首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The ability to observe and quantify intrinsic material response to loading at different rates of strain has been improved by reducing the errors of mechanical characterisation in uniaxial compression experiments. In order to perform comparisons of the results from uniaxial compression tests used to characterise mechanical properties of aluminium alloys at different strain rates, it is necessary to reduce errors resulting from factors such as specimen design. In this study, the effects of strain rate, specimen geometry and lubrication on the compressive properties of aluminium AA2024 alloy were quantitatively investigated by measuring the mechanical behaviour of this alloy as functions of strain rate, specimen aspect ratio and lubrication condition. Both the deformation history and the failure mode were identified using low and ultrahigh speed photography. The interaction of factors influencing the measured stress-strain response was quantified, and suitable specimen aspect ratios for compression tests at different strain rates were identified.  相似文献   

2.
New test equipment has been developed to measure the in-plane cyclic behavior of sheet metals at elevated temperatures. The tester has clamping dies with adjustable side force to prevent the sheet specimens from buckling during compressive loading. In addition to the room temperature experiment, cartridge type heaters are inserted in the clamping dies so that the specimen can be heated up to 400 °C during the cyclic tests. For the strain measurement, a non-contact type laser extensometer is used. In order to validate the newly developed test device, the tension-compression (and compression-tension) tests under pre-strains and various temperatures have been performed. As model materials, the aluminum alloy sheet which exhibits a large Bauschinger effect and the magnesium alloy sheet which exhibits different amounts of asymmetry under cyclic loading are used. The developed device can be well-suited to measure the cyclic material behavior, especially the anisotropic and asymmetric hardening of light-weight materials.  相似文献   

3.
This paper deals with the development of a new experimental technique for the multi-axial testing of flat sheets and its application to advanced high strength steels. In close analogy with the traditional tension-torsion test for bulk materials, the sheet material is subject to combined tension and shear loading. Using a custom-made dual actuator hydraulic testing machine, combinations of normal and tangential loading are applied to the boundaries of a flat sheet metal specimen. The specimen shape is optimized to provide uniform stress and strain fields within its gage section. Finite element simulations are carried out to verify the approximate formulas for the shear and normal stress components at the specimen center. The corresponding strain fields are determined from digital image correlation. Two test series are performed on a TRIP-assisted steel sheet. The experimental results demonstrate that this new experimental technique can be used to investigate the large deformation behavior of advanced high strength steel sheets. The evolution of the yield surface of the TRIP700 steel is determined for both radial and non-proportional loading paths.  相似文献   

4.
The forming limit diagram and its associated analytical and experimental techniques has been widely used for 40 years with the assumption that sheet deformation occurs inplane-stress. Some hydro-forming type processes induce significant normal stress across the workpiece and this has led to a small number of extended formability analyses. However, recent work on the incremental sheet forming process which is known to give higher formability than conventional sheet pressing has shown that the repeated passage of a tool over the sheet leads to significant through-thickness shear strains being induced in the workpiece. Accordingly this paper explores the forming limits of sheet forming processes which induce any possible proportional loading, including all six components of the symmetric stress tensor. Marciniak and Kuczyinski’s famous (1967) analysis is extended to allow such loading, and a new generalised forming limit diagram (GFLD) is proposed to allow visual representation of the resulting forming limit strains. The GFLD demonstrates that forming limits can be increased significantly by both normal compressive stress and through-thickness shear. This increased formability is confirmed by experiments on a specially designed ‘linear paddle testing’ apparatus in which a conventional uniaxial test is augmented by the action of a paddle that ‘strokes’ the sample while also applying a normal force. Tests on the rig show that the paddle action leads to enhanced engineering strains at failure up to 300%. The insight gained in this paper is significant for process analysts, as it may explain existing discrepancies between prediction and experience of forming limits, and is important for designers who may be able to use it to expand process operating windows.  相似文献   

5.
An elastoplastic self-consistent model has been implemented to perform a systematic study of the response of rolled Zircaloy-2 subjected to mechanical loading. The intergranular stresses induced by cooling the material from 898 K to room temperature are calculated, accounting for the experimental texture, and compared with experimental data. The elastoplastic response in tension and compression along the rolling and the transverse directions of the sheet is predicted and compared against the results of uniaxial tensile and compressive tests performed in the same material. The role of the internal stresses on the yield stress and the elastoplastic transition is analyzed, and information about the active deformation systems in the individual grains is inferred from the comparison. Indirect inference of the parameters describing the deformation mechanisms is the only available means, because it is not possible to grow single crystals of these alloys. The results of this study demonstrate the adequacy of self-consistent schemes for predicting intergranular stresses and the significance of the latter on the mechanical behavior of the material.  相似文献   

