首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five trinuclear complexes [M(bpca)(2)(M'(hfac)(2))(2)] (where MM'(2) = NiMn(2), CuMn(2), FeMn(2), NiFe(2), and FeFe(2); Hbpca = bis(2-pyridylcarbonyl)amine; and Hhfac = hexafluoroacetylacetone) were synthesized almost quantitatively by the reaction of [M(bpca)(2)] and [M'(hfac)(2)] in 1:2 molar ratio, and their structures and magnetic properties were investigated. Three complexes, with M' = Mn, crystallize in the same space group, Pna2(1), whereas two complexes, with M' = Fe, crystallize in P4(1), and complexes within each set are isostructural to one another. In all complexes, [M(bpca)(2)] acts as a bis-bidentate bridging ligand to form a linear trinuclear complex in which three metal ions are arranged in the manner M'-M-M'. The central metal ion is in a strong ligand field created by the N(6) donor set, and hence the Fe(II) in the [Fe(bpca)(2)] moiety is in a low-spin state. The terminal metal ions (M') are surrounded by O(6) donor sets with a moderate ligand field, which leads to the high-spin configuration of Fe(II). Three metal ions in all complexes are almost collinear, and metal-metal distances are ca. 5.5 A. The magnetic behavior of NiMn(2) and NiFe(2) shows a weak ferromagnetic interaction between the central Ni(II) ion and the terminal Mn(II) or Fe(II) ions. In these complexes, sigma-spin orbitals of the central Ni(II) ion and those of terminal metal ions have different symmetry about a 2-fold rotation axis through the Ni-N(amide)-M'(terminal) atoms, and this results in orthogonality between the neighboring sigma-spin orbitals and thus ferromagnetic interactions.  相似文献   

2.
We report here the synthesis and characterization of four dinuclear cyanide-bridged Fe(III)-Cu(II) complexes, based on a tetra- or a pentadentate bispidine ligand (L(1) or L(2), respectively; bispidines are 3,7-diazabiyclo[3.3.1]nonane derivatives) coordinated to the Cu(II) center, and a tridentate bipyridineamide (bpca) coordinated to the low-spin Fe(III) site, with cyanide groups completing the two coordination spheres, one of them bridging between the two metal ions. The four structurally characterized complexes [{Fe(bpca)(CN)(3)}{Cu(L(1)·H(2)O)}]BF(4), [{Fe(bpca)(CN)(3)}{Cu(L(2))}][Fe(bpca)(CN)(3)]·5H(2)O, [{Fe(bpca)(CN)(3)}{Cu(L(2)·MeOH)}]PF(6)·MeOH·H(2)O, and [{Fe(bpca)(CN)(3)}{Cu(L(2))}]PF(6)·2H(2)O belong to different structural isomers. The most important differences are structurally and electronically enforced (direction of the pseudo-Jahn-Teller mode) strong or weak interactions of the copper(II) center with the cyanide bridge. The related strength of the magnetic coupling of the two centers is analyzed with a combination of experimental magnetic, electron paramagnetic resonance (EPR), electronic spectroscopic data together with a ligand-field theory- and density functional theory (DFT)-based analysis.  相似文献   

3.
New heterobimetallic tetranuclear complexes of formula [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Mn(II)(bpy)(2)](2)(ClO(4))(2)·CH(3)CN (1), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2a), [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2b), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3a), and [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3b), [HB(pz)(3)(-) = hydrotris(1-pyrazolyl)borate, B(Pz)(4)(-) = tetrakis(1-pyrazolyl)borate, dmphen = 2,9-dimethyl-1,10-phenanthroline, bpy = 2,2'-bipyridine] have been synthesized and structurally and magnetically characterized. Complexes 1-3b have been prepared by following a rational route based on the self-assembly of the tricyanometalate precursor fac-[Fe(III)(L)(CN)(3)](-) (L = tridentate anionic ligand) and cationic preformed complexes [M(II)(L')(2)(H(2)O)(2)](2+) (L' = bidentate α-diimine type ligand), this last species having four blocked coordination sites and two labile ones located in cis positions. The structures of 1-3b consist of cationic tetranuclear Fe(III)(2)M(II)(2) square complexes [M = Mn (1), Ni (2a and 2b), Co (3a and 3b)] where corners are defined by the metal ions and the edges by the Fe-CN-M units. The charge is balanced by free perchlorate anions. The [Fe(L)(CN)(3)](-) complex in 1-3b acts as a ligand through two cyanide groups toward two divalent metal complexes. The magnetic properties of 1-3b have been investigated in the temperature range 2-300 K. A moderately strong antiferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Mn(II) (S = 5/2) ions has been found for 1 leading to an S = 4 ground state (J(1) = -6.2 and J(2) = -2.7 cm(-1)), whereas a moderately strong ferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Ni(II) (S = 1) and Co(II) (S = 3/2) ions has been found for complexes 2a-3b with S = 3 (2a and 2b) and S = 4 (3a and 3b) ground spin states [J(1) = +21.4 cm(-1) and J(2) = +19.4 cm(-1) (2a); J(1) = +17.0 cm(-1) and J(2) = +12.5 cm(-1) (2b); J(1) = +5.4 cm(-1) and J(2) = +11.1 cm(-1) (3a); J(1) = +8.1 cm(-1) and J(2) = +11.0 cm(-1) (3b)] [the exchange Hamiltonian being of the type H? = -J(S?(i)·S?(j))]. Density functional theory (DFT) calculations have been used to substantiate the nature and magnitude of the exchange magnetic coupling observed in 1-3b and also to analyze the dependence of the exchange magnetic coupling on the structural parameters of the Fe-C-N-M skeleton.  相似文献   

