首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
S‐((Phenylsulfonyl)difluoromethyl)thiophenium salts were designed and prepared by a triflic acid catalyzed intramolecular cyclization of ortho‐ethynyl aryldifluoromethyl sulfanes. The thiophenium salts were found to be efficient as electrophilic difluoromehtylating reagents for introduction of a CF2H group to sp3‐hybridized carbon nucleophiles such as of β‐ketoesters and dicyanoalkylidenes. The (phenylsulfonyl)difluoromethyl group can be readily transformed into CF2H under mild reaction conditions. Enantioselective electrophilic difluoromethylation was also achieved in the presence of bis(cinchona) alkaloids.  相似文献   

3.
4.
Alkynyl‐substituted 3H‐corrole 9 a was converted to [3]cumulenic 2H‐corrole 10 a by treatment with trimethylsilyl chloride (TMSCl), and 1,3‐butadiyne‐bridged 3H‐corrole dimer 11 b was transformed into [5]cumulene‐bridged 2H‐corrole dimer 12 b by oxidation with PbO2. Both 10 a and 12 b were metalated to form ZnII complexes 10 a‐Zn and 12 b‐Zn . The structures of 10 a‐Zn and 12 b‐Zn show planar conformations with bond‐length alternations that are analogous to those of tetraaryl [n]cumulenes. The cumulenic corrole dimers 12 b and 12 b‐Zn display large NIR absorption bands in the range of 700–1400 nm (maximum ϵ≈1.0×105 m −1 cm−1) owing to the effective π‐conjugation between the two corrole units through the [5]cumulene bridge.  相似文献   

5.
A chiral Brønsted base catalyzed asymmetric annulation of ortho‐alkynylanilines has been developed to access axially chiral naphthyl‐C2‐indoles via vinylidene ortho‐quinone methide (VQM) intermediates. This strategy provides a unique organocatalytic atroposelective route to axially chiral aryl‐C2‐indole skeletons with excellent enantioselectivity and functional‐group tolerance. This transformation was applicable to decagram‐scale preparation (50.0 g) with perfect enantioselectivity through simple recrystallization. Moreover, the utility of this reaction was demonstrated by a variety of transformations towards chiral naphthyl‐C2‐indoles for a series of carbon–heteroatom bond formations. Furthermore, the prepared axially chiral naphthyl‐C2‐indoles were applied as a chiral skeleton for organocatalytic aza‐Baylis–Hillman reaction and asymmetric formal [4+2] tandem cyclization to give the corresponding adducts in high yields with improved enantioselectivity and diastereoselectivity.  相似文献   

6.
7.
Reported herein is an efficient copper(I)‐catalytic system for the diastereo‐ and enantioselective 1,2‐addition of 1,1‐bis[(pinacolato)boryl]alkanes to protected imines to afford synthetically valuable enantioenriched β‐aminoboron compounds bearing contiguous stereogenic centers. The reaction exhibits a broad scope with respect to protected imines and 1,1‐bis[(pinacolato)boryl]alkanes, thus providing β‐aminoboronate esters with excellent diastereo‐ and enantioselectivity. The synthetic utility of the obtained β‐aminoboronate ester was also demonstrated.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
Sialic acids are ubiquitous components of mammalian cell membranes and key regulators of cellular recognition events. Located at the non‐reducing termini of bioactive gangliosides, these essential building blocks are fused to the polysaccharide core via a characteristic α‐linkage, and rarely occur in the monomeric form. Effective chemical strategies to enable α‐sialylation are urgently required to construct well‐defined tools for glycomics. To complement existing chemoenzymatic strategies, an α‐selective process has been devised based on the site‐selective introduction of fluorine at C3 (more than 20 examples, up to 90 % yield). Predicated on localized particle charge inversion (C?Hδ+→C?Fδ?), fluorine insertion simultaneously augments the anomeric effect, enhances electrophilicity at C2 and mitigates elimination. A stereochemical induction model is postulated that spans the SN continuum and validates the role of the C?F bond in orchestrating α‐selectivity.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号