6.
An experimental technique is proposed to determine the tensile stress–strain curve of metals at high strain rates. An M-shaped specimen is designed which transforms a compressive loading at its boundaries into tensile loading of its gage section. The specimen can be used in a conventional split Hopkinson pressure bar apparatus, thereby circumventing experimental problems associated with the gripping of tensile specimens under dynamic loading. The M-specimen geometry provides plane strain conditions within its gage section. This feature retards necking and allows for very short gage sections. This new technique is validated both experimentally and numerically for true equivalent plastic strain rates of up to 4,250/s.  相似文献   

7.
The main objective of this study is to characterize the mechanical behaviour of an Al-Mg alloy in conditions close to those encountered during sheet forming processes, i.e. with strain path changes and at strain rates and temperatures in the range 1.2×10?3–1.2×10?1 s?1 and 25–200°C, respectively. The onset of jerky flow and the interaction of dynamic strain ageing with the work-hardening are investigated during reversed-loading in specific simple shear tests, which consist of loading up to various shear strain values followed by reloading in the opposite direction, combined with direct observations of the sample surface using a digital image correlation technique. Both strain path changes and temperature are clearly shown to influence the occurrence and onset of the Portevin-Le Chatelier (PLC) effect. Moreover, the Bauschinger effect observed in the material response shows that the PLC effect has a major influence on the kinematic contribution to work-hardening as well as its stagnation during the reloading stage, which could open up interesting lines of research to improve theoretical plasticity models for this family of aluminium alloys.  相似文献   

8.
本文在具有各向异性屈服强度和拉压不对称的CPB06屈服准则的基础上,建立了基于随动强化的循环塑性本构模型.通过引入滑移、孪晶以及去孪等不同变形模式下的背应力演化方程,对室温下镁合金板材异常循环硬化行为进行了模拟.选取了AZ31B-O和AZ31B两种镁合金板材,通过拉伸-压缩-拉伸(T-C-T)和压缩-拉伸(C-T)等不同加载路径下的部分实验曲线确定模型的参数,采用三次插值多项式建立了背应力参数与上一变形模式中累积的等效塑性应变(即预应变)之间的函数关系.使用本模型对剩下的实验曲线进行了预测,发现预测结果与实验结果有良好的一致性,说明了当前模型的正确性.  相似文献   

9.
The plastic response of materials during reverse loading has practical consequences for common sheet forming operations in terms of loads, localization behavior, and springback. However, it is difficult to measure the reverse loading (Bauschinger effect) in sheet materials because of their propensity to buckle. A simple reverse-bend test was constructed and used to investigate the cyclic loading of three automotive body alloys. The results showed that consideration of the Bauschinger effect is essential to obtaining agreement with such results. An inverse procedure was used to determine anisotropic hardening law parameters. Laws obtained in this way were compared with ones generated by more sensitive tension-compression tests appearing in the literature for the same alloys. The two laws were significantly different, but both produced accurate simulations of reverse-bend test load–displacement curves. Several artificial material models were then constructed to simulate the reverse-bend test and thus to probe its sensitivity to material constitutive equation details. For materials whose reverse-loading response varies with the level of prestrain, as is the case for each of the three alloys tested, a wide range of constitutive response is capable of producing identical reverse-bending behavior. The results show that inverse procedures applied to the reverse-bend test do not provide unique results, and thus the usefulness of the reverse-bend test for such investigations is limited.  相似文献   

10.
Noder  J.  Abedini  A.  Butcher  C. 《Experimental Mechanics》2020,60(6):787-800

Accurate characterization of the fracture limit in plane strain tension of automotive sheet metals is critical for the design and crash performance of structural components. Plane strain bending using the VDA 238–100 V-bend test has potential for proportional fracture characterization by avoiding a tensile instability. The VDA 238–100 V-bend test was evaluated using DIC strain measurement to characterize the plane strain fracture limit under proportional plane stress loading and to evaluate the effect of the VDA pre-straining methodology for ductile alloys upon the material response. The load-based failure criterion of the V-bend test was evaluated with DIC to monitor the development of surface cracking. The influence of the non-linear strain path imposed by the pre-straining procedure for ductile materials was then evaluated for three automotive alloys: an advanced high strength dual phase steel, DP1180, a rare-earth magnesium, ZEK100, and an AA5182 aluminum. A fracture criterion based on the load threshold was reasonable for the three alloys considered. Pre-straining in uniaxial tension prior to plane strain bending affected each alloy differently. The DP1180 was not affected by the non-linear strain path whereas the cumulative equivalent strain for the AA5182 and ZEK100 increased by strains of 0.07 and 0.05 strain, respectively. The non-linear strain path within the VDA pre-straining methodology creates ambiguity in comparing the fracture limits of different materials. The plane strain fracture limit for proportional loading can be readily obtained in the V-bend test with DIC strain measurement.

