首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ferrer L  de Armas G  Miró M  Estela JM  Cerdà V 《Talanta》2005,68(2):343-350
An automatic multisyringe flow injection analysis (MSFIA) system coupling a flow-through optical fiber diffuse reflectance sensor with in-line gas-diffusion (GD) separation is proposed for the isolation, preconcentration and determination of traces of volatile and gas-evolving compounds in samples containing suspended solids, with no need for any preliminary batch sample treatment. The flowing methodology overcomes the lost of sensitivity of the in-line separation technique, when performed in a uni-directional continuous-flow mode, through the implementation of disk-based solid-phase extraction schemes. The high selectivity and sensitivity, the low reagent consumption and the miniaturization of the whole assembly are the outstanding features of the automated set-up. The proposed combination of techniques for separation, flow analysis, preconcentration and detection was applied satisfactorily to sulfide determination in environmental complex matrixes. The method based on multicommutation flow analysis involves the stripping of the analyte as hydrogen sulfide from the donor channel of the GD-module into an alkaline receiver segment, whereupon the enriched plug merges with well-defined zones of the chormogenic reagents (viz., N,N-dimethyl-p-phenylenediamine (DMPD) and Fe(III)). The in-line generated methylene blue dye is subsequently delivered downstream to the dedicated optrode cell furnished with a C18 disk, while recording continuously the diffuse reflectance spectrum of the pre-concentrated compound. This procedure provides a linear working range of 20-500 μg l−1 sulfide with a relative standard deviation of 2.2% (n = 10) at the 200 μg l−1 level, and a detection limit of 1.3 μg l−1.  相似文献   

2.
Ferrer L  de Armas G  Miró M  Estela JM  Cerdà V 《Talanta》2004,64(5):1119-1126
In this paper, a fully software-controlled multisyringe flow injection (MSFIA) spectrophotometric system is proposed for the determination of sulfide in environmental and waste waters. The implementation of ancillary solenoid valves into the flow network allows a multitude of injection modalities to be explored, the selected modality being directly dependent on the aim of the assays. The multicommuted sandwich-type approach is introduced in this work as an efficient means to warrant high sensitivity for the particular assay with excellent repeatabilities and a considerable reagent saving. Moreover, a high injection frequency may be easily attained by carrying out a multiple injection modality during a single forward displacement of the piston driver bar. The interfacing of the robust and versatile multisyringe piston pump with an optical fiber plug-in spectrophotometer furnished with a light emitting diode enables the miniaturization of the flow analyzer, which is thus readily adaptable to in-situ and real-time monitoring schemes. The flow method is based on the coupling Fischer’s reaction of sulfide with N,N-dimethyl-p-phenylenediamine in the presence of Fe(III) as oxidizing reagent in a 0.7 M HCl medium. Careful selection of the physical and chemical variables enabled coefficients of variations better than 1.5% (n = 10) at the 1 mg l−1 level for both injection modalities. Dynamic working ranges of 0.2–2.0 and 0.5–5 mg l−1 sulfide for sandwich and multiple injection techniques, and detection limits of 0.09 and 0.15 mg l−1, respectively, were obtained. Furthermore, the sandwich modality featured an average slope of 0.43 ± 0.02 l mg−1 calculated from 10 day-to-day calibration plots. This result reveals better sensitivity than other flowing stream methods described in the literature. The multiple injection technique allowed an improvement of the injection throughput up to 80 h−1, although a decrease of sensitivity was concomitantly observed (average slope of 0.17 ± 0.01 l mg−1).

The multisyringe flow method was successfully applied to the determination of sulfide in different spiked water matrices (namely, mineral, tap, freshwater, seawater and wastewater) with recoveries ranging from 96 to 104%. Good agreement was also found in water samples between the MSFIA results and those of the batch APHA-standard method.  相似文献   


3.
An automatic system based on multisyringe flow injection analysis (MSFIA) and lab-on-valve (LOV) flow techniques for separation and pre-concentration of 226Ra from drinking and natural water samples has been developed. The analytical protocol combines two different procedures: the Ra adsorption on MnO2 and the BaSO4 co-precipitation, achieving more selectivity especially in water samples with low radium levels.  相似文献   

