首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biotransformation of ruthenium(III) anticancer complexes as hypothesized in the activation-by-reduction theory is the central topic of the present paper. The redox behavior of tetrachlorobis(azole)ruthenate(III)-type complexes was studied by NMR spectroscopy and square wave voltammetry. The influence of reducing agents on the binding behavior toward the DNA-modeling nucleotide GMP was determined by capillary electrophoresis, accompanied by identification of arising peaks by online coupling to electrospray ionization mass spectrometry. The determination of redox potentials revealed that the biologically relevant reductants ascorbic acid and glutathione are capable of reducing the studied Ru(III) complexes under physiological conditions. Characteristic differences in reduction kinetics dependent on the pH value can be explained by higher reduction strength of ascorbic acid and glutathione at higher pH compared to the pH-independent redox response of ruthenium(III) complexes. Binding behavior of (H2ind)[trans-RuCl4(Hind)2] (Hind = 1H-indazole) toward GMP was found to be increased upon addition of two equivalents of glutathione but not of ascorbic acid. In contrast, only a minor influence on the GMP-binding under reductive conditions was found for (H2im)[trans-RuCl4(Him)2] (KP418, Him = 1H-imidazole).  相似文献   

2.
A capillary electrophoresis method for the simultaneous determination of whey proteins, caseins and their degradation products, such as para-kappa-casein, was proposed. The effect of several parameters (pH, ionic strength and concentration of urea in the electrophoresis buffer and applied voltage) on the analysis time and on the separation efficiency of the major milk proteins was studied. Using a hydrophilically coated capillary, in combination with electrophoresis buffer 0.48 M citric acid-13.6 mM citrate-4.8 M urea at pH 2.3, and a separation voltage of 25 kV, a complete separation of beta-lactoglobulin and para-kappa-casein was achieved, permitting the quantification of both components.  相似文献   

3.
A method based on capillary electrophoresis with electrochemical detection has been employed for the separation and determination of homocysteine, cysteine, reduced glutathione, ascorbic acid and uric acid. Effects of several important factors such as the acidity and concentration of the running buffer, separation voltage, injection time and detection potential were investigated to acquire the optimum conditions. The detection electrode was a 500 microm diameter platinum disk electrode at a working potential of +1.05 V (vs saturated calomel electrode). The five analytes were well separated within 10 min in a 50 cm long fused silica capillary at a separation voltage of 18 kV in a 100 mm phosphate buffer (pH 7.8). The relation between peak current and analyte concentration was linear over about 3 orders of magnitude with the detection limits (S/N = 3) ranging from 0.83 to 2.58 microm. The proposed method was successfully applied to determine cysteine, reduced glutathione, ascorbic acid and uric acid in human whole blood and rat brain tissues with satisfactory assay results and should find a wide range of bioanalytical applications.  相似文献   

4.
Ascorbic acid is a powerful antioxidant compound involved in many biological functions, and a chronic deficiency is at the origin of scurvy disease. A simple, rapid, and cost‐effective capillary electrophoresis method was developed for the separation and simultaneous quantification of ascorbic acid and the major degradation products: dehydroascorbic acid, furfural, and furoic acid. Systematic optimization of the conditions was performed that enabled baseline separation of the compounds in less than 10 min. In addition to simultaneous quantification of ascorbic acid alongside to the degradation products, stability studies demonstrated the possibility using capillary electrophoresis to separate and identify the major degradation products. Thus, high‐resolution tandem mass spectrometry experiments were conducted in order to identify an unknown degradation product separated by capillary electrophoresis and significantly present in degraded samples. Comparison of mass spectrometry data and capillary electrophoresis electropherograms allowed to identify unambiguously trihydroxy‐keto‐valeraldehyde. Finally, capillary electrophoresis was successfully applied to evaluate the composition of different pharmaceutical preparation of ascorbic acid. Results showed the excellent performance of the capillary electrophoresis method due to the separation of excipients from the compounds of interest, which demonstrated the relevance of using an electrophoretic separation in order to perform comprehensive stability studies of ascorbic acid.  相似文献   

