairs have been theoretically studied with MS-CASPT2//CASSCF methods in the presence and absence of Ag ions. The electronically excited states of the most stable AC mispair in the reverse-Wobble (RW) conformation have been compared with those of different Ag(I)–AC complexes, including (i) metalated RW conformations, and (ii) the most stable structures in gas phase which contain the Ag ion bridging A and C. The spectra of these complexes are characterized by charge-transfer (CT) and strong locally excited (LE) states. The metal-to-metal, metal-to-ligand, and Rydberg transitions are very weak in comparison to the nucleobase transitions. Attending to the LE and CT states, and except for the shifts induced by the presence of the Ag, the electronic spectrum of metalated AC mispairs resembles the one of the RW, showing two intense LE bands around 4.5 and 5.5 eV, corresponding to transitions within the adenine and cytosine π-system, respectively. Additionally TD-DFT results obtained with the B3LYP functional are compared with MS-CASPT2//CASSCF calculations. The results clearly evidence the weakness of TD-DFT to describe long range exchange interactions leading to strongly underestimated CT states.  相似文献   

7.
《Chemical physics letters》2001,331(1-2):155-164
The low-lying singlet excited states of CH2BrCl have been calculated using multiconfigurational CASSCF, second-order perturbation theory CASPT2 and its multistate extension MS-CASPT2. The CASSCF method shows spurious valence–Rydberg mixing and a wrong order of states. Inclusion of dynamical correlation by single root CASPT2 lowers dramatically the energy of the valences states but does not lead to a complete separation between valence and Rydberg states. This situation is improved by the MS-CASPT2 calculations, which gives two valence states for both A and A″ symmetries below the lowest Rydberg state, corresponding to n(Br)→σ*(C–Br) and n(Cl)→σ*(C–Cl) transitions at 6.1 eV (203 nm) and 7.2 eV (173 nm), and being repulsive along C–Br and C–Cl coordinates.  相似文献   

8.
采用从头算(ab initio)和密度泛函理论(DFT B3LYP)方法。对二(2-苯基-8-羟基喹啉)锌(Zn(qPh)2)及其衍生物的基态结构进行优化,同时用ab initio HF单激发组态相互作用(CIS)法在6-31G基组上优化其最低激发单重态几何结构,用含时密度泛函理论(TD-DFT/B3LYP)及6-31G基组计算吸收和发射光谱。计算表明,该类物质电子在基态与激发态间的跃迁,主要是电子云分布由定域化向离域化的转变。吸收及发射光谱的计算值与实验值基本符合。该类化合物的电子亲和能较大,都是优良的电子传输材料,改变中心金属原子对配合物光谱性质影响不大。而羟基氧被硫原子取代后,化合物的吸收光谱产生明显红移。  相似文献   

9.
10.
The S0 and S1 potential energy surfaces of pentalene were studied using MMVB—a hybrid force-field/parametrized valence bond (VB) method designed to simulate CASSCF calculations for ground and covalent excited states. The results were calibrated against full CASSCF calculations. Four distinct critical points were optimized: on S0, a C2h minimum (with alternating single and double bonds) and a D2h transition structure; and on S1, a D2h minimum and an adjacent S1/S0 conical intersection. A VB exchange density matrix (which is independent of the choice of the spin-coupled basis) was used to rationalize the S0 and S1 surface topologies. Craig defined pseudoaromatic molecules to be those with nontotally symmetric electronic ground states. For pentalene, this is true for both CASSCF and MMVB calculations: the CASSCF S0 transition structure is an open-shell B1x singlet, and the VB ground state is dominated by a spin-coupling which transforms as B1g. A C2v minimum and a D2h transition structure were located on the CASSCF S2 potential energy surface. This state cannot be represented by MMVB because of the importance of ionic configurations. The characters of the S1 S2 states of pentalene are shown to be reverse of the S1 and S2 states of benzene. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
As the first discovered organoboron compound with photochromic property, B(ppy)Mes2 (ppy=2-phenylpyridine, Mes=mesityl) displays rich photochemistry that constitutes a solid foundation for wide applications in optoelectronic fields. In this work, we investigated the B(ppy)Mes2 to borirane isomerization mechanisms in the three lowest electronic states (S0, S1, and T1) based on the complete active space self-consistent field (CASSCF) and its second-order perturbation (CASPT2) methods combined with time-dependent density functional theory (TD-DFT) calculations. Our results show that the photoisomerization in the S1 state is dominant, which is initiated by the cleavage of the B-Cppy bond. After overcoming a barrier of 0.5 eV, the reaction pathway leads to a conical intersection between the S1 and S0 states (S1/S0)x, from which the decay path may go back to the reactant B(ppy)Mes2 via a closed-shell intermediate (Int1-S0) or to the product borirane via a biradical intermediate (Int2-S0). Although triplet states are probably involved in the photoinduced process, the possibility of the photoisomerization in T1 state is very small owing to the weakly allowed S1→T1 intersystem crossing and the high energy barrier (0.77 eV). In addition, we found the photoisomerization is thermally reversible, which is consistent with the experimental observations.  相似文献   