4.
New heterospin complexes have been obtained by combining the binuclear complexes [{Cu(H(2)O)L(1)}Ln(O(2)NO)(3)] or [{CuL(2)}Ln(O(2)NO)(3)] (L(1) = N,N'-propylene-di(3-methoxysalicylideneiminato); L(2) = N,N'-ethylene-di(3-methoxysalicylideneiminato); Ln = Gd(3+), Sm(3+), Tb(3+)), with the mononuclear [CuL(1)(2)] and the nickel dithiolene complexes [Ni(mnt)(2)](q)- (q = 1, 2; mnt = maleonitriledithiolate), as follows: (1)infinity[{CuL(1)}(2)Ln(O(2)NO){Ni(mnt)(2)}].Solv.CH(3)CN (Ln = Gd(3+), Solv = CH(3)OH (1), Ln = Sm(3+), Solv = CH(3)CN (2)) and [{(CH(3)OH)CuL(2)}(2)Sm(O(2)NO)][Ni(mnt)(2)] (3) with [Ni(mnt)2]2-, [{(CH(3)CN)CuL(1)}(2)Ln(H(2)O)][Ni(mnt)(2)]3.2CH(3)CN (Ln = Gd(3+) (4), Sm(3+) (5), Tb(3+) (6)), and [{(CH(3)OH)CuL(2)}{CuL(2)}Gd(O(2)NO){Ni(mnt)(2)}][Ni(mnt)(2)].CH(2)Cl(2) (7) with [Ni(mnt))(2]*-. Trinuclear, almost linear, [CuLnCu] motifs are found in all the compounds. In the isostructural 1 and 2, two trans cyano groups from a [Ni(mnt)2]2- unit bridge two trimetallic nodes through axial coordination to the Cu centers, thus leading to the establishment of infinite chains. 3 is an ionic compound, containing discrete [{(CH(3)OH)CuL(2)}(2)Sm(O(2)NO)](2+) cations and [Ni(mnt)(2)](2-) anions. Within the series 4-6, layers of discrete [CuLnCu](3+) motifs alternate with stacks of interacting [Ni(mnt)(2)](*-) radical anions, for which two overlap modes, providing two different types of stacks, can be disclosed. The strength of the intermolecular interactions between the open-shell species is estimated through extended Hückel calculations. In compound 7, [Ni(mnt)(2)](*-) radical anions coordinate group one of the Cu centers of a trinuclear [Cu(2)Gd] motif through a CN, while discrete [Ni(mnt)(2)](*-) units are also present, overlapping in between, but also with the coordinated ones. Furthermore, the [Cu(2)Gd] moieties dimerize each other upon linkage by two nitrato groups, both acting as chelate toward the gadolinium ion from one unit and monodentate toward a Cu ion from the other unit. The magnetic properties of the gadolinium-containing complexes have been determined. Ferromagnetic exchange interactions within the trinuclear [Cu(2)Gd] motifs occur. In the compounds 4 and 7, the [Ni(mnt)(2)](*-) radical anions contribution to the magnetization is clearly observed in the high-temperature regime, and most of it vanishes upon temperature decrease, very likely because of the rather strong antiferromagnetic exchange interactions between the open-shell species. The extent of the exchange interaction in the compound 7, which was found to be antiferromagnetic, between the coordinated Cu center and the corresponding [Ni(mnt)(2)](*-) radical anion, bearing mostly a 3p spin type, was estimated through CASSCF/CASPT2 calculations. Compound 6 exhibits a slow relaxation of the magnetization.  相似文献   

5.
A series of new star-shaped trinuclear Ru(II) complexes of imidazo[4,5-f][1,10]phenanthroline derivatives, [{Ru(bpy)(2)}(3){μ-mes(1,4-phO-Izphen)(3)}](ClO(4))(6)·4H(2)O (6), [{Ru(phen)(2)}(3){μ-mes(1,4-phO-Izphen)(3)}](ClO(4))(6)·3H(2)O (7), [{Ru(bpy)(2)}(3){μ-mes(1,2-phO-Izphen)(3)}](ClO(4))(6)·4H(2)O (8), and [{Ru(phen)(2)}(3){μ-mes(1,2-phO-Izphen)(3)}](ClO(4))(6)·3H(2)O (9) [mes(1,4-phO-Izphen)(3) (4) = 2,4,6-tri methyl-1,3,5-tris(4-oxymethyl-1-yl(1H-imidazo-2-yl-[4,5-f][1,10]phenanthroline)phenyl)benzene and (mes(1,2-phO-Izphen)(3) (5) = 2,4,6-trimethyl-1,3,5-tris(2-oxymethyl-1-yl(1H-imidazo-2-yl[4,5-f][1,10]phenanthroline)phenyl)benzene] have been synthesized and characterized. Their photophysical and electrochemical properties have also been studied. The core molecule, 1,3,5-tris(bromomethyl)-2,4,6-trimethylbenzene (1) and the trialdehyde intermediate, 2,4,6-trimethyl-1,3,5-tris(4-oxymethyl-1-formylphenyl)benzene (2) are characterized by single crystal X-ray diffraction: triclinic, P1[combining macron]. The complexes 6-9 exhibit Ru(II) metal centered emission at 618, 601, 615, and 605 nm, respectively, in fluid solution at room temperature. The emission profile and emission maxima are similar and independent of the excitation wavelength for each complex. The complexes 6-9 undergo metal centered oxidation and the E(1/2) values for the Ru(II)/Ru(III) redox couples are 1.33, 1.34, 1.35, and 1.35 V versus Ag/Ag(+), respectively, which are cathodically shifted with respect to that of the mononuclear complex [Ru(bpy)(2)(PIP)](2+) (PIP = 2-phenylimidazo[4,5-f][1,10]phenanthroline). The study demonstrates the versatility of the highly symmetric trinucleating imidazo[4,5-f][1,10]phenanthroline-based core ligands 4 and 5 in forming trinuclear Ru(II) complexes.  相似文献   

