首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Properties of six-component electromagnetic field solutions of a matrix form of the Maxwell equations, analogous to the four-component solutions of the Dirac equation, are described. It is shown that the six-component equation, including sources, is invariant under Lorentz transformations. Complete sets of eigenfunctions of the Hamiltonian for the electromagnetic fields, which may be interpreted as photon wave functions, are given both for plane waves and for angular-momentum eigenstates. Rotationally invariant projection operators are used to identify transverse or longitudinal electric and magnetic fields. For plane waves, the velocity transformed transverse wave functions are also transverse, and the velocity transformed longitudinal wave functions include both longitudinal and transverse components. A suitable sum over these eigenfunctions provides a Green function for the matrix Maxwell equation, which can be expressed in the same covariant form as the Green function for the Dirac equation. Radiation from a dipole source and from a Dirac atomic transition current are calculated to illustrate applications of the Maxwell Green function.  相似文献   

2.
Maxwell's equations (the Faraday and Ampère-Maxwell laws) can be presented as a three-component equation in a way similar to the two-component neutrino equation. However, in this case, the electric and magnetic Gauss laws can not be derived from first principles. We have shown how all Maxwell equations can be derived simultaneously from first principles, similar to those which have been used to derive the Dirac relativistic electron equation. We have also shown that equations for massless particles, derived by Dirac in 1936, lead to the same result. The complex wave function, being a linear combination of the electric and magnetic fields, is a locally measurable and well understood quantity. Therefore Maxwell equations should be used as a guideline for proper interpretations of quantum theories.  相似文献   

3.
Some preliminary results presented in two previous papers are expanded upon. In the first it was shown that the Maxwell equations are equivalent to a nonlinear Dirac-like spinor equation. In the present paper it is shown that, in that formalism, the Dirac equation for the free electron is susceptible to a puzzling reinterpretation. In fact, it is shown that the Dirac equation is equivalent to the Maxwell equations for an electromagnetic field generated by two currents: one electric in nature and one, magnetic-monopolar. The elaboration of this result brings a nonlinear generalization of Maxwell's equations, as well as a nonlinear Dirac-like equation fully equivalent to them, from which both the electron mass as well as the magnetic monopole mass appear to be fully electromagnetic in nature, and the magnetic monopole to be tachyonic. The corresponding nonlinear Dirac equation reduces, under suitable approximations, to the ordinary Dirac equation for the free electron.  相似文献   

4.
We find new classes of exact solutions to the Einstein–Maxwell system of equations for a charged sphere with a particular choice of the electric field intensity and one of the gravitational potentials. The condition of pressure isotropy is reduced to a linear, second order differential equation which can be solved in general. Consequently we can find exact solutions to the Einstein–Maxwell field equations corresponding to a static spherically symmetric gravitational potential in terms of hypergeometric functions. It is possible to find exact solutions which can be written explicitly in terms of elementary functions, namely polynomials and product of polynomials and algebraic functions. Uncharged solutions are regainable with our choice of electric field intensity; in particular we generate the Einstein universe for particular parameter values.  相似文献   

5.
We show that the random walk model due to Mark Kac which underlies the telegraph equations may be modified to produce Maxwell's field equations in 1+1 dimensions. This provides the field equations with a representation in terms of classical particles. It also establishes the Kac model as a strong conceptual link between the diffusion, telegraph, and Maxwell equations, and suggests that recent simulations of the Schrödinger and Dirac equations are analogous to Maxwell's equation in terms of interpretation.  相似文献   

6.
Electromagnetic phenomena can be described by Maxwell equations written for the vectors of electric and magnetic field. Equivalently, electrodynamics can be reformulated in terms of an electromagnetic vector potential. We demonstrate that the Schrödinger equation admits an analogous treatment. We present a Lagrangian theory of a real scalar field φ whose equation of motion turns out to be equivalent to the Schrödinger equation with time independent potential. After introduction the field into the formalism, its mathematical structure becomes analogous to those of electrodynamics. The field φ is in the same relation to the real and imaginary part of a wave function as the vector potential is in respect to electric and magnetic fields. Preservation of quantum-mechanics probability is just an energy conservation law of the field φ.  相似文献   

7.
Fundamental concepts, symmetries and dynamic equations of the theory of dark matter are derived from the simple relation: everything in the concept of space and the concept of space in everything. It is shown that the electromagnetic field is the singlet state of the dark matter field and, hence, the last may be considered as a generalized electromagnetic field (shortly gef) and a simple solution is given to the old problem of connecting the electromagnetic field with geometric properties of the physical manifold itself. It is shown that gauge fixing renders the generalized electromagnetic field effectively massive while the Maxwell electromagnetic field remains massless. To learn more about interactions between matter and dark matter on the microscopic level (and to recognize the fundamental role of internal symmetry in this case), the general covariant Dirac equation is derived and its natural generalization is considered. The experiment is suggested to test the formulated theory.  相似文献   

