首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new Li-Al-N-H system for reversible hydrogen storage   总被引:2,自引:0,他引:2  
Complex metal hydrides are considered as a class of candidate materials for hydrogen storage. Lithium-based complex hydrides including lithium alanates (LiAlH(4) and Li(3)AlH(6)) are among the most promising materials owing to its high hydrogen content. In the present work, we investigated dehydrogenation/rehydrogenation reactions of a combined system of Li(3)AlH(6) and LiNH(2). Thermogravimetric analysis (TGA) of Li(3)AlH(6)/3LiNH(2)/4 wt % TiCl(3)-(1)/(3)AlCl(3) mixtures indicated that a large amount of hydrogen (approximately 7.1 wt %) can be released between 150 degrees C and 300 degrees C under a heating rate of 5 degrees C/min in two dehydrogenation reaction steps. The results also show that the dehydrogenation reaction of the new material system is nearly 100% reversible under 2000 psi pressure hydrogen at 300 degrees C. Further, a short-cycle experiment has demonstrated that the new combined material system of alanates and amides can maintain its hydrogen storage capacity upon cycling of the dehydrogenation/rehydrogenation reactions.  相似文献   

2.
将LiAlH4和LiNH2按摩尔比1:2进行球磨复合,随后将复合物进行加热放氢特性研究,然后对其完全放氢后的产物进行再吸氢特性研究。通过X射线衍射分析(XRD)、热分析(DSC)和红外 (FTIR)分析等测试手段对其反应过程进行了系统分析研究。研究结果表明,LiAlH4/2LiNH2加热放氢分为3个反应阶段,放氢后生成Li3AlN2,总放氢量达到8.65wt%。放氢生成的Li3AlN2在10MPaH2压力和400℃条件下,可以可逆吸氢5.0wt%,吸氢后的产物为 LiNH2 、AlN和LiH,而不能再生成LiAlH4。本文对LiAlH4/2LiNH2复合物放氢/再氢化过程机理进行了分析。  相似文献   

3.
Lu J  Fang ZZ  Sohn HY 《Inorganic chemistry》2006,45(21):8749-8754
This paper describes a reaction mechanism that explains the dehydrogenation reactions of alkali and alkaline-earth metal hydrides. These light metal hydrides, e.g., lithium-based compounds such as LiH, LiAlH4, and LiNH2, are the focus of intense research recently as the most promising candidate materials for on-board hydrogen storage applications. Although several interesting and promising reactions and materials have been reported, most of these reported reactions and materials have been discovered by empirical means because of a general lack of understanding of any underlying principles. This paper describes an understanding of the dehydrogenation reactions on the basis of the interaction between negatively charged hydrogen (H-, electron donor) and positively charged hydrogen (Hdelta+, electron acceptor) and experimental evidence that captures and explains many observations that have been reported to date. This reaction mechanism can be used as a guidance for screening new material systems for hydrogen storage.  相似文献   

4.
Cobalt-catalyzed hydrogen desorption from the LiNH2-LiBH4 system   总被引:1,自引:0,他引:1  
A doping of 5 wt% CoCl2 considerably decreases the dehydrogenation temperature of a mixture of LiNH2 and LiBH4. More that 8 wt% of hydrogen can be released at ca. 155 degrees C. X-Ray absorption near edge structure (XANES) spectroscopy indicated the formation of metallic Co after ball milling CoCl2 with LiNH2 and LiBH4. Extended X-ray absorption fine structure (EXAFS) spectroscopy measurements revealed that Co particles have poor crystallinity and are finely dispersed in the sample, which could lead to a high catalytic efficiency.  相似文献   

5.
A five-step physiochemical pathway for the cyclic dehydrogenation and rehydrogenation of LiAlH4 from Li3AlH6, LiH, and Al was developed. The LiAlH4 produced by this physiochemical route exhibited excellent dehydrogenation kinetics in the 80-100 degrees C range, providing about 4 wt % hydrogen. The decomposed LiAlH4 was also fully rehydrogenated through the physiochemical pathway using tetrahydrofuran (THF). The enthalpy change associated with the formation of a LiAlH4.4THF adduct in THF played the essential role in fostering this rehydrogenation from the Li3AlH6, LiH, and Al dehydrogenation products. The kinetics of rehydrogenation was also significantly improved by adding Ti as a catalyst and by mechanochemical treatment, with the decomposition products readily converting into LiAlH4 at ambient temperature and pressures of 4.5-97.5 bar.  相似文献   