6.
Heterodinuclear [(Ni (II)L)Ln (III)(hfac) 2(EtOH)] (H 3L = 1,1,1-tris[(salicylideneamino)methyl]ethane; Ln = Eu, Gd, Tb, and Dy; hfac = hexafluoroacetylacetonate) complexes ( 1.Ln) were prepared by treating [Ni(H 1.5L)]Cl 0.5 ( 1) with [Ln(hfac) 3(H 2O) 2] and triethylamine in ethanol (1:1:1). All 1.Ln complexes ( 1.Eu, 1.Gd, 1.Tb, and 1.Dy) crystallized in the triclinic space group P1 (No. 2) with Z = 2 with very similar structures. Each complex is a face-sharing dinuclear molecule. The Ni (II) ion is coordinated by the L (3-) ligand in a N 3O 3 coordination sphere, and the three phenolate oxygen atoms coordinate to an Ln (III) ion as bridging atoms. The Ln (III) ion is eight-coordinate, with four oxygen atoms of two hfac (-)'s, three phenolate oxygen atoms of L (3-), and one ethanol oxygen atom coordinated. Temperature-dependent magnetic susceptibility and field-dependent magnetization measurements showed a ferromagnetic interaction between Ni (II) and Gd (III) in 1.Gd. The Ni (II)-Ln (III) magnetic interactions in 1.Eu, 1.Tb, and 1.Dy were evaluated by comparing their magnetic susceptibilities with those of the isostructural Zn (II)-Ln (III) complexes, [(ZnL)Ln(hfac) 2(EtOH)] ( 2.Ln) containing a diamagnetic Zn (II) ion. A ferromagnetic interaction was indicated in 1.Tb and 1.Dy, while the interaction between Ni (II) and Eu (III) was negligible in 1.Eu. The magnetic behaviors of 1.Dy and 2.Dy were analyzed theoretically to give insight into the sublevel structures of the Dy (III) ion and its coupling with Ni (II). Frequency dependence in the ac susceptibility signals was observed in 1.Dy.  相似文献   

7.
The carbophosphazene and cyclophosphazene hydrazides, [{NC(N(CH(3))(2))}(2){NP{N(CH(3))NH(2)}(2)}] (1) and [N(3)P(3)(O(2)C(12)H(8))(2){N(CH(3))NH(2)}(2)] were condensed with o-vanillin to afford the multisite coordination ligands [{NC(N(CH(3))(2))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-OH)(m-OCH(3))}(2)}] (2) and [{N(2)P(2)(O(2)C(12)H(8))(2)}{NP{N(CH(3))N═CH-C (6)H(3)-(o-OH)(m-OCH(3))}(2)}] (3), respectively. These ligands were used for the preparation of heterometallic complexes [{NC(N(CH(3))(2))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-O)(m-OCH(3))}(2)}{CuCa(NO(3))(2)}] (4), [{NC(N(CH(3))(2))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-O)(m-OCH(3))}(2)}{Cu(2)Ca(2)(NO(3))(4)}]·4H(2)O (5), [{NC(N(CH(3))(2))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-O)(m-OCH(3))}(2)}{CuDy(NO(3))(4)}]·CH(3)COCH(3) (6), [{NP(O(2)C(12)H(8))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-O)(m-OCH(3))}(2)}{CuDy(NO(3))(3)}] (7), and [{NP(O(2)C(12)H(8))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-O)(m-OCH(3))}(2)}{CuTb(NO(3))(3)}] (8). The molecular structures of these compounds reveals that the ligands 2 and 3 possess dual coordination pockets which are used to specifically bind the transition metal ion and the alkaline earth/lanthanide metal ion; the Cu(2+)/Ca(2+), Cu(2+)/Tb(3+), and Cu(2+)/Dy(3+) pairs in these compounds are brought together by phenoxide and methoxy oxygen atoms. While 4, 6, 7, and 8 are dinuclear complexes, 5 is a tetranuclear complex. Detailed magnetic properties on 6-8 reveal that these compounds show weak couplings between the magnetic centers and magnetic anisotropy. However, the ac susceptibility experiments did not reveal any out of phase signal suggesting that in these compounds slow relaxation of magnetization is absent above 1.8 K.  相似文献   