8.
Resita Arum Sari  A Suparmi  C Cari 《中国物理 B》2016,25(1):10301-010301
The Dirac equation for Eckart potential and trigonometric Manning Rosen potential with exact spin symmetry is obtained using an asymptotic iteration method. The combination of the two potentials is substituted into the Dirac equation,then the variables are separated into radial and angular parts. The Dirac equation is solved by using an asymptotic iteration method that can reduce the second order differential equation into a differential equation with substitution variables of hypergeometry type. The relativistic energy is calculated using Matlab 2011. This study is limited to the case of spin symmetry. With the asymptotic iteration method, the energy spectra of the relativistic equations and equations of orbital quantum number l can be obtained, where both are interrelated between quantum numbers. The energy spectrum is also numerically solved using the Matlab software, where the increase in the radial quantum number nr causes the energy to decrease. The radial part and the angular part of the wave function are defined as hypergeometry functions and visualized with Matlab 2011. The results show that the disturbance of a combination of the Eckart potential and trigonometric Manning Rosen potential can change the radial part and the angular part of the wave function.  相似文献   

9.
Maxwell equations in a resting and nonrelativisticly moving medium can be rewritten in a form of the Dirac equation. In the paper the formal analogy between an electron in the electromagnetic field and a photon in the dielectric medium has been used to consider three effects: Fresnel’s drag, mechanical Faraday effect (interpreted here as a procession of the photon spin) and Landau frequencies in a rotating medium. The third effect, up to my knowledge, is new. It predicts that only some discrete frequencies of light can propagate in a rotating medium.  相似文献   

10.
The higher dimensional Kaluza-Klein theory in Riemann-Cartan space is discussed. To clarify its implications, we investigate the simplest five-dimensional case of the theory in detail. The Einstein-like, Maxwell, and Dirac equations in four-dimensional space-time are obtained by reducing the corresponding five-dimensional field equations. The effect of spin-spin interaction induced by torsion is revealed by analyzing the Dirac equation in this case.  相似文献   

11.
The aim of this work is to find exact solutions of the Dirac equation in(1+1) space-time beyond the already known class.We consider exact spin(and pseudo-spin) symmetric Dirac equations where the scalar potential is equal to plus(and minus) the vector potential.We also include pseudo-scalar potentials in the interaction.The spinor wavefunction is written as a bounded sum in a complete set of square integrable basis,which is chosen such that the matrix representation of the Dirac wave operator is tridiagonal and symmetric.This makes the matrix wave equation a symmetric three-term recursion relation for the expansion coefficients of the wavefunction.We solve the recursion relation exactly in terms of orthogonal polynomials and obtain the state functions and corresponding relativistic energy spectrum and phase shift.  相似文献   

12.
We show how to write the Dirac and the generalized Maxwell equations (including monopoles) in the Clifford and spin-Clifford bundles (of differential forms) over space-time (either of signaturep=1,q=3 orp=3,q=1). In our approach Dirac and Maxwell fields are represented by objects of the same mathematical nature and the Dirac and Maxwell equations can then be directly compared. We show also that all presentations of the Maxwell equations in (matrix) Dirac-like spinor form appearing in the literature can be obtained by choosing particular global idempotents in the bundles referred to above. We investigate also the transformation laws under the action of the Lorentz group of Dirac and Maxwell fields (defined as algebraic spinor sections of the Clifford or spin-Clifford bundles), clearing up several misunderstandings and misconceptions found in the literature. Among the many new results, we exhibit a factorization of the Maxwell field into two-component spinor fields (Weyl spinors), which is important.  相似文献   

13.
We study the thermodynamic quantities such as the Helmholtz free energy, the mean energy and the specific heat for both the Klein–Gordon, and Dirac equations. Our analyze includes two main subsections: (1) statistical functions for the Klein–Gordon equation with a linear potential having Lorentz vector, and Lorentz scalar parts (2) thermodynamic functions for the Dirac equation with a Lorentz scalar, inverse-linear potential by assuming that the scalar potential field is strong (A ? 1). We restrict ourselves to the case where only the positive part of the spectrum gives a contribution to the sum in partition function. We give the analytical results for high temperatures.  相似文献   

