首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 295 毫秒
1.
In order to improve the efficacy of 5-aminolevulinic acid-based (ALA) photodynamic therapy (PDT), different ALA derivatives are presently being investigated. ALA esters are more lipophilic and therefore may have better skin penetration properties than ALA, possibly resulting in enhanced protoporphyrin IX (PpIX) production. In previous studies it was shown that ALA pentyl ester (ALAPE) does considerably enhance the PpIX production in cells in vitro compared with ALA. We investigated the in vivo PpIX fluorescence kinetics after application of ALA and ALAPE to hairless mice with and without UVB-induced early skin cancer. ALA and ALAPE (20% wt/wt) were applied topically to the mouse skin and after 30 min, the solvent was wiped off and PpIX fluorescence was followed in time with in vivo fluorescence spectroscopy and imaging. At 6 and 12 h after the 30 min application, skin samples of visible lesions and adjacent altered skin (UVB-exposed mouse skin) and normal mouse skin were collected for fluorescence microscopy. From each sample, frozen sections were made and phase contrast images and fluorescence images were recorded. The in vivo fluorescence kinetics showed that ALAPE induced more PpIX in visible lesions and altered skin of the UVB-exposed mouse skin, but not in the normal mouse skin. In the microscopic fluorescence images, higher ALAPE-induced PpIX levels were measured in the stratum corneum, but not in the dysplastic layer of the epidermis. In deeper layers of the skin, PpIX levels were the same after ALA and ALAPE application. In conclusion, ALAPE does induce higher PpIX fluorescence levels in vivo in our early skin cancer model, but these higher PpIX levels are not located in the dysplastic layer of the epidermis.  相似文献   

2.
Aminolevulinic acid (ALA)‐mediated protoporphyrin IX (PpIX) production is being explored for tumor fluorescence imaging and photodynamic therapy (PDT). As a prodrug, ALA is converted in heme biosynthesis pathway to PpIX with fluorescent and photosensitizing properties. To better understand the role of heme biosynthesis enzymes in ALA‐mediated PpIX fluorescence and PDT efficacy, we used lentiviral shRNA to silence the expression of porphobilinogen synthase (PBGS), porphobilinogen deaminase (PBGD) and ferrochelatase (FECH) in SkBr3 human breast cancer cells. PBGS and PBGD are the first two cytosolic enzymes involved in PpIX biosynthesis, and FECH is the enzyme responsible for converting PpIX to heme. PpIX fluorescence was examined by flow cytometry and confocal fluorescence microscopy. Cytotoxicity was assessed after ALA‐mediated PDT. Silencing PBGS or PBGD significantly reduced ALA‐stimulated PpIX fluorescence, whereas silencing FECH elevated basal and ALA‐stimulated PpIX fluorescence. However, compared with vector control cells, the ratio of ALA‐stimulated fluorescence to basal fluorescence without ALA was significantly reduced in all knockdown cell lines. PBGS or PBGD knockdown cells exhibited significant resistance to ALA‐PDT, while increased sensitivity to ALA‐PDT was found in FECH knockdown cells. These results demonstrate the importance of PBGS, PBGD and FECH in ALA‐mediated PpIX fluorescence and PDT efficacy.  相似文献   

3.
Light fractionation does not enhance the response to photodynamic therapy (PDT) after topical methyl-aminolevulinate (MAL) application, whereas it is after topical 5-aminolevulinic acid (ALA). The differences in biophysical and biochemical characteristics between MAL and ALA may result in differences in localisation that cause the differences in response to PDT. We therefore investigated the spatial distribution of protoporphyrin IX (PpIX) fluorescence in normal mouse skin using fluorescence microscopy and correlated that with the PDT response histologically observed at 2.5, 24 and 48h after PDT. As expected high fluorescence intensities were observed in the epidermis and pilosebaceous units and no fluorescence in the cutaneous musculature after both MAL and ALA application. The dermis showed localised fluorescence that corresponds to the cytoplasma of dermal cells like fibroblast and mast cells. Spectral analysis showed a typical PpIX fluorescence spectrum confirming that it is PpIX fluorescence. There was no clear difference in the depth and spatial distribution of PpIX fluorescence between the two precursors in these normal mouse skin samples. This result combined with the conclusion of Moan et al. that ALA but not MAL is systemically distributed after topical application on mouse skin [Moan et al., Pharmacology of protoporphyrin IX in nude mice after application of ALA and ALA esters, Int. J. Cancer 103 (2003) 132-135] suggests that endothelial cells are involved in increased response of tissues to ALA-PDT using light fractionation. Histological analysis 2.5h after PDT showed more edema formation after ALA-PDT compared to MAL-PDT that was not accompanied by a difference in the inflammatory response. This suggests that endothelial cells respond differently to ALA and MAL-PDT. Further investigation is needed to determine the role of endothelial cells in ALA-PDT and the underlying mechanism behind the increased effectiveness of light fractionation using a dark interval of 2h found after ALA but not after MAL-PDT.  相似文献   