8.
The low-spin iron(III) complex AsPh(4)[Fe(III)(bpy)(CN)(4)].CH(3)CN (1) [AsPh(4) = tetraphenylarsonium cation] and the heterobimetallic chains [{Fe(III)(L)(CN)(4)}(2)Ni(II)(H(2)O)(2)].4H(2)O with L = bpy (2) and phen (3) [bpy = 2,2'-bipyridine and phen = 1,10-phenanthroline] have been prepared and their structures determined by X-ray diffraction methods. The structure of 1 consists of mononuclear [Fe(bpy)(CN)(4)](-) anions, tetraphenylarsonium cations and acetonitrile molecules of crystallization. The iron(III) is hexacoordinated with two nitrogen atoms of the bidentate bpy and four carbon atoms of four terminal cyanide groups building a distorted octahedral surrounding around the metal atom. 2 and 3 are isomorphous compounds whose structure is made up of neutral 4,2-ribbon like bimetallic chains of formula [{Fe(III)(L)(CN)(4)}(2)Ni(II)(H(2)O)(2)] where the [Fe(III)(L)(CN)(4)](-) unit acts as a bis-monodentate bridging ligand toward the trans-diaquanickel(II) units through two of its four cyanide groups in cis positions. The chains exhibit two orientations in the unit cell and they interact with each other through hydrogen bonds involving the coordination and crystallization water molecules together with the uncoordinated cyanide nitrogen atoms of the [Fe(L)(CN)(4)](-) units. Compounds 2 and 3 behave as ferromagnetic Fe(III)(2)Ni(II) chains which interact ferromagnetically at very low temperatures in the case of 2, whereas metamagnetic-like behaviour is observed for with a critical field (H(c)) around 200 G. For H > H(c) the ferromagnetic Fe(III)(2)Ni(II) chains of 3 exhibit a frequency dependence of the out-of-phase ac susceptibility signal at T < 3.5 K.  相似文献   

9.
The reactions between the [Ln(tta)(3)]·2H(2)O precursors (tta(-)=2-thenoyltrifluoroacetonate anion) and the tetrathiafulvalene-3-pyridine-N-oxide ligands (L(1)) lead to dinuclear complexes of formula [{Ln(tta)(3)(L(1))}(2)]·xCH(2)Cl(2) (x=0.5 for Ln=Dy(III) (1) and x=0 for Ln=Gd(III) (2)). The crystal structure reveals that two {Ln(tta)(3)} moieties are bridged by two donors through the nitroxide groups. The Dy(III) centre adopts a distorted square antiprismatic oxygenated polyhedron structure. The antiferromagnetic nature of the exchange interaction between the two Dy(III) ions has been determined by two methods: 1) an empirical method using the [Dy(hfac)(3)(L(2))(2)] mononuclear complex as a model (3) (hfac(-)=1,1,1,5,5,5-hexafluoroacetylacetonate anion, L(2)=tetrathiafulvaleneamido-2-pyridine-N-oxide ligand), and 2) assuming an Ising model for the Dy(III) ion giving an exchange energy of -2.30 cm(-1), g=19.2 in the temperature range of 2-10 K. The antiferromagnetic interactions have been confirmed by a quantitative determination of J for the isotropic Gd(III) derivative (J=-0.031 cm(-1), g=2.003). Compound 1 displays a slow magnetisation relaxation without applied external magnetic fields. Alternating current susceptibility shows a thermally activated behaviour with pre-exponential factors of 5.48(4)×10(-7) s and an energy barrier of 87(1) K. The application of an external field of 1.6 kOe compensates the antiferromagnetic interactions and opens a new quantum tunnelling path.  相似文献   

10.
Yang C  Wang QL  Qi J  Ma Y  Yan SP  Yang GM  Cheng P  Liao DZ 《Inorganic chemistry》2011,50(9):4006-4015
Two novel complexes, [{Mn(salen)}(2){Mn(salen)(CH(3)OH)}{Cr(CN)(6)}](n)·2nCH(3)CN·nCH(3)OH (1) and [Mn(5-Clsalmen)(CH(3)OH)(H(2)O)](2n)[{Mn(5-Clsalmen)(μ-CN)}Cr(CN)(5)](n)·5.5nH(2)O (2) (salen(2-) = N,N'-ethylene-bis(salicylideneiminato) dianion; 5-Clsalmen(2-) = N,N'-(1-methylethylene)-bis(5-chlorosalicylideneiminato) dianion), were synthesized and structurally characterized by X-ray single-crystal diffraction. The structural analyses show that complex 1 consists of one-dimensional (1D) alternating chains formed by the [{Cr(CN)(6)}{Mn(salen)}(4){Mn(salen)(CH(3)OH)}(2)](3+) heptanuclear cations and [Cr(CN)(6)](3-) anions. While in complex 2, the hexacyanochromate(III) anion acts as a bis-monodentate ligand through two trans-cyano groups to bridge two [Mn(5-Clsalmen)](+) cations to form a straight chain. The magnetic analysis indicates that complex 1 shows three-dimensional (3D) antiferromagnetic ordering with the Ne?el temperature of 5.0 K, and it is a metamagnet displaying antiferromagnetic to ferromagnetic transition at a critical field of about 2.6 kOe at 2 K. Complex 2 behaves as a molecular magnet with Tc = 3.0 K.  相似文献   