6.
Electronic structure calculations have been used to determine and compare the thermodynamics of H(2) release from ammonia borane (NH(3)BH(3)), lithium amidoborane (LiNH(2)BH(3)), and sodium amidoborane (NaNH(2)BH(3)). Using two types of exchange correlation functional we show that in the gas-phase the metal amidoboranes have much higher energies of complexation than ammonia borane, meaning that for the former compounds the B-N bond does not break upon dehydrogenation. Thermodynamically however, both the binding energy for H(2) release and the activation energy for dehydrogenation are much lower for NH(3)BH(3) than for the metal amidoboranes, in contrast to experimental results. We reconcile this by also investigating the effects of dimer complexation (2×NH(3)BH(3), 2×LiNH(2)BH(3)) on the dehydrogenation properties. As previously described in the literature the minimum energy pathway for H(2) release from the 2×NH(3)BH(3) complex involves the formation of a diammoniate of diborane complex ([BH(4)](-)[NH(3)BH(2)NH(3)](+)). A new mechanism is found for dehydrogenation from the 2×LiNH(2)BH(3) dimer that involves the formation of an analogous dibroane complex ([BH(4)](-)[LiNH(2)BH(2)LiNH(2)](+)), intriguingly it is lower in energy than the original dimer (by 0.13 eV at ambient temperatures). Additionally, this pathway allows almost thermoneutral release of H(2) from the lithium amidoboranes at room temperature, and has an activation barrier that is lower in energy than for ammonia borane, in contrast to other theoretical research. The transition state for single and dimer lithium amidoborane demonstrates that the light metal atom plays a significant role in acting as a carrier for hydrogen transport during the dehydrogenation process via the formation of a Li-H complex. We posit that it is this mechanism which is responsible, in condensed molecular systems, for the improved dehydrogenation thermodynamics of metal amidoboranes.  相似文献   

7.
Mobile applications of hydrogen power have long demanded new solid hydride materials with large hydrogen storage capacities. We report synthesis of a new quaternary hydride having the approximate composition Li(3)BN(2)H(8) with 11.9 wt % theoretical hydrogen capacity. It forms by reacting LiNH(2) and LiBH(4) powders in a 2:1 molar ratio either by ball milling or by heating the mixed powders above 95 degrees C. This new quaternary hydride melts at approximately 190 degrees C and releases > or =10 wt % hydrogen above approximately 250 degrees C. A small amount of ammonia (2-3 mol % of the generated gas) is released simultaneously. Preliminary calorimetric measurements suggest that hydrogen release is exothermic and, hence, not easily reversible.  相似文献   

8.
A significant improvement in the dehydrogenation kinetics of the (LiNH(2) + LiH) system was obtained upon doping with elemental Si. Whilst, complete dehydrogenation of the (LiNH(2) + LiH) system requires more than 2 h, the time required for full dehydrogenation was reduced to less than 30 min by doping with elemental Si. It is observed that Si thermodynamically destabilises the system through the formation of novel intermediate phases resulting from the reaction of Si with both LiNH(2) and LiH. Such intermediate phases are also believed to enhance reaction kinetics by providing a path for accelerated dehydrogenation and the rapid release of hydrogen at the early stages of the reaction. It is believed that the dehydrogenation kinetics of the (LiNH(2) + LiH) system, which is controlled by the diffusion of H(-) from LiH and H(+) from LiNH(2), becomes independent of diffusion upon Si addition due to an enhanced concentration gradient in reactive ionic species.  相似文献   

9.
The mechanism of thermochemical dehydrogenation of the 1:3 mixture of Li(3)AlH(6) and NH(3)BH(3) (AB) has been studied by the extensive use of solid-state NMR spectroscopy and theoretical calculations. The activation energy for the dehydrogenation is estimated to be 110 kJ mol(-1), which is lower than for pristine AB (184 kJ mol(-1)). The major hydrogen release from the mixture occurs at 60 and 72 °C, which compares favorably with pristine AB and related hydrogen storage materials, such as lithium amidoborane (LiNH(2)BH(3), LiAB). The NMR studies suggest that Li(3)AlH(6) improves the dehydrogenation kinetics of AB by forming an intermediate compound (LiAB)(x)(AB)(1-x). A part of AB in the mixture transforms into LiAB to form this intermediate, which accelerates the subsequent formation of branched polyaminoborane species and further release of hydrogen. The detailed reaction mechanism, in particular the role of lithium, revealed in the present study highlights new opportunities for using ammonia borane and its derivatives as hydrogen storage materials.  相似文献   