4.
Photodynamic therapy (PDT) is a relatively new approach to the treatment of neoplasms which involves the use of photoactivatable compounds to selectively destroy tumors. 5-Aminolevulinic acid (ALA) is an endogenous substance which is converted to protoporphyrin IX (PpIX) in the synthetic pathway to heme. PpIX is a very effective photosensitizer. The goal of this study was to evaluate the effect of PDT using topical ALA on normal guinea pig (g.p.) skin and g.p. skin in which the stratum corneum was removed by being tape-stripped (TS). Evaluation consisted of gross examination, PpIX fluorescence detection, reflectance spectroscopy, and histology. There was no effect from the application of light or ALA alone. Normal non-TS g.p. skin treated with ALA and light was unaffected unless high light and ALA doses were used. Skin from which the stratum corneum was removed was highly sensitive to treatment with ALA and light: 24 h after treatment, the epidermis showed full thickness necrosis, followed by complete repair within 7 d. Time-dependent fluorescence excitation and emission spectra were determined to characterize the chromophore and to demonstrate a build-up of the porphyrin in the skin. These data support the view that PDT with topical ALA is a promising approach for the treatment of epidermal cutaneous disorders.  相似文献   

5.
Photodynamic therapy (PDT), in which 5‐ALA (a precursor for protoporphyrin IX, PpIX) is administered prior to exposure to light, is a nonscarring treatment for skin cancers. However, for deep tumors, ALA‐PDT is not always effective due to inadequate production of PpIX. We previously developed and reported a combination approach in which the active form of vitamin D3 (calcitriol) is given systemically prior to PDT to improve PpIX accumulation and to enhance PDT‐induced tumor cell death; calcitriol, however, poses a risk of hypercalcemia. Here, we tested a possible strategy to circumvent the problem of hypercalcemia by substituting natural dietary vitamin D3 (cholecalciferol; D3) for calcitriol. Oral D3 supplementation (10 days of a 10‐fold elevated D3 diet) enhanced PpIX levels 3‐ to 4‐fold, and PDT‐mediated cell death 20‐fold, in subcutaneous A431 tumors. PpIX levels and cell viability in normal tissues were not affected. Hydroxylated metabolic forms of D3 were only modestly elevated in serum, indicating minimal hypercalcemic risk. These results show that brief oral administration of cholecalciferol can serve as a safe neoadjuvant to ALA‐PDT. We suggest a clinical study, using oral vitamin D3 prior to PDT, should be considered to evaluate this promising new approach to treating human skin cancer.  相似文献   

6.
Aminolevulinic acid (ALA) is a prodrug that is metabolized in the heme biosynthesis pathway to produce protoporphyrin IX (PpIX) for tumor fluorescence detection and photodynamic therapy (PDT). The iron chelator deferoxamine (DFO) has been widely used to enhance PpIX accumulation by inhibiting the iron‐dependent bioconversion of PpIX to heme, a reaction catalyzed by ferrochelatase (FECH). Tumor response to DFO treatment is known to be highly variable, and some tumors even show no response. Given the fact that tumors often exhibit reduced FECH expression/enzymatic activity, we examined how reducing FECH level affected the DFO enhancement effect. Our results showed that reducing FECH level by silencing FECH in SkBr3 breast cancer cells completely abrogated the enhancement effect of DFO. Although DFO enhanced ALA‐PpIX fluorescence and PDT response in SkBr3 vector control cells, it caused a similar increase in MCF10A breast epithelial cells, resulting in no net gain in the selectivity toward tumor cells. We also found that DFO treatment induced less increase in ALA‐PpIX fluorescence in tumor cells with lower FECH activity (MDA‐MB‐231, Hs 578T) than in tumor cells with higher FECH activity (MDA‐MB‐453). Our study demonstrates that FECH activity is an important determinant of tumor response to DFO treatment.  相似文献   