11.
The reaction of [Fe(III)L(CN)(3)](-) (L being bpca = bis(2-pyridylcarbonyl)amidate, pcq = 8-(pyridine-2-carboxamido)quinoline) or [Fe(III)(bpb)(CN)(2)](-) (bpb = 1,2-bis(pyridine-2-carboxamido)benzenate) ferric complexes with Mn(III) salen type complexes afforded seven new bimetallic cyanido-bridged Mn(III)-Fe(III) systems: [Fe(pcq)(CN)(3)Mn(saltmen)(CH(3)OH)]·CH(3)OH (1), [Fe(bpca)(CN)(3)Mn(3-MeO-salen)(OH(2))]·CH(3)OH·H(2)O (2), [Fe(bpca)(CN)(3)Mn(salpen)] (3), [Fe(bpca)(CN)(3)Mn(saltmen)] (4), [Fe(bpca)(CN)(3)Mn(5-Me-saltmen)]·2CHCl(3) (5), [Fe(pcq)(CN)(3)Mn(5-Me-saltmen)]·2CH(3)OH·0.75H(2)O (6), and [Fe(bpb)(CN)(2)Mn(saltmen)]·2CH(3)OH (7) (with saltmen(2-) = N,N'-(1,1,2,2-tetramethylethylene)bis(salicylideneiminato) dianion, salpen(2-) = N,N'-propylenebis(salicylideneiminato) dianion, salen(2-) = N,N'-ethylenebis(salicylideneiminato) dianion). Single crystal X-ray diffraction studies were carried out for all these compounds indicating that compounds 1 and 2 are discrete dinuclear [Fe(III)-CN-Mn(III)] complexes while systems 3-7 are heterometallic chains with {-NC-Fe(III)-CN-Mn(III)} repeating units. These chains are connected through π-π and short contact interactions to form extended supramolecular networks. Investigation of the magnetic properties revealed the occurrence of antiferromagnetic Mn(III)···Fe(III) interactions in 1-4 while ferromagnetic Mn(III)···Fe(III) interactions were detected in 5-7. The nature of these Mn(III)···Fe(III) magnetic interactions mediated by a CN bridge appeared to be dependent on the Schiff base substituent. The packing is also strongly affected by the nature of the substituent and the presence of solvent molecules, resulting in additional antiferromagnetic interdinuclear/interchain interactions. Thus the crystal packing and the supramolecular interactions induce different magnetic properties for these systems. The dinuclear complexes 1 and 2, which possess a paramagnetic S(T) = 3/2 ground state, interact antiferromagnetically in their crystal packing. At high temperature, the complexes 3-7 exhibit a one-dimensional magnetic behavior, but at low temperature their magnetic properties are modulated by the supramolecular arrangement: a three-dimensional antiferromagnetic order with a metamagnetic behavior is observed for 3, 4, and 7, and Single-Chain Magnet properties are detected for 5 and 6.  相似文献   

12.
The hybrid dibismuthines O(CH(2)CH(2)BiPh(2))(2) and MeN(CH(2)-2-C(6)H(4)BiPh(2))(2) react with [M(CO)(5)(thf)] (M = Cr or W) to form [{M(CO)(5)}(2){O(CH(2)CH(2)BiPh(2))(2)}] and [{Cr(CO)(5)}(2){MeN(CH(2)-2-C(6)H(4)BiPh(2))(2)}] containing bridging bidentate (Bi(2)) coordination. The unsymmetrical tertiary bismuthine complexes [M(CO)(5){BiPh(2)(o-C(6)H(4)OMe)}] are also described. Depending upon the molar ratio, the hybrid distibines O(CH(2)CH(2)SbMe(2))(2) and MeN(CH(2)-2-C(6)H(4)SbMe(2))(2) react with [M(CO)(5)(thf)] to give the pentacarbonyl complexes [{M(CO)(5)}(2){O(CH(2)CH(2)SbMe(2))(2)}] and [{Cr(CO)(5)}(2){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] or tetracarbonyls cis-[M(CO)(4){O(CH(2)CH(2)SbMe(2))(2)}] and cis-[M(CO)(4){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}]. The latter can also be obtained from [Cr(CO)(4)(nbd)] or [W(CO)(4)(pip)(2)], and contain chelating bidentates (Sb(2)-coordinated) as determined crystallographically. S(CH(2)-2-C(6)H(4)SbMe(2))(2) coordinates as a tridentate (SSb(2)) in fac-[M(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}] (M = Cr or Mo) and fac-[Mn(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)]. Fac-[Mn(CO)(3){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)] contains NSb(2)-coordinated ligand in the solid state, but in solution a second species, Sb(2)-coordinated and with a κ(1)-CF(3)SO(3) replacing the coordinated amine is also evident. X-ray crystal structures were also determined for fac-[Cr(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}], fac-[Mn(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)] and fac-[Mn(CO)(3){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] [CF(3)SO(3)]. Hypervalent N···Sb interactions are present in cis-[M(CO)(4){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] (M = Mo or W), but absent for M = Cr.  相似文献   

13.
The condensation reactions of the dimer [ClP(micro-NR)](2) with organic diacids [LL(H)(2)], possessing linear orientations of their organic groups, result in the formation of phospha(III)zane macrocyles of the type [{P(mu-NR)}(2)(LL)](n) of various sizes. The series of macrocycles [{P(mu-N(t)Bu)}(2){1,5-(NH)(2)C(10)H(6)}](3), [{P(mu-NCy)}(2)(1,5-O(2)C(10)H(6))](n) [n = 3; n = 4], [{P(mu-N(t)Bu)}(2){1,4-(NH)(2)C(6)H(4)}](4), [{P(mu-N(t)Bu)}(2)(1,4-O(2)C(6)H(4))], [{P(mu-NCy)}(2)(1,4-O(2)C(6)H(4))](3) and [{P(mu-N(t)Bu)}(2){(NH)C(6)H(4)OC(6)H(4)(NH)}](2) can be related to classical organic frameworks, like calixarenes.  相似文献   