12.
Herein we have employed high-level multi-reference CASSCF and MS-CASPT2 electronic structure methods to systematically study the photochemical mechanism of intramolecularly hydrogen-bonded 2-(2'-hydroxyphenyl)-4-methyloxazole. At the CASSCF level, we have optimized minima, conical intersections, minimum-energy reaction paths relevant to the excited-state intramolecular proton transfer (ESIPT), rotation, photoisomerization, and the excited-state deactivation pathways. The energies of all structures and paths are refined by the MS-CASPT2 method. On the basis of the present results, we found that the ESIPT process in a conformer with the OH…N hydrogen bond is essentially barrierless process; whereas, the ESIPT process is inhibited in the other conformer with the OH…O hydrogen bond. The central single-bond rotation of the S1 enol species is energetically unfavorable due to a large barrier. In addition, the excited-state deactivation of the S1 keto species, as a result of the ultrafast ESIPT, is very efficient because of the existence of two easily-approached keto S1/S0 conical intersections. In stark contrast to the S1 keto species, the decay of the S1 enol species is almostly blocked. The present theoretical study contributes valuable knowledge to the understanding of photochemistry of similar intramolecularly hydrogen-bonded molecular and biological systems.  相似文献   

13.
The structures of isotopomers of conformationally flexible acetyl chloride molecule, CH3COCl and CD3COCl, in the ground (S0 and lowest excited singlet (S1) and triplet (T1) electronic states were calculated by the RHF, MP2, and CASSCF methods. The equilibrium geometric parameters and harmonic vibrational frequencies of the molecules in these electronic states were estimated. According to calculations, electronic excitation causes considerable conformational changes involving rotation of the CH3 (CD3) top and a substantial deviation of the CCOCl fragment from planarity. The results of calculations agree with experimental data. Two dimensional torsional inversion sections of the potential energy surface were calculated and analyzed. Vibrational problems for large amplitude vibrations (torsional vibration in the S0 state and both torsional and inversion vibrations in the T1 and S1 states) were solved in one- and two-dimensional approximations.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 62–70, January, 2005.  相似文献   

14.
运用量子化学方法优化了硫代樟脑的最低5个电子态(S0, T1, S1, T2和S2)的结构, 并计算了它们的相对能量. 计算结果表明: S1, T1和T2态的能量非常接近, 而S2的能量远远高于T2态, 这与之前对几种小的硫代羰基化合物的研究结论一致. 确定了硫代樟脑分子在T1态发生β-插入反应和类Norrish II型反应的机理, 计算的势垒相对于S0的振动零点分别为314.1和332.6 kJ/mol. 在400 nm波长的光的照射下, 分子被激发到S1态, 此时分子没有足够的能量发生反应, 只能通过内转换回到基态. 当激发光波长在254 nm时, 硫代樟脑分子被激发到S2态, 这时候体系有了足够的内部能量使反应发生. 实验上已经观察到此激发光波长下, 气态硫代樟脑可以发生β-插入反应和类Norrish II型反应.  相似文献   

15.
Geometrical parameters of tetraatomic carbonyl molecules X2CO and XYCO (X, Y = H, F, Cl) in the ground (S0) and lowest excited singlet (S1) and triplet (T1) electronic states as well as values of barriers to inversion in S1 and T1 states and S1S0 and T1S0 adiabatic transition energies were systematically investigated by means of various quantum‐chemical techniques. The following methods were tested: HF, MP2, CIS, CISD, CCSD, EOM‐CCSD, CCSD(T), CR‐EOM‐CCSD(T), CASSCF, MR‐MP2, CASPT2, CASPT3, NEVPT2, MR‐CISD, and MR‐AQCC within cc‐pVTZ and cc‐pVQZ basis sets. The accuracy of quantum‐chemical methods was estimated in comparison with experimental data and rather accurate structures of excited electronic states were obtained. MP2 and CASPT2 methods appeared to be the most efficient and CCSD(T), CR‐EOM‐CCSD(T), and MR‐AQCC the most accurate. It was found that at equilibrium all the molecules under study are nonplanar in S1 and T1 electronic states with CO out‐of‐plane angle ranging from 34° (H2CO, S1) to 52° (F2CO, T1), and height of barrier to inversion varying from 300 (H2CO, S1) to 11,000 (F2CO, T1) cm?1. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