  相似文献   

11.
In the tensile loading of sheet metals made from some polycrystalline aluminum alloys, a single deformation band appears inclined to the elongation axis in the early stage of deformation, and symmetric double bands are observed in the later stage. This evolution of spatial characteristics of such an unstable plastic flow pattern in a polycrystalline aluminum alloy has been analyzed by a perturbation method. A small number of slip modes are taken to describe the tensile strain. A rate-dependent constitutive equation is used for each slip mode to account for the interaction between dislocations and solute atoms in dynamic strain aging. Unconstrained and constrained models are used to impose appropriate loading conditions at the early and later deformation stages, respectively. Both plane-strain and plane-stress cases are considered. It is found out that the change of boundary conditions and material inhomogeneity during the course of plastic deformation are closely related to the evolution of spatial characteristics of shear band (the Portevin–Le Chatelier band) patterns observed in experiments.  相似文献   

12.
This work deals with the characterization of the kinematic work-hardening of a bake-hardening steel. A shear test device has been designed and its use for the characterization of the work-hardening of sheet metals is described. Two main results are presented. Firstly, a local strain measurement, based on the following of three dots drawn on the gauge area, gives the evolution of the strain tensor eigenvalues during the test. It is shown, by comparing the theoretical kinematics of simple shear with a slightly perturbated one, that the strain state is close to the ideal one in the center of the gauge area. Secondly, reversal of the shear direction is performed after several prestrain and the evolution of the kinematic work-hardening with the equivalent plastic strain has been identified using an anisotropic elasto-viscoplastic model of Hill 1948 type. Isotropic and kinematic contributions of the work-hardening are also calculated from loading–unloading tensile tests and are compared to those obtained from the simple shear tests. The results show a discrepancy between both identification for the isotropic and the kinematic hardening. However, they are in agreement concerning the evolution of the global work-hardening.  相似文献   

13.
金属材料在复杂载荷条件下的动态力学行为研究一直备受关注,但受限于实验设备,金属材料的动态包辛格效应响应一直都难以获得。为了探究金属材料的包辛格效应与应变率效应之间的关系,本文中提出一种基于电磁霍普金森杆(electromagnetic split Hopkinson bar,ESHB) 的非同步加载实验技术,为测试金属材料在高应变率加载下的包辛格效应提供了一种有效的实验方法。本文中,首先介绍了非同步加载装置的主要特点,即可以用两列由脉冲发生器产生的应力波对受载试样进行连续的一次动态拉-压循环加载,且加载过程保证了应力波的一致性。分析了应力波对试样加载过程中的波传播历程,确保了加载过程的连续性。随后介绍了动态加载过程,数据处理方法和波形分离手段,并对动态加载过程进行应力平衡性分析,论证了实验装置的可靠性。最后采用该方法测试了5%预应变下6061铝合金动态压缩-动态拉伸的包辛格效应,并与准静态下的实验结果进行对比。实验结果表明,该材料单轴压缩没有明显的应变率效应,但其包辛格效应具有应变率依赖性,高应变率下材料的包辛格应力影响因子由0.07增大至0.17,具有显著的提升,这对传统意义上铝合金材料应变率不敏感的结论提出了挑战。  相似文献   

14.
This paper concerns the behavior of Cu-Al-Be polycrystalline shape memory alloys under cyclic thermomechanical loadings. Sometimes, as shown by many experimental observations, a permanent inelastic strain occurs and increases with the number of cycles. A series of cyclic thermomechanical tests has been carried out and the origin of the residual strain has been identified as residual martensite. These observations have been used to develop a 3D macroscopic model for the superelasticity and stress assisted memory effect of SMAs able to describe the evolution of permanent inelastic strain during cycles. The model has been implemented in a finite elements code and used to simulate the behavior of antagonistic actuators based on SMA springs under cyclic thermomechanical loading with a residual displacement appearance.  相似文献   

15.
In this paper we consider the elastoplastic behavior of the 304L stainless steel under cyclic loading at room temperature. After the experimental investigations presented in Taleb and Hauet (2009), the present work deals with modeling in the light of the new observations. An improved version of the multimechanism model is proposed in which the isotropic variable is revisited in order to take into account the non-proportional effect of the loading as well as the strain memory phenomenon. A particular attention has been paid to the identification process in order to capture the main important phenomena: relative parts of isotropic and kinematic hardening, time dependent effects, non-proportionality effect, strain amplitude dependence. Only strain controlled tests have been used for the identification process. The capabilities of the model with “only” 17 parameters are evaluated considering a number of proportional and non-proportional stress and strain controlled tests.  相似文献   