14.
With the aim of further developing the structure-activity relationship in biologically active half-sandwich Ru(ii)-[9]aneS(3) complexes ([9]aneS(3)=1,4,7-trithiacyclononane), a series of new mono- and dinuclear complexes bearing the chelating dicarboxylate ligands oxalate (ox), malonate (mal) and methylmalonate (mmal), have been synthesized and studied. Treatment of the precursor [Ru([9]aneS(3))(dmso)(3)][CF(3)SO(3)](2) (7) with equivalent amounts of K(2)(dicarb) afforded the corresponding neutral complexes with the general formula [Ru([9]aneS(3))(dmso-S)(eta(2)-dicarb)] (where dicarb=ox (1), mal (2) and mmal (3)), while using half an equivalent of K(2)(ox), the symmetric dimer [{Ru([9]aneS(3))(dmso-S)}(2)(mu-eta(4)-ox)][CF(3)SO(3)](2) (4) was isolated. The reaction of with the oxalato complex fac-[Ru(dmso-S)(3)(dmso-O)(eta(2)-ox)] (9) yielded two asymmetric dimers, namely [{Ru([9]aneS(3))(dmso-S)}(mu-eta(4)-ox){fac-Ru(dmso-S)(3)(CF(3)SO(3))}][CF(3)SO(3)] (5) and [{Ru([9]aneS(3))(dmso-S)}(mu-eta(4)-ox){fac-Ru(dmso-S)(3)(dmso-O)}][CF(3)SO(3)](2) (6), depending on the reaction conditions. All new complexes were structurally characterized, both in solution (by NMR spectroscopy) and in the solid state (by X-ray crystallography). The chemical behavior of the complexes in aqueous solution was studied by UV-Vis and NMR spectroscopy in view of their potential antitumor activity: the monomers partially release a dmso ligand to yield the monofunctional aqua adduct [Ru([9]aneS(3))(eta(2)-dicarb)(H(2)O)], while the dimers rapidly open up the oxalato bridge to give two mononuclear fragments. Splitting of the asymmetric dimers 5 and 6 occurs selectively and the ox moiety remains bonded to the fac-Ru(dmso-S)(3) fragment. A detailed comparison of the structural and chemical features of 1-6 with those of similar dicarboxylate complexes possessing the fac-Ru(dmso-S)(3) fragment in place of Ru([9]aneS(3)) allows us to draw a number of general conclusions on the binding preferences of dicarb ligands on the octahedral Ru(II) center.  相似文献   

15.
The nucleophilic addition of amidoximes R'C(NH(2))═NOH [R' = Me (2.Me), Ph (2.Ph)] to coordinated nitriles in the platinum(II) complexes trans-[PtCl(2)(RCN)(2)] [R = Et (1t.Et), Ph (1t.Ph), NMe(2) (1t.NMe(2))] and cis-[PtCl(2)(RCN)(2)] [R = Et (1c.Et), Ph (1c.Ph), NMe(2) (1c.NMe(2))] proceeds in a 1:1 molar ratio and leads to the monoaddition products trans-[PtCl(RCN){HN═C(R)ONC(R')NH(2)}]Cl [R = NMe(2); R' = Me ([3a]Cl), Ph ([3b]Cl)], cis-[PtCl(2){HN═C(R)ONC(R')NH(2)}] [R = NMe(2); R' = Me (4a), Ph (4b)], and trans/cis-[PtCl(2)(RCN){HN═C(R)ONC(R')NH(2)}] [R = Et; R' = Me (5a, 6a), Ph (5b, 6b); R = Ph; R' = Me (5c, 6c), Ph (5d, 6d), correspondingly]. If the nucleophilic addition proceeds in a 2:1 molar ratio, the reaction gives the bisaddition species trans/cis-[Pt{HN═C(R)ONC(R')NH(2)}(2)]Cl(2) [R = NMe(2); R' = Me ([7a]Cl(2), [8a]Cl(2)), Ph ([7b]Cl(2), [8b]Cl(2))] and trans/cis-[PtCl(2){HN═C(R)ONC(R')NH(2)}(2)] [R = Et; R' = Me (10a), Ph (9b, 10b); R = Ph; R' = Me (9c, 10c), Ph (9d, 10d), respectively]. The reaction of 1 equiv of the corresponding amidoxime and each of [3a]Cl, [3b]Cl, 5b-5d, and 6a-6d leads to [7a]Cl(2), [7b]Cl(2), 9b-9d, and 10a-10d. Open-chain bisaddition species 9b-9d and 10a-10d were transformed to corresponding chelated bisaddition complexes [7d](2+)-[7f](2+) and [8c](2+)-[8f](2+) by the addition of 2 equiv AgNO(3). All of the complexes synthesized bear nitrogen-bound O-iminoacylated amidoxime groups. The obtained complexes were characterized by elemental analyses, high-resolution ESI-MS, IR, and (1)H NMR techniques, while 4a, 4b, 5b, 6d, [7b](Cl)(2), [7d](SO(3)CF(3))(2), [8b](Cl)(2), [8f](NO(3))(2), 9b, and 10b were also characterized by single-crystal X-ray diffraction.  相似文献   