10.
机械球磨固相化学反应制备AlH3及其放氢性能   总被引:2,自引:1,他引:1  
以LiAlH4和AlCl3为原料, 采用机械球磨固相化学反应方法制备了铝氢化合物, 通过X射线衍射(XRD)、热分析(TG-DSC)和质谱(MS)分析等方法对反应产物进行分析和表征, 研究了不同球磨时间(4、8、15和20 h)对LiAlH4+AlCl体系的固相反应转变规律﹑合成产物和放氢性能的影响. 研究结果表明, 随球磨时间的增加, 球磨固相反应按3LiAlH4+AlCl3→4AlH3+3LiCl方向进行, 形成了非晶态铝氢化合物AlH3, 球磨20 h时反应基本完全. 球磨产物的放氢动力学特性随球磨时间增加而改善, 其放氢起始温度均低于100 ℃, 最大放氢量达到2.6%-3.6%(H2)(w), 接近反应体系的理论储氢量4.85%(H2)(w). 球磨过程中反应产物形成LiCl·H2O以及少量AlH3发生分解是影响球磨产物最大放氢量的主要因素.  相似文献   

11.
The solid-state reaction between LiNH2 and LiH potentially offers an effective route for hydrogen storage if it can be tailored to meet all the requirements for practical applications. To date, there still exists large uncertainty on the mechanism of the reaction--whether it is mediated by a transient NH3 or directly between LiNH2 and LiH. In an effort to clarify this issue and improve the reactivity, the effects of selected nitrides were investigated here by temperature-programmed desorption, X-ray diffraction, in-situ infrared analysis, and hydrogen titration. The results show that the reaction of LiNH2 with LiH below 300 degrees C is a heterogeneous solid-state reaction controlled by Li+ diffusion from LiH to LiNH2 across the interface. At the LiNH2/LiH interface, an ammonium ion Li2NH2+ and a penta-coordinated nitrogen Li2NH3 could be the intermediate states leading to the production of hydrogen and the formation of lithium imide. In addition, it is identified that BN is an efficient "catalyst" that improves Li+ diffusion and hence the kinetics of the reaction between LiNH2 and LiH. Hydrogen is fully released within 7 h at 200 degrees C with BN addition, rather than several days without the modification.  相似文献   

12.
Solvothermal reactions of TaCl5 with LiNH2 in benzene result in nanocrystalline Ta3N5 at 500 or 550 degrees C. The approximately 25 nm Ta3N5 particles have a band gap of 2.08-2.10 eV. The same reactions in mesitylene resulted in a higher crystallization temperature and large amounts of carbon incorporation due to solvent decomposition. Reactions of Ta(NMe2)5 with LiNH2 under the same conditions resulted in TaN. Rocksalt-type MN phases are obtained for Zr, Hf, or Nb when their chlorides (ZrCl4, HfCl4, or NbCl5) or dialkylamides (M(NEtMe)4, M = Zr, Hf) are reacted with LiNH2 under similar conditions. With the amides, there is some evidence for nitrogen-rich compositions (HfN >1), and carbon is incorporated into the products through pyrolysis of the dialkylamide groups.  相似文献   

13.
Mechanism of hydrogenation reaction in the Li-Mg-N-H system   总被引:1,自引:0,他引:1  
The Li-Mg-N-H system composed of 3 Mg(NH2)2 and 8 LiH reversibly desorbs/absorbs approximately 7 wt % of H2 at 120-200 degrees C and transforms into 4 Li2NH and Mg3N2 after dehydrogenation. In this work, the mechanism of the hydrogenation reaction from 4 Li2NH and Mg3N2 to 8 LiH and 3 Mg(NH2)2 was investigated in detail. Experimental results indicate that 4 Li2NH is first hydrogenated into 4 LiH and 4 LiNH2. At the next step, 4 LiNH2 decomposes into 2 Li2NH and 2 NH3, and the emitted 2 NH3 reacts with (1/2) Mg3N2 and produces the (3/2) Mg(NH2)2 phase, while the produced 2 Li2NH is hydrogenated into 2 LiH and 2 LiNH2 again. Such successive steps continue until all 4 Li2NH and Mg3N2 completely transform into 8 LiH and 3 Mg(NH2)2 by hydrogenation.  相似文献   

14.
The lithium amide (LiNH(2)) + lithium hydride (LiH) system is one of the most attractive light-weight materials options for hydrogen storage. Its dehydrogenation involves mass transport in the bulk (amide) crystal through lattice defects. We present a first-principles study of native point defects and dopants in LiNH(2) using density functional theory. We find that both Li-related defects (the positive interstitial Li(i)(+) and the negative vacancy V(Li)(-)) and H-related defects (H(i)(+) and V(H)(-)) are charged. Li-related defects are most abundant. Having diffusion barriers of 0.3-0.5 eV, they diffuse rapidly at moderate temperatures. V(H)(-) corresponds to the [NH](2-) ion. It is the dominant species available for proton transport with a diffusion barrier of ~0.7 eV. The equilibrium concentration of H(i)(+), which corresponds to the NH(3) molecule, is negligible in bulk LiNH(2). Dopants such as Ti and Sc do not affect the concentration of intrinsic defects, whereas Mg and Ca can alter it by a moderate amount. Ti and Mg are easily incorporated into the LiNH(2) lattice, which may affect the crystal morphology on the nano-scale.  相似文献   