5.
A procedure to monitor citrus juice samples was established to quantitate vitamin C by capillary electrophoresis using a previously developed method. Dilution and filtration were the only preparation requirements and separation was achieved with an uncoated capillary using a 35mM sodium borate buffer (pH 9.3) containing 5% (v/v) acetonitrile at 21 kV and 23 degrees C. Detection was performed by high speed scanning between 200 and 360 nm. From the multiwave length scan, the electropherogram at 270 nm was extracted and used to quantitate ascorbic acid. The ascorbic acid concentration was calculated with an internal standard method, with ferulic acid as internal standard. The level of ascorbic acid during analysis was stabilized with ethylenediaminetetraacetic acid and dithiothreitol was used to reduce dehydroascorbic acid to ascorbic acid to estimate the total vitamin C level. Results were similar to those obtained by liquid chromatography and the method is now used to determine routinely the level of ascorbic acid in citrus juices.  相似文献   

6.
An on-line coupled capillary isotachophoresis-capillary zone electrophoresis (cITP-CZE) method for the determination of the fumaric acid content in apple juice is presented. A clear separation of fumaric acid in real samples is achieved within 20 min. The leading, terminating and background electrolyte of the employed system consist of 10 mM HCl+beta-alanine+5 mM beta-cyclodextrin+0.05% hydroxypropylmethylcelullose (HPMC), pH 3, 10 mM citric acid and 20 mM citric acid+beta-alanine+5 mM beta-cyclodextrin+0.1% HPMC, pH 3.3, respectively. The linearity, recovery, repeatability and detection limit of the developed method are 25-1000 ng/ml, 1.07%, 95.4+/-3.5 (+/-s)% and 10 ng/ml, respectively. Low laboriousness (no sample pretreatment), sufficient sensitivity and low running cost are the important attributes of the cITP-CZE method which was successfully applied to analyses of real samples of apple juices.  相似文献   

7.
Phytic acid (PA) and lower inositolphosphates (InsP(n) ) is the main storage form of phosphorus in grains or seeds. The content of PA and InsP(n) in different varieties of barley was analyzed by capillary isotachophoresis and online-coupled capillary isotachophoresis with CZE. The electrolytes (in demineralized water) for the isotachophoretic analysis consisted of 10?mM HCl, 14?mM glycylglycine, and 0.1% 2-hydroxyethylcellulose (leading) and 10?mM citric acid (terminating). The optimized electrolytes for the online coupling isotachophoresis with zone electrophoresis analysis were mixtures of 5?mM HCl, 7?mM glycylglycine, and 0.1% 2-hydroxyethylcellulose (leading), 20?mM citric acid, 10?mM glycylglycine, and 0.1% 2-hydroxyethylcellulose (background) and 10?mM citric acid (terminating). PA and all studied InsP(n) were separated within 25?min and detected by a conductivity detector. Simple sample preparation (acidic extraction), sufficient sensitivity, speed of analysis, and low running cost are important attributes of the electrophoretic methods. The method was used for the determination of PA and InsP(n) in barley varieties within an ongoing research project.  相似文献   

8.
Hsieh MM  Chang HT 《Electrophoresis》2005,26(1):187-195
On-line concentration and separation of biologically active amines and acids by capillary electrophoresis (CE) in conjunction with laser-induced fluorescence using an Nd:YAG laser at 266 nm under discontinuous conditions is presented. The suitable conditions for simultaneous analysis of amines and acids were: samples were prepared in a solution (pH* 3.1) consisting of 10 mM citric acid, 89% acetonitrile (ACN), and water; a capillary was filled with 1.5 M Tris-borate (TB) buffer (pH 10.0); and the anodic vial contained PTG10 buffer (pH* 9.0) that consists of 50 mM propanoic acid, Tris, 10% glycerol, and water. After injecting a large-volume sample, amines and acids were separately stacked at the front (cathodic side) and back (anodic side) of the acidic sample zone, mainly because of changes in their electrophoretic mobilities as a result of changes in pH, viscosity, and electric field when high voltage was applied. When the sample was injected at 15 kV for 360 s, the concentration limits of detection (LODs) for 5-hydroxytryptamine (5-HT) and 5-hydroxyindole-3-acetic acid (5-HIAA) were 0.27 and 0.31 nM, respectively, which are about 400- and 800-fold sensitivity improvements when compared to those injected at 1 kV for 10 s. For the analysis of amines, samples were prepared in 100 mM citric acid (pH* 1.8) containing 89% ACN and both the capillary and anodic vial were filled with 400 mM PTG20 (propanoic acid, Tris, 20% glycerol, and water) at pH* 4.5. Using a large injection volume (15 kV for 360 s), we achieved concentration LODs of 17 pM and 0.3 nM for tryptamine and epinephrine, which are about 5200- and 14,000-fold sensitivity improvements, respectively, in comparison with those injected at 1 kV for 10 s. The features of simplicity (no sample pretreatment), rapidity (12 min), and sensitivity for identification of amines and acids of interest in urine samples show diagnostic potential of the two approaches developed in this study.  相似文献   