16.
The syntheses, characterization and X-ray crystal structures of the first two examples of asymmetrically bridged dinuclear copper(ii) complexes containing a ferrocenecarboxylato ligand and a methoxo group in [{Cu(dmen)}2(micro-OMe){micro-O2C(eta5-C5H4)Fe(eta5-C5H5)}](ClO4)2, 1, (dmen=N,N-dimethylethylenediamine) or an hydroxo group in [{Cu(tmen)}2(micro-OH){micro-O2C(eta5-C5H4)Fe(eta5-C5H5)}](ClO4)2, 2 , (tmen=N,N,N'N'-tetramethylethylenediamine) are reported. Magneto-chemical studies revealed that 1 and 2 exhibit opposite superexchange interactions between the two Cu(II) paramagnetic centers: an antiferromagnetic coupling (J = -11 cm(-1)) in 1 and a ferromagnetic interaction (J = +29 cm(-1)) in 2. The results obtained from these studies suggest that the weak interactions between the Cu(II) ions and the perchlorate anions detected in the crystal structures are important to introduce significant distortions in the heterobridged [Cu2(micro-OR){micro-O2C(eta5-C5H4)Fe(eta5-C5H5)}]2+ cores of 1 and 2, which clearly affect the nature and strength of the superexchange interactions. Computational studies based on density functional theory and ab initio multiconfigurational second-order perturbation theory (CASPT2) calculations have also been performed in order to rationalize the magnetic behaviour of 1 and 2. The magneto-structural correlations for complexes containing the [Cu(micro-OR)(micro-O2CR')Cu] core are discussed, and the relevance of the out-of-plane angle of the R group with the Cu(micro-OR)Cu plane established.  相似文献   

17.
The complexes [Pt(bipy){CC-(4-pyridyl)}(2)] (1) and [Pt(tBu(2)bipy){CC-(4-pyridyl)}(2)] (2) and [Pt(tBu(2)-bipy)(CC-phen)(2)] (3) all contain a Pt(bipy)(diacetylide) core with pendant 4-pyridyl (1 and 2) or phenanthroline (3) units which can be coordinated to {Ln(diketonate)(3)} fragments (Ln = a lanthanide) to make covalently-linked Pt(II)/Ln(III) polynuclear assemblies in which the Pt(II) chromophore, absorbing in the visible region, can be used to sensitise near-infrared luminescence from the Ln(III) centres. For 1 and 2 one-dimensional coordination polymers [1Ln(tta)(3)](infinity) and [2Ln(hfac)(3)](infinity) are formed, whereas 3 forms trinuclear adducts [3{Ln(hfac)(3)}(2)] (tta=anion of thenoyl-trifluoroacetone; hfac=anion of hexafluoroacetylacetone). Complexes 1-3 show typical Pt(II)-based (3)MLCT luminescence in solution at approximately 510 nm, but in the coordination polymers [1Ln(tta)(3)](infinity) and [2Ln(hfac)(3)](infinity) the presence of stacked pairs of Pt(II) units with short PtPt distances means that the chromophores have (3)MMLCT character and emit at lower energy ( approximately 630 nm). Photophysical studies in solution and in the solid state show that the (3)MMLCT luminescence in [1Ln(tta)(3)](infinity) and [2Ln(hfac)(3)](infinity) in the solid state, and the (3)MLCT emission of [3{Ln(hfac)(3)}(2)] in solution and the solid state, is quenched by Pt-->Ln energy transfer when the lanthanide has low-energy f-f excited states which can act as energy acceptors (Ln=Yb, Nd, Er, Pr). This results in sensitised near-infrared luminescence from the Ln(III) units. The extent of quenching of the Pt(II)-based emission, and the Pt-->Ln energy-transfer rates, can vary over a wide range according to how effective each Ln(III) ion is at acting as an energy acceptor, with Yb(III) usually providing the least quenching (slowest Pt-->Ln energy transfer) and either Nd(III) or Er(III) providing the most (fastest Pt-->Ln energy transfer) according to which one has the best overlap of its f-f absorption manifold with the Pt(II)-based luminescence.  相似文献   

18.
Carbophosphazene-based coordination ligands [{NC(NMe(2))}(2){NP(3,5-Me(2)Pz)(2)}] (1), [{NC(NEt)(2)}{NC(3,5-Me(2)Pz)}{NP(3,5-Me(2)Pz)(2)}] (2), [NC(3,5-Me(2)Pz)](2)[NP(3,5-Me(2)Pz)(2)] (3), [{NCCl}(2){NP(NC(NMe(2))(2))(2)}] (4), and [{NC(p-OC(5)H(4)N)}(2){NP(NC(NMe(2))(2))(2)}] (5) were synthesized and structurally characterized. In these compounds, the six-membered C(2)N(3)P ring is perfectly planar. The reaction of 1 with CuCl(2) afforded [{NC(NMe(2))}(2){NHP(O)(3,5-Me(2)Pz)}·{Cu(3,5-Me(2)PzH)(2)(Cl)}][Cl] (6). The ligand binds to Cu(II) utilizing the geminal [P(O)(3,5-Me(2)Pz)] coordinating unit. Similarly, the reaction of 2 with PdCl(2) afforded, after a metal-assisted P-N hydrolysis, [{NC(NEt)(2)}{NC(3,5-Me(2)Pz)}{NP(O)(3,5-Me(2)Pz)}·{Pd(3,5-Me(2)PzH)(Cl)}] (7). In the latter, the [P(O)(3,5-Me(2)Pz)] unit does not coordinate; in this instance, the Pd(II) is bound by a ring nitrogen atom and a carbon-tethered pyrazolyl nitrogen atom. The reaction of 3 with PdCl(2) also results in P-N bond hydrolysis affording [{NC(3,5-Me(2)Pz)(2)}{NP(O)(3,5-Me(2)Pz)}{Pd(Cl)}] (8). In contrast to 7, however, in 8, the Pd(II) elicits a nongeminal η(3) coordination from the ligand involving two carbon-tethered pyrazolyl groups and a ring nitrogen atom. Metalated products could not be isolated in the reaction of 3 with K(2)PtCl(4). Instead, a P-O-P bridged carbodiphosphazane dimer, [{NC(3,5-Me(2)Pz)NHC(3,5-Me(2)Pz)}{NP(O)}](2) (9), was isolated as the major product. Finally, the reaction of 5 with PdCl(2) resulted in [{NC(OC(5)H(4)N)}(2){NP(NC(NMe(2))(2))(2)}·{PdCl(2)}] (10). In the latter, the exocyclic P-N bonds are quite robust and are involved in binding to the metal ion. Compounds 6-10 have been characterized by a variety of techniques including X-ray crystallography. In all of the compounds, the bond parameters of the inorganic heterocyclic rings are affected by metalation.  相似文献   