4.
Rapid and fully automated multisyringe flow-injection analysis (MSFIA) with a multi-pumping flow system (MPFS) coupled to a long path-length liquid waveguide capillary cell (LWCC) is proposed for the determination of uranium(VI) at ultra trace levels. On-line separation and pre-concentration of uranium is carried out by means of a TRU resin. After elution, uranium(VI) is spectrophotometrically detected after reaction with arsenazo-III. Combination of the MSFIA and MPFS techniques with the TRU-resin enables the analysis to be performed in a short time, using large sample volumes and achieving high selectivity and sensitivity levels. A detection limit of 12.6 ng L−1 (ppt) is reached for a 100-mL sample volume. The versatility of the proposed method also enables pre-concentration of variable sample volumes, enabling application of the analysis to a wide concentration range. Reproducibility of better than 5% and a resin durability of 40 injections should be emphasized. The developed method was successfully applied to different types of environmental sample matrices with recoveries between 95 and 108%.  相似文献   

5.
This work is aimed at emphasizing the potential of the multicommutated systems based on the multisyringe flow injection analysis (MSFIA) modality. First, the characteristics, advantages and withdraws offered by flow analysis systems based on the different non-segmented modalities are briefly described. In these systems, multicommutation and computer control of the analytical process occupy a predominant place, as in the case of sequential injection analysis (SIA), multicommutated flow injection analysis (MCFIA), MSFIA and multipumping flow systems (MPFS). Next, several examples are given and different aspects of the implementation of analysers based on MSFIA designs for the construction of different analysis systems, including intelligent (smart) systems, use of sample pre-treatment automatic systems, for chromatographic and non-chromatographic determinations as well as use of monolithic or capillary electrophoresis columns are considered.  相似文献   

6.
Three kinetic methods based on flow injection, flow, and stopped-flow injection were applied for the determination of Cd(II) using a flow-through bulk optode membrane that incorporates 1-(2-pyridylazo)-2-naphtol (PAN) in a plasticized poly(vinyl) chloride membrane entrapped in a cellulose support. The calibration graphs plotting the reflectance at 560 nm versus [Cd(II)](1/2) for the first two methods and versus [Cd(II)] for the third were linear up to 56.2 mg l(-1). The detection limits of the methods were 0.01, 0.06 and 0.8 mg l(-1), respectively. The FI method was selected for application purposes. The variation coefficient of the sensor response for 11.2 mg l(-1) of Cd(II) was +/-0.31 and +/-0.65% between different membranes. The sensor can be readily regenerated with a carrier (acetic-acetate) buffer of pH 4. The FI method was applied to the determination of cadmium in an alloy and in water.  相似文献   

7.
In this work a fast, automatic solid-phase extraction procedure hyphenated to HPLC-UV is proposed for screening of priority phenolic pollutants in waters at ng mL−1 levels. A flow through column, containing polystyrene-divinylbenzene sorbent, was incorporated to a multisyringe flow injection system (MSFIA), where the sample loading and analyte elution were carried out after computer control. The MSFIA system also directed the eluent to fill the injection loop of the chromatograph, coupling the sample preparation to its determination. High enrichment factors were attained for phenol and ten of its derivatives (mean value 176 for 50 mL of sample), with LOD values lower than 1 ng mL−1 for the maximum volume of sample used (100 mL). For all analytes, mean recoveries between 89 and 103% were obtained for different water matrices. Certified reference material and a contaminated soil (RTC-CRM 112) were also tested successfully. The determination frequency was 4-10 h−1, providing an automatic, fast and reliable tool for water quality and environmental monitoring.  相似文献   

8.
A multisyringe flow injection system (MSFIA) coupled to a gas-diffusion cell has been developed for the conductometric determination of ammonium in different water samples. Operation strategies, membrane, reagent concentrations, and flow rates have been studied to optimize the sensitivity of detection and to fit the required working range. The proposed MSFIA system has been compared with former FIA and SIA systems using gas diffusion. The system was applied to the determination of ammonium in water samples of different matrices in order to evaluate its performance. These samples were coastal waters, pond waters, and compost aqueous extracts. Good recoveries of 102?±?13% were obtained and no significant differences with the reference methods were found. The system can be used for a wide concentration range of ammonia, from 0.075 to 360?mg?L?1, without sample dilution and with a precision better than 2% of RSD. The throughput of the method was 32 injections per hour.  相似文献   

9.
10.
In the present work, the multi-channel features of multisyringe flow injection analysis (MSFIA) were exploited for the first time to implement calibration based on standard addition method (SAM). For this, standard solutions containing different concentrations of target analyte were placed in each syringe of the multisyringe and connected to a flow network where in-line mixing of sample and standard through a merging zone approach was established prior to detection of analyte. Using this strategy, artifacts reported before in SAM using flow injection analysis were avoided as the concentration of the analyte in the resulting mixture was related to the dilution of sample and added standard within the system, and the concentration of all matrix components was kept constant during all measurements. The feasibility of the proposed MSFIA system was assessed through application to potentiometric determination of chloride ion in electroplating bath and milk samples. Results obtained for samples (n = 15) were not statistically different from those provided by titrimetric procedures, with an excellent throughput (20–31 samples h− 1), comprising four-level addition of chloride ion.  相似文献   