9.
Alpha hydroxy acids, malic acid, citric acid, tartaric acid, glycolic acid and lactic acid, were analyzed simultaneously using capillary electrophoresis with direct UV detection at 200 nm. The separation was carried out with uncoated fused-silica (50 cm x 50 microns i.d.), pressure injection at 15 psi s and operated at -15 kV potential. The separation buffers were prepared with 180 mM Na2HPO4, 1 mM cetyltrimethylammonium bromide and 15% (v/v) methanol and adjusted to pH 7.2 by phosphoric acid. Validation was performed for citric acid and malic acid. The obtained parameters were adequate and the limits of detection were 2.5 and 5 micrograms ml-1 for citric acid and malic acid, respectively. AHAs from natural fruit juices (orange and grape) were determined and measured with this method.  相似文献   

10.
A fast, sensitive and direct method has been developed for the determination of glutathione peroxidase activity (both selenium- and non-selenium-dependent) in cell-free preparations. The assay is based on the separation and quantitation of reduced and oxidized glutathione by capillary electrophoresis. The electrophoretic separation buffer was 100 mM sodium tetraborate (pH 8.2) containing 100 mM sodium dodecylsulphate. A micellar electrokinetic mechanism took place under these conditions, and a total mass recovery was observed for both peptides. The reproducibility of migration times was excellent (less than 3% variability). A linear detector response range was observed in the range 5-50 U/ml, and both the reproducibility and accuracy were satisfied. Samples out of this linear range could be analysed by either increasing the reaction time or diluting the enzyme preparation. The results obtained with the new direct capillary electrophoresis assay were compared with those derived from a reversed phase high-performance liquid chromatographic and spectrophotometric coupled assay. A very good agreement was found between the two direct assay methods in all samples. Capillary electrophoresis is a versatile technique that allows the automation of the glutathione peroxidase assay in a reproducible manner and within a relatively short time with sufficient accuracy and precision.  相似文献   

11.
Gotti R  Fiori J  Mancini F  Cavrini V 《Electrophoresis》2005,26(17):3325-3332
Nitromusks used as fragrances in a variety of personal-care products, cleansers, and domestic deodorants, including incense sticks, are neutral nitro aromatic compounds; some of these have been reported as photosensitizers. In this work, their analysis was performed by capillary electrophoresis (CE) in a methanol-based background electrolyte (BGE). In particular, a 10 mM solution of citric acid in methanol was used; under these conditions the strong suppression of the electroosmotic flow favored the use of negatively charged surfactants as additives for the anodic migration of the studied analytes. To this end, sodium taurodeoxycholate (TDC) was supplemented at high concentration (190 mM) to the organic background electrolyte (BGE), showing strong indication of the ability to give micelle-like aggregates. Since nitromusks are characterized by the presence of a nitroaromatic ring with low charge density, their association with TDC aggregates can be ascribed to donor-acceptor interactions. Separation of musk xylene, musk ketone, and the banned musk moskene and musk ambrette was obtained under full nonaqueous BGE; the addition of relatively small water percentages (15% v/v) was found to be useful in improving the separation of pairs of adjacent peaks. Under optimized conditions (190 mM sodium TDC in methanol-water, 85-15 v/v containing citric acid 10 mM) the system was applied to the analysis of nitromusks in incense sticks extracted with methanol. The results were compared with those obtained by the analysis of the same samples using gas chromatography with mass detector. The expected different selectivity of separation obtained using the two techniques can be useful in the unambiguous determination of the analytes; furthermore, a substantial accord of the preliminary quantitative results achieved with the two methods was assumed as the confirmation of the potential reliability of CE performed with high percentage of organic solvent.  相似文献   