7.
The skin of nude mice was exposed to erythemogenic doses of UV radiation, which resulted in erythema with edema. An ointment containing 5-aminolevulinic acid (ALA) was topically applied on mouse and human skin. Differences in the kinetics of protoporphyrin accumulation were investigated in normal and UV-exposed skin. At 24 and 48 h after UV exposure, skin produced significantly less protoporphyrin IX (PpIX) than skin unexposed to UV. Human skin on body sites frequently exposed to solar radiation (the lower arm) also produced less PpIX than skin exposed more rarely to the sun (the upper arm). It is concluded that UV radiation introduces persisting changes in the skin, relevant to its capability of producing PpIX from ALA. The observed differences in ALA-induced PpIX fluorescence may be the result of altered penetration of ALA through the stratum corneum or altered metabolizing ability of normal and UV-exposed skin (or both).  相似文献   

8.
Photodynamic therapy (PDT) with topical aminolevulinic acid (ALA) has been shown in previous studies to improve psoriasis. However, topical ALA-PDT may not be practical for the treatment of extensive disease. In order to overcome this limitation we have explored the potential use of oral ALA administration in psoriatic patients. Twelve patients with plaque psoriasis received a single oral ALA dose of 10, 20 or 30 mg/kg followed by measurement of protoporphyrin IX (PpIX) fluorescence in the skin and circulating blood cells. Skin PpIX levels were determined over time after ALA administration by the quantification of the 635 nm PpIX emission peak with in vivo fluorescence spectroscopy under 442 nm laser excitation. Administration of ALA at 20 and 30 mg/kg induced preferential accumulation of PpIX in psoriatic as opposed to adjacent normal skin. Peak fluorescence intensity in psoriatic and normal skin occurred between 3 and 5 h after the administration of 20 and 30 mg/kg, respectively. Ratios of up to 10 for PpIX fluorescence between psoriatic versus normal skin were obtained at the 30 mg/kg dose of ALA. Visible PpIX fluorescence was also observed on normal facial skin, and nonspecific skin photosensitivity occurred only in patients who received the 20 or 30 mg/kg doses. PpIX fluorescence intensity was measured in circulating blood cells by flow cytometry. PpIX fluorescence was higher in monocytes and neutrophils as compared to CD4+ and CD8+ T lymphocytes. PpIX levels in these cells were higher in patients who received higher ALA doses and peaked between 4 and 8 h after administration of ALA. There was only a modest increase in PpIX levels in circulating CD4+ and CD8+ T lymphocytes. In conclusion oral administration of ALA induced preferential accumulation of PpIX in psoriatic plaques as compared to adjacent normal skin suggesting that PDT with oral ALA should be further explored for the treatment of psoriasis.  相似文献   

9.
Laser-induced fluorescence (LIF) investigations have been performed in connection with photodynamic therapy (PDT) of basal cell carcinomas and adjacent normal skin following topical application of 5-aminolaevulinic acid (ALA) in order to study the kinetics of the protoporphyrin IX (PpIX) build-up. Five superficial and 10 nodular lesions in 15 patients are included in the study. Fluorescence measurements are performed prior to the application of ALA, 2, 4 and 6 h post ALA application, immediately post PDT (60 J cm-2 at 635 nm), and 2 h after the treatment. Hence, the build-up, photobleaching and re-accumulation of PpIX can be followed. Superficial lesions show a maximum PpIX fluorescence 6 h post ALA application, whereas the intensity is already the highest 2-4 h after the application in nodular lesions. Immediately post PDT, the fluorescence contribution at 670 nm from the photoproducts is about 2% of the pre-PDT PpIX fluorescence at 635 nm. Two hours after the treatment, a uniform distribution of PpIX is found in the lesion and surrounding normal tissue. During the whole procedure, the autofluorescence of the lesions and the normal skin does not vary significantly from the values recorded before the application of ALA.  相似文献   