11.
For the first time, a multisyringe flow injection analysis capillary electrophoresis system is described. The potential of the hyphenation for sample treatment including analyte pre-concentration is demonstrated by its successful application to the determination of mono-nitrophenols (NPs) in different water samples. The analytical system was used to automate in-line sample acidification, analyte pre-concentration, elution, hydrodynamic injection, electrophoretic separation, and detection as well as the maintenance and re-conditioning of the solid-phase extraction (SPE) column and the separation capillary. A pre-concentration factor of better than 115 and detection down to 0.11 micromol L(-1) were achieved. Detection was carried out at visible wavelength using a blue LED as a low baseline-noise light source. High repeatability was obtained each for migration times and for peak heights with relative standard deviations typically below 2.5 and 6% including the pre-concentration procedure, respectively. Three injections per hour were achieved by running in parallel the pre-concentrating and the electrophoretic separation procedures. Instrumental control and data registration and evaluation were carried out with the software package AutoAnalysis, allowing autonomous operation of the analytical system.  相似文献   

12.
Miró M  Estela JM  Cerdà V 《Talanta》2004,62(1):1-15
In the first part of this review [Talanta 60 (2000) 867], flowing-stream methods (namely, segmented flow analysis (SFA), continuous-flow analysis (CFA), flow-injection analysis (FIA), sequential-injection analysis (SIA), multicommuted flow-injection analysis (MCFIA) and multisyringe flow-injection analysis (MSFIA)) were presented as powerful analytical tools for nutrient determination in water samples when coupled to photometric/fluorimetric detection, flow-through ion-selective electrodes or amperometric sensors.In the present paper, relevant flow methods applied to the monitoring of anionic species as well as to the determination of general parameters for water quality evaluation (such as pH, alkalinity, chemical and biochemical oxygen demand, conductivity and total ionic content) are reviewed, and their background, detection technique and noteworthy analytical features are detailed. Furthermore, other techniques, such as flow systems connected to hydride-generation atomic absorption spectrometry, should be highlighted as practical approaches for metalloid determination since a series of speciation schemes are demonstrated to be readily adaptable.  相似文献   

13.
A smart fully automated system is proposed for determination of thorium and uranium in a wide concentration range, reaching environmental levels. The hyphenation of lab-on-valve (LOV) and multisyringe flow injection analysis (MSFIA), coupled to a long path length liquid waveguide capillary cell, allows the spectrophotometric determination of thorium and uranium in different types of environmental sample matrices achieving high selectivity and sensitivity levels. Online separation and preconcentration of thorium and uranium is carried out by means of Uranium and TEtraValents Actinides resin. The potential of the LOV–MSFIA makes possible the full automation of the system by the in-line regeneration of the column and its combination with a smart methodology is a step forward in automation. After elution, thorium(IV) and uranium(VI) are spectrophotometrically detected after reaction with arsenazo-III. We propose a rapid, inexpensive, and fully automated method to determine thorium(IV) and uranium(VI) in a wide concentration range (0–1,200 and 0–2,000 μg L-1 Th and U, respectively). Limits of detection reached are 5.9 ηg L-1 of uranium and 60 ηg L-1 of thorium. Different water sample matrices (seawater, well water, freshwater, tap water, and mineral water), and a channel sediment reference material which contained thorium and uranium were satisfactorily analyzed with the proposed method.  相似文献   

14.
A new procedure for constructing an optical fibre reflectance, bulk optode membrane type, sensor is presented. The optode membrane consists of a plasticized poly (vinyl chloride) membrane in which the ionophore is dissolved, entrapped in a cellulose support. The new optode with the dye indicator 1-(2-pyridylazo)-2-naphthol (PAN) was incorporated in a new flow-through cell and the injection system was optimized to determine Cu (II) at 567 nm in the range 5 x 10(-5)-10(-3) M. The response was reproducible and the optode can be regenerated using 10(-2) M EDTA followed by water. The method was applied to the determination of copper in real samples.  相似文献   