15.
LiAlH4 holds great promise for reversible hydrogen storage, where a fundamental understanding of hydrogen interaction with the metal elements is essential to further improve its properties. The present paper reports a first-principles study of its stability and electronic structure, using a full potential linearized augmented plane wave (FLAPW) method within the generalized gradient approximation (GGA) for high accuracy. The theoretically calculated heat of formation agrees well with experiment. The electronic structures show that the H atoms bond nonequivalently with the Al in the [AlH4]- ligand, which leads to complex dehydrogenation characteristics of LiAlH4.  相似文献   

16.
The solid solution, (LiNH2)x(LiBH4)(1-x), formed through the reaction of the two potential hydrogen storage materials, LiNH2 and LiBH4, is dominated by a compound that has an ideal stoichiometry of Li4BN3H10 and forms a body-centred cubic structure with a lattice constant of ca. 10.66 A.  相似文献   

17.
Lithium hexahydridoaluminate Li(3)AlH(6) and lithium amide LiNH(2) with 1:2 molar ratio were mechanically milled, yielding a Li-Al-N-H system. LiNH(2) destabilized Li(3)AlH(6) during the dehydrogenation process of Li(3)AlH(6), because the dehydrogenation starting temperature of the Li-Al-N-H system was lower than that of Li(3)AlH(6). Temperature-programmed desorption scans of the Li-Al-N-H system indicated that a large amount of hydrogen (6.9 wt %) can be released between 370 and 773 K. After initial H(2) desorption, the H(2) absorption and the desorption capacities of the Li-Al-N-H system with a nano-Ni catalyst exhibited 3-4 wt % at 10-0.004 MPa and 473-573 K, while the capacities of the system without the catalyst were 1-2 wt %. The remarkably increased capacity was due to the fact that the kinetics was improved by addition of the nano-Ni catalyst.  相似文献   

18.
First-principles density functional theory studies have been carried out for native defects and transition-metal (Ti and Ni) impurities in lithium alanate (LiAlH(4)), a potential material for hydrogen storage. On the basis of our detailed analysis of the structure, energetics, and migration of lithium-, aluminium-, and hydrogen-related defects, we propose a specific atomistic mechanism for the decomposition and dehydrogenation of LiAlH(4) that involves mass transport mediated by native point defects. We also discuss how Ti and Ni impurities alter the Fermi-level position with respect to that in the undoped material, thus changing the concentration of charged defects that are responsible for mass transport. This mechanism provides an explanation for the experimentally observed lowering of the temperature for the onset of decomposition and of the activation energy for hydrogen desorption from LiAlH(4).  相似文献   

19.
Alkali- and alkaline-earth metal amidoboranes are a new class of compounds with rarely observed [NH2BH3](-) units. LiNH2BH3 and solvent-containing Ca(NH2BH3)2 x THF have been recently reported to significantly improve the dehydrogenation properties of ammonia borane. Therefore, metal amidoboranes, with accelerated desorption kinetics and suppressed toxic borazine, are of great interest for their potential applications for hydrogen storage. In this work, we successfully determined the structures of LiNH2BH3 and Ca(NH2BH3)2 using a combined X-ray diffraction and first-principles molecular dynamics simulated annealing method. Through detailed structural analysis and first-principles electronic structure calculations the improved dehydrogenation properties are attributed to the different bonding nature and reactivity of the metal amidoboranes compared to NH3BH3.  相似文献   

20.
The hydrogen desorption mechanism in the reaction from LiH + LiNH2 to Li2NH + H2 was examined by thermal desorption mass spectrometry, thermogravimetric analysis, and Fourier transform IR analyses for the products replaced by LiD or LiND2 for LiH or LiNH2, respectively. The results obtained indicate that the hydrogen desorption reaction proceeds through the following two-step elementary reactions mediated by ammonia: 2LiNH2 --> Li2NH + NH3 and LiH + NH3 --> LiNH2 + H2, where hydrogen molecules are randomly formed from four equivalent hydrogen atoms in a hypothetical LiNH4 produced by the reaction between LiH and NH3 according to the laws of probability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号