10.
Our novel approach was to compare the pharmacokinetics of 5-aminolevulinic acid (ALA), ALA-n-butyl and ALA-n-hexylester induced protoporphyrin IX (PpIX), together with the phototoxicity after photodynamic therapy (PDT) in human skin in vivo, using iontophoresis as a dose-control system. A series of four increasing doses of each compound was iontophoresed into healthy skin of 10 volunteers. The kinetics of PpIX metabolism (n = 4) and the response to PDT (n = 6) performed 5 h after iontophoresis, were assessed by surface PpIX fluorescence and post-irradiation erythema. Whilst ALA-induced PpIX peaked at 7.5 h, highest PpIX fluorescence induced by ALA-n-hexylester was observed at 3-6 h and no clear peak was seen with ALA-n-butylester. With ALA-n-hexylester, more PpIX was formed after 3 (P < 0.05) and 4.5 h, than with ALA or ALA-n-butylester. All compounds showed a linear correlation between logarithm of dose and PpIX fluorescence/phototoxicity at 5 h, with R-values ranging from 0.87 to 1. In addition, the ALA-n-hexylester showed the tendency to cause greater erythema than ALA and ALA-n-butylester. Fluorescence microscopy (n = 2) showed similar PpIX distributions and penetration depths for the three drugs, although both ALA esters led to a more homogeneous PpIX localization. Hence, ALA-n-hexylester appears to have slightly more favorable characteristics for PDT than ALA or ALA-n-butylester.  相似文献   

11.
Photodynamic therapy (PDT) based on the use of photoactivable porphyrins, such as protoporphyrin IX (PpIX), induced by the topical application of amino-levulinic acid (ALA) or its derivatives, ALA methyl-ester (m-ALA), is a treatment for superficial basal cell carcinoma (BCC), with complete response rates of over 80%. However, in the case of deep, nodular-ulcerative lesions, the complete response rates are lower, possibly related to a lower bioavailability of PpIX. Previous in vitro skin permeation studies demonstrated an increased penetration of amino-levulinic acid hexyl-ester (h-ALA) over ALA. In this study, we tested the validity of this approach in vivo on human BCCs. An emulsion containing 20% ALA (w/w) and preparations of h-ALA at different concentrations were applied topically to the normal skin of Caucasian volunteers to compare the PpIX fluorescence intensities with an optical fiber-based spectrofluorometer. In addition, the PpIX depth distribution and fluorescence intensity in 26 BCCs were investigated by fluorescence microscopy following topical application of 20% ALA and 1% h-ALA. We found that, for application times up to 24h, h-ALA is identical to ALA as a PpIX precursor with respect to PpIX fluorescence intensity, depth of penetration, and distribution in basal cell carcinoma, but has the added advantage that much smaller h-ALA concentrations can be used (up to a factor 13). We observed a non-homogenous distribution in BCCs with both precursors, independent of the histological type and depth of invasion in the dermis.  相似文献   

12.
Abstract— Administration of the heme precursor 5-aminolevulinic acid (ALA) leads to the selective accumulation of the photosensitizer protoporphyrin IX (PpIX) in certain types of normal and abnormal tissues. This phenomenon has been exploited clinically for detection and treatment of a variety of malignant and nonmalignant lesions. The present preclinical study examined the specificity of ALA-induced porphyrin fluorescence in chemically induced murine lung tumors in vivo. During the early stages of tumorigenesis, ALA-induced PpIX fluorescence developed in hyperplastic tissues in the lung and later in early lung tumor foci. In early tumor foci, maximum PpIX fluorescence occurred 2 h after the administration of ALA and returned to background levels after 4 h. There was approximately a 20-fold difference in PpIX fluorescence intensity between tumor foci and the adjacent normal tissue. The specificity of ALA-induced fluorescence for hyperplastic tissues and benign tumors in lung during tumorigenesis suggests a possible use for this fluorochrome in the detection of premalignant alterations in the lung by fluorescence endoscopy. Two non-small cell lung cancer cell lines developed ALA-induced PpIX fluorescence in vitro . These lines exhibited a light-dose-dependent phototoxic response to ALA photodynamic therapy (PDT) in vitro . Because PpIX is a clinically effective photosensitizer for a wide variety of malignancies, these results support the possible use of ALA-induced PpIX PDT for lung cancer.  相似文献   