15.
1-Naphthylamine (NPA) is one of the main degradation products of pesticides derived from naphthalene, and a well-known bladder carcinogen in men. The Griess assay is used for NPA determination because of its high sensitivity and selectivity. The azo dye 4-(sulphophenylazo)-1-naphthylamine is formed, which shows a peak maximum at 540 nm. After optimizing multisyringe flow injection analysis (MSFIA) parameters, the analytical characteristics of the method were obtained, with a working linear range of 0.5 to 14 mg L−1, according to the equation A = 0.0738±0.0019 [NPA] + 0.0028 ± 0.0042, r = 0.9997. Values for RSD (%) and Erel (%) were calculated for the concentration levels of 0.5, 6 and 12 mg L−1; values obtained were 1.1, 0.4 and 0.3% for RSD and 0.8, 0.3 and 0.2% for Erel, respectively. LD was 0.01 mg L−1 and LQ was 0.04 mg L−1 NPA. The MSFIA procedure for the determination of NPA was applied to different water samples (well water, tap water, seawater, and wastewater from the EDAR-1, Palma de Mallorca water treatment plant), with satisfactory results and a throughput of 90 samples per hour.  相似文献   

16.
Flow analysis techniques for phosphorus: an overview   总被引:2,自引:0,他引:2  
Estela JM  Cerdà V 《Talanta》2005,66(2):307-331
  相似文献   

17.
A new procedure for constructing an optical fibre reflectance, bulk optode membrane type, sensor is presented. The optode membrane consists of a plasticized poly (vinyl chloride) membrane in which the ionophore is dissolved, entrapped in a cellulose support. The new optode with the dye indicator 1-(2-pyridylazo)-2-naphthol (PAN) was incorporated in a new flow-through cell and the injection system was optimized to determine Cu (II) at 567 nm in the range 5 × 10?5–10?3 M. The response was reproducible and the optode can be regenerated using 10?2 M EDTA followed by water. The method was applied to the determination of copper in real samples.  相似文献   

18.
A novel optical fibre reflectance sensor coupled to a multisyringe flow injection system (MSFIA) for the determination and speciation analysis of iron at trace level using chelating disks (iminodiacetic groups) is proposed. Once iron(III) has been retained onto a chelating disk, an ammonium thiocyanate stream is injected in order to form the iron(III)-thiocyanate complex which is spectrophotometrically detected at 480 nm. Iron(III) is eluted with 2 M hydrochloric acid so that the chelating disk is regenerated for subsequent experiments. The determination of total iron is achieved by the on-line oxidation of iron(II) to iron(III) with a suitable hydrogen peroxide stream.A mass calibration was feasible in the range from 0.001 to 0.25 μg. The detection limit (3sb/S) was 0.001 μg. The repeatability (RSD), calculated from nine replicates using 1 ml injections of a 0.1 mg/l concentration, was 2.2%. The repeatability between five chelating disks was 3.6%. The applicability of the proposed methodology in fresh and seawater samples has been proved.The proposed technique has been validated by replicate analysis (n = 4) of certified reference materials of water with satisfactory results.  相似文献   

19.
Maya F  Estela JM  Cerdà V 《Talanta》2008,74(5):1534-1538
A multisyringe flow injection system (MSFIA) with spectrophotometric detection is proposed as a fast, robust and low-reagent consumption system for the determination of chloride (Cl) in waters. The system is based in the classic reaction of Cl with Fe3+ and Hg(SCN)2, but due to the hazardous properties of this last reagent, the proposed methodology has been developed with the aim to minimize the consumption of this one, consuming less than 0.05 mg of Hg for a Cl determination, being the system of this type with the lowest Hg consumption. The linear working range was between 1 and 40 mg L−1 Cl and the detection limit was 0.2 mg L−1 Cl. The repeatability (RSD) was 0.8% for a 10 mg L−1 Cl solution, and the injection throughput was 130 h−1. The proposed system is compared with other chloride monitoring flow systems, this comparison is realized with a point of view of the equilibrium between the obtained analytical features and produced residues toxicity. The proposed system was applied to the determination of Cl in mineral, tap and well water.  相似文献   

20.
The separation of seven pesticides by micellar electrokinetic capillary chromatography in spiked water samples is described, allowing the analysis of pesticides mixtures down to a concentration of 50 microg l(-1) in less than 13 min. Calibration, pre-concentration, elution and injection into the sample vial was carried out automatically by a continuous flow system (CFS) coupled to a capillary electrophoresis system via a programmable arm. The whole system was electronically coupled by a micro-processor and completely controlled by a computer. A C18 solid-phase mini-column was used for the pre-concentration, allowing a 12-fold enrichment (as an average value) of the pesticides from fortified water samples. Under the optimal extraction conditions, recoveries between 90 and 114% for most of the pesticides were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号