14.
Douglas J. Newman 《Molecular physics》2013,111(11-12):1307-1313
The concept of invariance relates to both the intrinsic symmetries of physical systems and the symmetry of the set of equivalent reference frames used to observe them. Standard algebraic expressions for electrostatic potentials and crystal-field effective operators display both types of invariance. The concept of a reference frame is generalized to that of an ‘observing system’, which can, for example, be the basis states of a quantum system. This idea is related to Racah’s mathematical machinery for evaluating the matrix elements of many-electron 4f open-shell states in lanthanide ions. It is argued, on the basis of computational flexibility and ease of interpretation, that all equations that represent physical processes be expressible in terms of invariants of the set of observing systems. This ‘Principle of Invariance’ is then applied to special relativity, leading to a simple geometrical interpretation of Maxwell’s electromagnetic field equations. The close relationship between Dirac’s relativistic wave equation and Maxwell’s equations is then exposed. This leads to the concept of an inner structure of space-time and the reinterpretation of particle spin. Finally, it is shown that the use of invariants in relativity theory identifies a set of observing systems with a higher symmetry than that of Minkowski space-time.  相似文献   

15.
The quantum theory of the vector field minimally coupled to the gravity of the de Sitter spacetime is built in a canonical manner starting with a new complete set of quantum modes of given momentum and helicity derived in the moving chart of conformal time. It is shown that the canonical quantization leads to new vector propagators which satisfy similar equations as the propagators derived by Tsamis and Woodard (J Math Phys 48:052306, 2007) but having a different structure. The one-particle operators are also written down pointing out that their properties are similar with those found already in the quantum theory of the scalar, Dirac and Maxwell free fields.  相似文献   

16.
It has been shown by Gupta and Padmanabhan that the radiation reaction force of the Abraham–Lorentz–Dirac equation can be obtained by a coordinate transformation from the inertial frame of an accelerating charged particle to that of the laboratory. We show that the problem may be formulated in a flat space of five dimensions, with five corresponding gauge fields in the framework of the classical version of a fully gauge covariant form of the Stueckelberg–Feynman–Schwinger covariant mechanics (the zero mode fields of the 0, 1, 2, 3 components correspond to the Maxwell fields). Without additional constraints, the particles and fields are not confined to their mass shells. We show that in the mass-shell limit, the generalized Lorentz force obtained by means of the retarded Green's functions for the five dimensional field equations provides the classical Abraham–Lorentz–Dirac radiation reaction terms (with renormalized mass and charge). We also obtain general coupled equations for the orbit and the off-shell dynamical mass during the evolution as well as an autonomous non-linear equation of third order for the off-shell mass. The theory does not admit radiation if the particle does not move off-shell. The structure of the equations implies that mass-shell deviation is bounded when the external field is removed.  相似文献   

17.
A Dirac-like equation for a massive field obeying the classical Proca equations of motion (PMO) is proposed in close analogy with Majorana’s construct for Maxwell electrodynamics. Its underlying algebraic structure is examined and a plausible physical interpretation is discussed. The behavior of the PMO equations in the presence of an external electromagnetic field is also investigated in the low energy limit, via unitary transformations similar to the Foldy-Wouthuysen canonical transformation for a Dirac fermion.  相似文献   

18.
We present a new theorem concerning a sufficient condition for a symmetric operator acting in a complex Hilbert space to be essentially self-adjoint. By applying the theorem, we prove that the Dirac–Maxwell Hamiltonian, which describes a quantum system of a Dirac particle and a radiation field minimally interacting with each other, is essentially self-adjoint. Our theorem covers the case where the Dirac particle is in the Coulomb-type potential.  相似文献   

19.
On calculation of magnetic-type gravitation and experiments   总被引:1,自引:0,他引:1  
The linearized Einstein equations are written in the same form as the Maxwell equation. In the case of a weak stationary field and low velocity, the geodesic equations are written in the form of the Lorentz equation of motion. We suggest that the existence of the magnetic-type gravitation predicted by GR is equivalent to the existence of the gravitational wave predicted by GR. The Schiff effect is explained as one of the magnetic-type gravitation and the new effect is given. The Hall-type gravitational experiment is studied.  相似文献   

20.
新环状非球谐振子势的Dirac方程束缚态解   总被引:1,自引:1,他引:0  
提出了一种新的环状非球谐振子势, 在标量势与矢量势相等的条件下, 给出了Dirac 方程的束缚态解.通过分离变量得到Dirac方程相应的角向方程和径向方程,得出了用广义连带勒让德多项式表示的归一化角向波函数和用合流超几何函数表示的归一化径向波函数;获得了精确的束缚态能谱方程并对结果作适当讨论与结论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号