13.
Limited depth of penetration significantly limits photodynamic therapy of nodular basal cell carcinoma (BCC) using topical δ(5)-aminolevulinic acid (ALA). To demonstrate safety and efficacy of orally administered ALA in inducing endogenous protoporphyrin IX (PpIX) production in BCC, 13 patients with BCC ingested ALA in a dose-escalation protocol. All dose ranges (10, 20 or 40 mg/kg single doses) resulted in formation of PpIX in human skin and BCC, measurable by in vivo fluorescence spectrophotometry. The PpIX fluorescence peaked in tumors before normal adjacent skin from 1 to 3 h after ALA ingestion. Gross fluorescence imaging of ex vivo specimens revealed greater PpIX fluorescence in tumor than normal skin only at the 40 mg/kg dose. Fluorescence microscopy confirmed this finding by showing distinct, full-thickness PpIX fluorescence in all subtypes of BCC only after ALA given at 40 mg/kg. Side effects were dose dependent and self limited. Photosensitivity lasting less than 24 h and nausea coinciding with peak skin PpIX fluorescence occurred at 20 and 40 mg/kg doses. After 40 mg/kg ALA, serum hepatic enzyme levels rose to a maximum within 24 h, then resolved over 1–3 weeks. Transient bilirubinuria occurred in two patients.  相似文献   

14.
Several options were investigated to increase the efficacy of photodynamic therapy (PDT) using protoporphyrin IX (PpIX) induced by topically applied 5-aminolevulinic acid (ALA). Hairless mice with normal skin or UVB-light-induced skin changes were used as a model. In the first part of the study animals were illuminated immediately (t = 4) or 6 h (t = 10, PpIX fluorescence maximum) after the end of a 4 h ALA application. A total incident light fluence of 100 J/cm2 (514.5 nm) was delivered at a fluence rate of 100 or 50 mW/cm2. The PDT-induced damage to normal skin was more severe after treatment at t = 10 than at t = 4. Illumination at 50 mW/cm2 caused significantly more visible damage than the same light fluence given at 100 mW/cm2. For UVB-illuminated skin, different intervals or fluence rates made no significant difference in the severity of damage, although some qualitative differences occurred. In situ fluence rate measurements during PDT indicated vasoconstriction almost immediately after the start of the illumination. A fluorescein exclusion assay after PDT demonstrated vasoconstriction that was more pronounced in UVB-treated skin than in normal skin. The second part of the study examined the effect of two illuminations. The first illumination bleaches the PpIX fluorescence. At the start of the second illumination, new PpIX had been formed. Light of 514.5 nm was delivered at 100 mW/cm2 to a total incident light fluence of 200 J/cm2 at t = 4 (single illumination) or 100 J/cm2 at t = 4 plus 100 J/cm2 at t = 10. There was no visual difference in skin damage between 100 and 200 J/cm2 single illumination. Two-fold illumination (100 + 100 J/cm2) caused significantly more skin damage, indicating a potentially successful option for increasing the efficacy of topical ALA-PDT.  相似文献   