12.
A CE kinetic assay was developed to study the stability of the adducts of a novel ruthenium(III)-based anticancer agent with serum proteins under simulated reductive physiological conditions. Formation of the reactive Ru(II) species and their release from the serum proteins are thought to play an important role in the mode-of-action of indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019) which has successfully finished a clinical phase I study. The CE method was adapted, in zone electrophoresis and affinity CE modes, to make obvious that such transformation would take place in the hypoxic tumor tissue rather than in the bloodstream. Indeed, no measurable effect of extracellular concentration levels of glutathione incorporated into the BGE on the UV signals of albumin and transferrin adducts was observed over 30 min of examination. Incubation of the KP1019-albumin adduct with the major blood reducing agent, ascorbic acid, revealed no changes in the continuously monitored peak areas (average corrected responses were 9.56 +/- 0.86 and 9.87 +/- 0.60 mAU for the adduct and its mixtures with ascorbic acid in the physiological range of 1 x 10(-5) -8 x 10(-5) M, respectively). On the other hand, both the transferrin adduct and transferrin itself accelerated the oxidation of ascorbic acid; however, the oxidation rate constants measured by CE were virtually the same: (19.1 +/- 4.4) x 10(-3) and (18.2 +/- 5.0) x 10(-3) min(-1), respectively. In order to confirm more unambiguously the stability of KP1019-protein adducts in the presence of ascorbic acid (UV absorbance detection does not distinguish the adduct and protein signals), CE with inductively coupled plasma (ICP) MS detection was applied to follow metal-selectively the signal of bound ruthenium, which remained unaffected by this reducing agent. This work appears the first to present the application of CE to the stability studies of the protein-bound metallodrugs.  相似文献   

13.
Short-chain organic acid contents in serum of natural latex are interesting to measure and capillary electrophoresis (CE) has proved to be a good tool for their study. In the present work a method has been developed to identify the short-chain organic acids present in sera of natural rubber latex (oxalic, formic, fumaric, aconitic, succinic, malic, glutaric, citric, acetic, glycollic, propionic and quinic acids), the separation was optimised and the quantification method validated. The separation was performed on a CE system with UV detection at 200 nm. The separation was carried out with an uncoated fused-silica capillary (57 cm x 50 microm I.D.) and was operated at -10 kV potential. The separation buffers were prepared with 0.5 M H3PO4, 0.5 mM cetyltrimethylammonium bromide and pH adjusted by adding NaOH to 6.25 except for propionic acid which was better measured at pH 7.00. Validation parameters are adequate and limits of detection range from 0.005 mM to 1.6 mM. Short-chain organic acids were measured with this method in sera of three different types of latex.  相似文献   

14.
An on-line coupled capillary isotachophoresis--capillary zone electrophoresis (cITP-CZE) method for the determination of domoic acid in shellfish and algae is described. The optimised cITP-CZE electrolyte system was 10 mM HCl + 20 mM beta-alanine (BALA) + 0.05% hydroxyethylcellulose (leading electrolyte), 5 mM caproic acid (terminating electrolyte) and 20 mM caproic acid + 20 mM BALA + 0.1% HPMC (background electrolyte). A clear separation of the domoic acid from the other components of methanolic sample extract was achieved within 25 min. Method characteristics, i.e., linearity (0-200 microg/l), accuracy (recovery 101+/-3%), intra-assay repeatability (2.4%) and detection limit (1.5 microg/l) were determined. Speed of analysis, low laboriousness, high sensitivity and low running cost are the typical attributes of the cITP-CZE method. Developed method was successfully applied to analysis of shellfish samples and food supplements containing algae extract.  相似文献   

15.
Method of capillary electrophoresis with a diode-array detector was used to study the conditions of the separation of three alkyl methylphosphonates and methylphosphonic acid, hydrolysis products of nerve agents. The optimal conditions providing their separation and determination are reported (background electrolyte based on 100 mM boric acid with the addition of 10 mM of phenylphosphonic acid (pH 6.0); voltage +30 kV, detection wavelength 210 nm, electrokinetic introduction of the sample (10 kV, 10 sec), separation time below 10 min). Calibration curve for all the compounds was linear in the concentration range 0.05–1.0 mg/mL, the correlation coefficient was 0.999 in all cases. The procedure was tested for river and ground waters containing a mixture of isopropyl, isobutyl, pinacolyl methylphosphonates and methylphosphonic acid. Relative standard deviations of the migration times under the conditions of the repeatability of the results lie in the range 1.9–2.7% (n = 5), the relative standard deviation of the reduced peak areas vary from 1.2 to 7.0%.  相似文献   