19.
The heteroscorpionate ligands [HB(taz)(2)(pz(R))](-) (pz(R) = pz, pz(Me2), pz(Ph)) and [HB(taz)(pz)(2)](-), synthesised from the appropriate potassium hydrotris(pyrazolyl)borate salt and 4-ethyl-3-methyl-5-thioxo-1,2,4-triazole (Htaz), react with [{Rh(cod)(μ-Cl)}(2)] to give [Rh(cod)Tx] {Tx = HB(taz)(2)(pz), HB(taz)(2)(pz(Me2)), HB(taz)(2)(pz(Ph)), HB(taz)(pz)(2)}; the heteroscorpionate rhodaboratrane [Rh{B(taz)(2)(pz(Me2))}{HB(taz)(2)(pz(Me2))}] is the only isolable product from the reaction of [{Rh(nbd)(μ-Cl)}(2)] with K[HB(taz)(2)(pz(Me2))]. Carbonylation of the cod complexes gave a mixture of [Rh(CO)(2)Tx] and [(RhTx)(2)(μ-CO)(3)] which reacts with PR(3) to give [Rh(CO)(PR(3))Tx] (R = Cy, NMe(2), Ph, OPh). In the solid state the complexes are square planar with the particular structure dependent on the steric and/or electronic properties of the scorpionate and ancillary ligands. The complex [Rh(cod){HB(taz)(pz)(2)}] has the heteroscorpionate κ(2)[N(2)]-coordinated to rhodium with the B-H bond directed away from the rhodium square plane while [Rh(cod){HB(taz)(2)(pz(Me2))}] is κ(2)[SN]-coordinated, with the B-H bond directed towards the metal. The complexes [Rh(CO)(PPh(3)){HB(taz)(2)(pz)}] and [Rh(CO)(PPh(3)){HB(taz)(2)(pz(Me2))}] are also κ(2)[SN]-coordinated but with the pyrazolyl ring cis to PPh(3); in the former the B-H bond is directed towards rhodium while in the latter the ring is pseudo-parallel to the rhodium square plane, as also found for [Rh(CO)(2){HB(taz)(2)(pz(Me2))}]. The analogues [Rh(CO)(PR(3)){HB(taz)(2)(pz(Me2))}] (R = Cy, NMe(2)) have the phosphines trans to the pyrazolyl ring. Uniquely, [Rh(CO)(PPh(3)){HB(taz)(2)(pz(Ph))}] is κ(2)[S(2)]-coordinated. A qualitative mechanism is given for the rapid ring-exchange, and hence isomerisation, observed in solution.  相似文献   

20.
The ligands o-C(6)H(4)(CH(2)EMe)(2) (E = S or Se) have been prepared and characterised spectroscopically. A systematic study of the coordination chemistry of these, together with the telluroether analogue, o-C(6)H(4)(CH(2)TeMe)(2), with late transition metal centers has been undertaken. The planar complexes [MCl(2){o-C(6)H(4)(CH(2)SMe)(2)}] and [M{o-C(6)H(4)(CH(2)EMe)(2)}(2)](PF(6))(2) (M = Pd or Pt; E = S or Se), the distorted octahedral [RhCl(2){o-C(6)H(4)(CH(2)EMe)(2)}(2)]Y (E = S or Se: Y = PF(6); E = Te: Y = Cl) and [RuCl(2){o-C(6)H(4)(CH(2)EMe)(2)}(2)] (E = S, Se or Te), the dithioether-bridged binuclear [{RuCl(2)(p-cymene)}(2){micro-o-C(6)H(4)(CH(2)SMe)(2)}] and the tetrahedral [M'{o-C(6)H(4)(CH(2)EMe)(2)}(2)]BF(4) (M' = Cu or Ag; E = S, Se or Te) have been obtained and characterised by IR and multinuclear NMR spectroscopy ((1)H, (63)Cu, (77)Se{(1)H}, (125)Te{(1)H} and (195)Pt), electrospray MS and microanalyses. Crystal structures of the parent o-C(6)H(4)(CH(2)SMe)(2) and seven complexes are described, which show three different stereoisomeric forms for the chelated ligands, as well as the first example of a bridging coordination mode in [{RuCl(2)(p-cymene)}(2){micro-o-C(6)H(4)(CH(2)SMe)(2)}]. These studies reveal the consequences of the sterically demanding o-xylyl backbone, which typically leads to unusually obtuse E-M-E chelate angles of approximately 100 degrees .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号