15.
Photodynamic therapy with 5-aminolevulinic acid (ALA) derived protoporphyrin IX (PpIX) as photosensitizer is a promising treatment for basal cell carcinomas. Until now ALA has been administered topically as an oil-in-water cream in most investigations. The disadvantage of this administration route is insuffici?nt penetration in deeper, nodular tumours. Therefore we investigated intracutaneous injection of ALA as an alternative administration route. ALA was administered in 6-fold in the normal skin of three 6-week-old female Dutch pigs by intracutaneous injection of an aqueous solution of ALA (pH 5.0) in volumes of 0.1-0.5 ml and concentrations of 0.5-2% and by topical administration of a 20% ALA cream. During 8 h fluorescence of ALA derived PpIX was measured under 405 nm excitation. For the injection the measured fluorescence was shown to be dose dependent. All injected doses of 3 mg ALA or more lead to a faster initial increase rate of PpIX synthesis and significantly greater fluorescence than that measured after topical administration of ALA. Irradiation (60 Jcm(-2) for 10 min) of the spots was performed at 3.5 h after ALA administration. After 48 and 96 h visual damage scores were evaluated and biopsies were taken for histopathological examination. After injection of 2 mg ALA or more the PDT damage after illumination was shown to be significantly greater than after topical application of 20% ALA. An injected dose of 10 mg ALA (0.5 ml of a 2% solution) resulted in significantly more tissue damage after illumination than all other injected doses.  相似文献   

16.
Abstract— Photodynamic therapy (PDT) with topical application of 8-aminolevulinic acid (ALA) followed by irradiation with visible light (ALA-PDT) is a relatively new and promising experimental treatment of superficial premalignant and malignant skin neoplasms. The purpose of this study was to determine whether ALA-PDT can prevent photocarcinogenesis in hairless mice exposed to solar UV. A total of 140 mice was divided into seven groups of 20 mice each. Group 1: solar-UV exposure. Group 2: solar UV and a cream base + visible light once a week. Group 3: solar UV and ALA-PDT once a week. Group 4: solar UV and ALA-PDT once every second week. Group 5: solar UV and ALA-PDT every fourth week. Group 6: ALA-PDT once a week. Group 7: no treatment. The time to first and to second tumor 1 mm was registered. Predefined endpoints, such as one tumor a 4 mm or an area of small confluent tumors on the back of the mice were criteria for withdrawal from the experiment. The time to first and to second tumor was significantly longer in the ALA-PDT-treated mice than in mice only exposed to solar UV and solar-UV/cream base-visible light (P < 0.005). However, we observed an increased death and accident rate in the ALA-PDT-treated groups compared to the groups not treated with ALA-PDT (chi-square test, P = 0.0250). Significantly more ALA-PDT-treated mice were withdrawn because of a tumor 4 mm ( P = 0.0005). The UV unexposed mice developed no tumors. Repetitive treatments with ALA-PDT delay photoinduced carcinogenesis in mice.  相似文献   

17.
Photodynamic therapy (PDT) utilizes the combined interaction of a photosensitizer, light and molecular oxygen to ablate tumor tissue. Maximizing the accumulation of the photosensitizer protoporphyrin IX (PpIX) within different cell types would be clinically useful. Dermatological PpIX-induced PDT regimes produce good clinical outcomes but this currently only applies when the lesion remains superficial. Also, as an adjuvant therapy for the treatment of primary brain tumors, fluorescence guided resection (FGR) and PDT can be used to highlight and destroy tumor cells unreachable by surgical resection. By employing iron chelators PpIX accumulation can be enhanced. Two iron-chelating agents, 1,2-diethyl-3-hydroxypyridin-4-one hydrochloride (CP94) and dexrazoxane, were individually combined with the porphyrin precursors aminolevulinic acid (ALA), methyl aminolevulinate (MAL) and hexyl aminolevulinate (HAL). Efficacies of the iron-chelating agents were compared by recording the PpIX fluorescence in human squamous epithelial carcinoma cells (A431) and human glioma cells (U-87 MG) every hour for up to 6 h. Coincubation of ALA/MAL/HAL with CP94 resulted in a greater accumulation of PpIX compared to that produced by coincubation of these congeners with dexrazoxane. Therefore the clinical employment of iron chelation, particularly with CP94 could potentially increase and/or accelerate the accumulation of ALA/MAL/HAL-induced PpIX for PDT or FGR.  相似文献   