16.
The uniaxial compressive responses of 3003 Al–Mn alloy upon strain rates ranging from 0.001/s to about 104/s with initial temperatures from 77 K to 800 K were investigated. Instron servohydraulic testing machine and enhanced split Hopkinson bar facilities have been employed in such uniaxial compressive loading tests. The maximum true strain up to 80% has been achieved. The following observations have been obtained from the experimental results: 1) 3003 Al–Mn alloy presents remarkable ductility and plasticity at low temperatures and high strain rates; 2) its plastic flow stress strongly depends on the applied temperatures and strain rates; 3) the temperature history during deformation strongly affects the microstructure evolution within the material. Finally, paralleled with the systematic experimental investigations, a physically-based model was developed based on the mechanism of dislocation kinetics. The model predictions are compared with the experimental results, and a good agreement has been observed.  相似文献   

17.
Tension and compression experiments on magnesium rolled sheets and extruded products of AZ31 (Mg?+?3%Al?+?1%Zn) and ZE10 (Mg?+?1%Zn?+?0.3%Ce based misc metal) were performed at room temperature. The tests were conducted along the longitudinal and the transverse direction to quantify the in-plane anisotropy. Samples built from adhesively-bonded layers of sheets were used for in-plane as well as through-thickness compression testing. It was verified that this simple testing method leads to identical results as using comb-like dies and equi-biaxial bulge testing, respectively. In the case of uniaxial loading, the longitudinal and transverse strain components were measured using independent extensometers. R-values were calculated from these signals. The mechanical responses were correlated to the microstructure and the texture. The recorded differences between tensile and compressive response reveal the strength differential effect of the materials. The distortional character of the plastic behaviour is evidenced through their responses to equi-biaxial tensile loading. Significant differences in the compressive responses of the two alloys were identified by comparing the respective hardening rates.  相似文献   

18.
Knowledge of the flow curve in metal forming is crucial to analyse formability, to describe strain-hardening and to set-up the non-linear constitutive equations of metal plasticity. Commonly available mechanical testing of materials supplied in the form of sheets and plates, under low loading rates, is limited to small values of strain. As a result of this, there is a generalized practice, and important source of modelling errors, of extrapolating the remaining part of the flow curves that are usually determined by means of tensile and bulge tests. The aim of this paper is to provide a new level of understanding for the stack compression test and to evaluate its capability for constructing the flow curves of metal sheets under high strains across the useful range of material testing conditions. The presentation draws from the fundamentals of the stack compression test to the assessment of its overall performance by comparing the flow curves obtained from its utilisation with those determined by means of compressive testing carried out on solid cylinder specimens of the same material. Results show that mechanical testing of materials by means of the stack compression test is capable of meeting the increasing demand of accurate and reliable flow curves for sheet metals.  相似文献   

19.
This paper presents a device that has been designed for tensile loading at medium impact rates (up to 103 s–1) and for performing either interrupted or failure tests. This machine allows us to apply prescribed pre-straining to the specimen, and then apply subsequent loading histories such as impact fatigue. Two specimen loading systems are considered, which make it possible to carry out tests with various ranges of force and various durations of time. A multi-CCD camera system is triggered by a chosen threshold from the force signal. The system is dedicated to the displacement measurement and gives both qualitative and quantitative information about the stretching mechanism leading to fracture. To illustrate the performance of the device, experimental results concerning impact tensile tests at a strain rate of about 300 s–1 are presented, as well as consecutive impact-fatigue tests on two aluminium alloys.  相似文献   

20.
In this study, the split Hopkinson pressure bar testing method was used to quantify the dynamic strength characteristics of rocks with short cylindrical specimens. Seventy dynamic compression tests were conducted on 10 different carbonate rocks with the split Hopkinson pressure bar apparatus. Experimental procedure for testing dynamic compressive strength and elastic behaviour of rock material at high strain rate loading is presented in the paper. Pulse-shaper technique was adopted to obtain dynamic stress equilibrium at the ends of the sample and to provide nearly a constant strain rate during the dynamic loading. In addition to dynamic tests, the physical properties covering bulk density, effective porosity, P-wave velocity and Schmidt hardness of rocks, and mechanical properties such as quasi-static compressive strength and tensile strength were determined through standard testing methods. Multiple linear regression analyses were carried out to investigate the variation of dynamic compressive strength depending on physical and mechanical properties of rocks and loading rate. A three parameter model was found to be simple and provided the best surface fit to data. It was found that dynamic compressive strength of rocks increases with increase in loading rate and/or increase in rock property values except porosity. Statistical tests of regression results showed that quasi-static compressive strength and Schmidt hardness are most significant rock properties to adequately predict the dynamic compressive strength value among the other properties. However, P-wave velocity, quasi-static tensile strength of rocks could also be used to estimate the dynamic compressive strength value of rocks, as well, except the bulk density and effective porosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号