16.
Excited-state double proton transfer (ESDPT) is a controversial issue which has long been plagued with theoretical and experimental communities. Herein, we took 1, 8-dihydroxy-2-naphthaldehyde (DHNA) as a prototype and used combined complete active space self-consistent field (CASSCF) and multi-state complete active-space second-order perturbation (MS-CASPT2) methods to investigate ESDPT and excited-state deactivation pathways of DHNA. Three different tautomer minima of S1-ENOL, S1-KETO-1, and S1-KETO-2 and two crucial conical intersections of S1S0-KETO-1 and S1S0-KETO-2 in and between the S0 and S1 states were obtained. S1-KETO-1 and S1-KETO-2 should take responsibility for experimentally observing dual-emission bands. In addition, two-dimensional potential energy surfaces (2D-PESs) and linear interpolated internal coordinate paths connecting relevant structures were calculated at the MS-CASPT2//CASSCF level and confirmed a stepwise ESDPT mechanism. Specifically, the first proton transfer from S1-ENOL to S1-KETO-1 is barrierless, whereas the second one from S1-KETO-1 to S1-KETO-2 demands a barrier of ca. 6.0 kcal/mol. The linear interpolated internal coordinate path connecting S1-KETO-1 (S1-KETO-2) and S1S0-KETO-1 (S1S0-KETO-2) is uphill with a barrier of ca. 12.0 kcal/mol, which will trap DHNA in the S1 state while therefore enabling dual-emission bands. On the other hand, the S1/S0 conical intersections would also prompt the S1 system to decay to the S0 state, which could be to certain extent suppressed by locking the rotation of the C5$-$C8$-$C9$-$O10 dihedral angle. These mechanistic insights are not only helpful for understanding ESDPT but also useful for designing novel molecular materials with excellent photoluminescent performances.  相似文献   

17.
DFT (B3LYP) calculations have been performed to study the CoC2 molecule in its different geometric conformations and electronic states. The energies have been refined using ab initio multiconfigurational CASSCF/CASPT2 calculations. Both approaches are in a good semi-quantitative agreement between themselves and predict the symmetric triangular (C2v) structure to be more stable than the linear (Cv) conformation. The ground state has been found to be a quartet, which can formally be regarded as an ionic Co2+–C22− complex, resulting from a transfer of the two 4s electrons of the cobalt atom to the 3σg orbital of the C2 ligand and distributing the remaining seven valence electrons over the split 3d orbitals.  相似文献   

18.
The electronic absorption spectrum of anthracene-9,10-endoperoxide (APO) has been investigated by means of multiconfigurational multi-state second order perturbation theory on complete active space self-consistent field wavefunctions (MS-CASPT2/CASSCF) and two single reference methods: time-dependent density functional theory (TD-DFT) and coupled cluster of second order (CC2). After testing several active spaces and basis sets, a CAS (14,12) active space together with an ANO-S basis set was found an appropriate choice to describe the vertical singlet and triplet electronic states of APO. Unfortunately, TD-DFT and CC2 methods cannot reproduce the MS-CASPT2 and experimental spectrum. Our MS-CASPT2//CASSCF(14,12)/ANO-S calculations predict a predominant pi*(OO)sigma*(OO) character for the lowest singlet excited state S(1) at 3.85 eV. Accordingly, the lowest singlet state of APO should be responsible for homolysis of the endoperoxide group. The next two absorbing excited states, experimentally proposed to be responsible for singlet oxygen production and therefore connected to the biological interest of APO, have been computed vertically at 4.34 and 4.59 eV and assigned to pi(CC)pi*(CC) and pi*(OO)pi*(CC) transitions, respectively. The vertical triplet electronic spectrum follows the singlet vertical spectrum ordering. The high density of triplet and singlet excited states of different nature within few eV points to the possibility of intersystem crossings between potential energy surfaces of different multiplicity.  相似文献   

19.
The potential energy curves have been investigated for the 23 lowest electronic states in the 2s+1Λ± representation of the molecule ScBr via CASSCF and MRCI (single and double excitations with Davidson correction) calculations. Seventeen electronic states have been studied theoretically for the first time. The harmonic frequency ωe, the internuclear distance re, and the electronic energy with respect to the ground state Te have been calculated. By using the canonical functions approach, the eigenvalues Ev, the rotational constant Bv, and the abscissas of the turning points (Rmin, Rmax) have been calculated for electronic states up to the vibrational level v = 32. The comparison of these values to the theoretical and experimental results available in the literature shows a good agreement. © 2007 Wiley Periodicalsm Inc. Int J Quantum Chem, 2008  相似文献   

20.
The structure of the conformationally flexible 2-fluoroethanal molecule (CH2FCHO, FE) in the ground (S0) and lowest excited triplet (T1) and singlet (S1) electronic states was investigated by ab initio quantum-chemical methods. The FE molecule in the S0 state was found to exist as two conformers, viz., as cis (the F—C—C—O angle is 0°) and trans (the F—C—C—O angle is 180°) conformers. On going both to the T1 and S1 states, the FE molecule undergoes substantial structural changes, in particular, the CH2F top is rotated with respect to the core and the carbonyl CCHO fragment becomes nonplanar. The potential energy surfaces for the T1 and S1 states are qualitatively similar, viz., six minima in each of the excited states of FE correspond to three pairs of mirror-symmetrical conformers. Based on the potential energy surfaces calculated for the FE molecule in the T1 and S1 states, the one-dimensional problems on the torsion and inversion nuclear motions as well as the two-dimensional torsion-inversion problems were solved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号