18.
Photodynamic therapy (PDT) is a novel technique for local endoscopic treatment of gastrointestinal neoplasia. Current photosensitisers for PDT may cause prolonged skin phototoxicity. 5-Aminolaevulinic acid (ALA), a precursor of the photosensitiser protoporphyrin IX (PpIX), is more acceptable because of its short half-life and preferential accumulation in mucosa and mucosal tumour. We have treated 12 patients, median age 73 years (range 55-88) with oesophageal adenocarcinoma arising from Barrett's metaplasia (two carcinomas-in-situ, grade 0; 10 carcinomas, grade 1-11A based on endoluminal ultrasound in two and CT scanning in 10 patients). ALA (60 and 75 mg/kg body weight) was given orally in two or five equally divided doses. The PpIX distribution in stomach, normal oesophagus, Barrett's mucosa and carcinoma was measured by quantitative fluorescence photometry. PDT was performed using laser light (630 nm) delivered via a cylindrical diffuser 4-6 h after the first dose of ALA. The patients received one to four sessions of PDT. PpIX accumulation in the mucosa was two to three times that in the lamina propria. The differential distribution between carcinomatous and normal oesophageal mucosa was less marked (carcinoma:normal mucosa ratio = 1.4). Higher doses of ALA increased PpIX accumulation in all tissues but did not increase the differential PpIX distribution between tumour and normal oesophageal mucosa. After PDT using ALA (ALA/PDT), all mucosa showed superficial white necrotic changes and the histology confirmed fibrinoid necrosis. One patient with carcinoma-in-situ had the tumour eradicated after one treatment with no recurrence at 28 months. Another patient with a small T1 tumour required four ALA/PDT treatments, and died of other disease after 36 months. There was no evidence of recurrence. The tumour bulk in the other carcinomas was not significantly reduced. ALA/PDT has a potential for the eradication of small tumours but careful patient selection with endoluminal ultrasound is needed when using ALA/PDT to treat oesophageal cancer.  相似文献   

19.
Topical application of 5-aminolevulinic acid (ALA) for protoporphyrin IX (PpIX)-based photodynamic therapy of skin cancer is generally considered not to induce systemic side effects because PpIX is supposed to be formed locally. However, earlier studies with topically applied ALA have revealed that in mice PpIX is not only produced in the application area but also in other organs including skin outside the application area, whereas esterified ALA does not. From these results, it was concluded that it is not redistribution of circulating PpIX that causes the fluorescence distant from the ALA application site, but rather, local PpIX production induced by circulating ALA. In the present study we investigate the effects of the ALA concentration in the cream, the application time, the presence of a penetration enhancer, the presence of the stratum corneum and esterification of ALA on the PpIX production in nude mouse skin outside the area where ALA is applied. For this purpose, ALA and ALA hexyl ester (ALAHE) were applied to one flank, and the PpIX fluorescence was measured in the contralateral flank. During a 24 h application of ALA, PpIX was produced in the contralateral flank. No PpIX could be detected in the contralateral flank after ALA application times ranging from 1 to 60 min. Tape-stripping the skin prior to short-term ALA application, but not the addition of a penetration enhancer, resulted in PpIX production in the contralateral flank. When ALAHE was applied, no PpIX fluorescence was measured in the contralateral flank under any application condition. The results suggest that the systemic component of PpIX production outside the ALA application area plays a minor or no role in relevant clinical situations, when the duration of ALA (ester) application is relatively short and a penetration enhancer is possibly added.  相似文献   

20.
This report explores some properties of 80–200 nm nanoparticles containing 5‐aminolevulinic acid (ALA) and fullerene (C60) for photodynamic therapy (PDT). Compared with ALA, the nanoparticles yielded more protoporphyrin IX (PpIX) formation in cells and tissues and to a significant improvement in antitumor efficacy in tumor‐bearing mice. Maximum levels of PpIX were obtained 4 h after administration and selective PpIX formation in tumor was observed. These nanoparticles appear to be a useful vehicle for drug delivery purposes. In this study, a procedure for preparing fullerene nanoparticles containing ALA was developed. The product alone exhibited no detectable toxicity in the dark and was superior to ALA alone in promoting PpIX biosynthesis and PDT efficacy both in culture and in a murine tumor model. These results suggest that this procedure could be the basis for an improved PDT protocol for cancer control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号