16.
The separation and determination of twelve anthraquinones, viz. anthraquinone 1, chrysphanol 2, aloe‐emodin 3, alizarin 4, anthraquinone‐2‐carboxylic acid 5, purpurin 6, sennoside B 7, sennoside A 8, emodin 9, quinalizarin 10, rhein 11, and anthraflavic acid 12, were achieved by capillary electrophoresis (CE) and high‐performance liquid chromatography (HPLC). Detection at 260 nm with a buffer solution containing 30 mM sodium borate (adjusted to pH = 10.56 with 0.05N NaOH) and acetonitrile (9 : 1) in CE or with a linear gradient elution containing 20 mM KH2PO4 with 0.05% phosphoric acid (pH = 2.91) and methanol in HPLC was found to be the most suitable approach for this separation. Contents of six components (2, 3, 7, 8, 9, 11) in crude Rhei Rhizoma extract could easily be determined within 39 min by CE or 63 min by HPLC. The effects of buffers on this separation and the validation of the two methods were studied.  相似文献   

17.
In this article, optimization of BGE for simultaneous separation of inorganic ions, organic acids, and glutathione using dual C4D‐LIF detection in capillary electrophoresis is presented. The optimized BGE consisted of 30 mM 2‐[4‐(2‐hydroxyethyl)piperazin‐1‐yl]ethanesulfonic acid, 15 mM 2‐amino‐2‐hydroxymethyl‐propane‐1,3‐diol, and 2 mM 18‐crown‐6 at pH 7.2 and allowed simultaneous separation of ten inorganic anions and cations, three organic acids and glutathione in 20 min. The samples were injected hydrodynamically from both capillary ends using the double‐opposite end injection principle. Sensitive detection of anions, cations, and organic acids with micromolar LODs using C4D and simultaneously glutathione with nanomolar LODs using LIF was achieved in a single run. The developed BGE may be useful in analyses of biological samples containing analytes with differing concentrations of several orders of magnitude that is not possible with single detection mode.  相似文献   

18.
Purine and pyrimidine nucleotides influence many metabolic pathways and their analogs have been widely used in medicine. A capillary electrophoretic method was developed for measuring intracellular nucleotides. The final BGE consisted of 40 mM citric acid with addition of 0.8 mM CTAB titrated by gamma-aminobutyric acid to pH 4.4. The electrophoretic separations were carried out in an uncoated silica capillary (id/od - 75/375 microm; effective/total length - 90/97 cm). The method allows a complete separation of 21 nucleotides and deoxynucleotides within 15 min with separation efficiencies up to 400,000 theoretical plates per meter. Due to the use of an acidic separation medium, the method offers a high selectivity toward the studied analytes versus possible interferences from matrices. Sample preparation was optimized in order to shorten work-time and prevent analyte degradation. The method was applied for analyzing nucleotides in human erythrocytes and Chinese hamster ovary cells. Diagnostic potential for inherited metabolic disorders of nucleotide metabolism is presented.  相似文献   

19.
A capillary formed by connecting a 9.7 cm‐long separation capillary with id 25 μm with an auxiliary 22.9 cm‐long capillary with id 100 μm (coupled capillary) was tested for electrophoretic separation at high electric field intensities. The coupled capillary was placed in the cassette of a standard electrophoresis apparatus. It was used in the short‐end injection mode for separation of a mixture of dopamine, noradrenaline, and adrenaline in a BGE of 20 mM citric acid/NaOH, pH 3.2. An intensity of 2.7 kV/cm was attained in the separation part of the capillary at a separation voltage of 30 kV, which is 2.9 times more than maximum intensity value attainable in a capillary with the same length with uniform id. At these high electric field intensities, the migration times of the tested neurotransmitters had values of 12.3–13.3 s and the attained separation efficiency was between 2350 and 2760 plates/s. It is thus demonstrated that an effective separation instrument ‐ a coupled capillary ‐ can be used for very rapid separation in combination with standard, commercially available instrumentation.  相似文献   

20.
Z Zhou  K Wang  X Yang  S Huang  L Zhou  D Qin  L Du 《The Analyst》2001,126(11):1838-1840
A novel method for the synchronization of separation and determination is described, in which a mode-filtered light detector is used as an online detector in capillary electrophoresis. An instrument is described which has been developed for this purpose. The round capillary used in conventional capillary electrophoresis is replaced by an annular column, which is constructed from a naked optical fibre inserted into a fused-silica capillary. In fact, the annular electrophoresis column itself forms part of the mode-filtered light sensor. Along the side of the annular column are several detection channels for gathering and transmitting the mode-filtered light to a charge-coupled device (CCD). Every channel provides information on the sample from the point at which it is located. Using capillary isotachophoresis incorporating the annular column, the analytes in a sample containing alanine (10.0 mM) and glycine (9.7 mM) were simultaneously separated and determined using multichannel mode-filtered light detection with a detection limit of 1.5 mM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号