首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Equations of motion, in cylindrical co-ordinates, for the observed rotation of gases within the gravitational potential of spiral galaxies have been derived from Carmeli's Cosmological General Relativity theory. A Tully-Fisher type relation results and rotation curves are reproduced without the need for non-baryonic halo dark matter. Two acceleration regimes are discovered that are separated by a critical acceleration m s−2. For accelerations larger than the critical value the Newtonian force law applies, but for accelerations less than the critical value the Carmelian regime applies. In the Newtonian regime the accelerations fall off as r −2, but in the Carmelian regime the accelerations fall off as r −1. This is new physics but is exactly what is suggested by Milgrom's phenomenological MOND theory.  相似文献   

2.
Transparent conducting Zn−Sn−O films were deposited on Polypropylene adipate thin-film substrates at low temperature by r. f. magnetron sputtering. The structural, electrical and optical properties of the deposited films were investigated. All the obtained films are of amorphous structure and have a very good adhesion to the substrates. The resistivity, carrier concentration and Hall mobility of the film are 1.3×10−2 Ω·cm, 4.1×1019 cm−3 and 12.4 cm2· V−1· s−1, respectively. The transmittance of the film reaches 82%.  相似文献   

3.
Hydrogen permeability through diaphragms made of 12X18H12T stainless steel and Pd60Ag40 alloy under electrolytic hydrogen saturation has been studied with an electrolytic cell with a vacuum chamber. Hydrogen diffusion constants D H = 3.86 × 10−10 cm2 s−1 for stainless steel and D H = 4.36 × 10−8 cm2 s−1 for Pd60Ag40 alloy have been determined at a temperature of 40°C using the Berrer relations.  相似文献   

4.
Results of the first μSR studies using Merck FO Optipur silica powder, which contains paramagnetic impurities at the ppb level and has a surface area of 610±20 m2/g. are reported. Above 20 K, the transverse field muonium relaxation rate is roughly constant at 0.5 μs−1. Upon the addition of oxygen at ppm levels, the relaxation rate increases linearly with O2 concentration in the temperature range from 40–100 K yielding two-dimensional depolarization rate constants on the order of 10−4 cm2 molecule−1 s−1. As the temperature is increased further, both oxygen and muonium desorb from the surface yielding a three-dimensional rate constants at 300 K of 3.1(3)×10–10−10 cm3 molecule−1 s−1, in agreement with the gas phase value. Longitudinal field measurements suggest that MuO2 is formed and is able to spin exchange with other oxygen molecules.  相似文献   

5.
Experimental study of the hole mobility in polyvinylcarbazole (PVK) films doped with two kinds of nanocrystals, on bare core CdSe and core-shell CdSe/CdS quantum dots, with concentrations ranging from 3 · 1010 to 3 · 1015 cm−3, is presented. The quantum dots investigated were made using colloidal chemistry. The hole mobility was measured using the time-of-flight technique as a function of the applied electrical field in the range 105–106 V/cm and for temperatures from 20°C to 50°C. The transient curves, being featureless on a linear plot, show on a double logarithmic scale a sharp inflection point indicating a dispersive carrier drift process. The recovered values of the mobility are in the range 3 · 10−8–10−6 cm2·V−1·s−1 and their field and temperature dependences can be analyzed formally within the framework of the Gaussian disorder model proposed by B?ssler. The energetic disorder is, within the experimental accuracy, independent of the concentration and type of quantum dots for the CdSe quantum dots at all concentrations and for the CdS/CdSe quantum dots up to 1014 cm−3. The spatial disorder factors are very large (from 5.3 to 8.7) and do not depend in a systematic way upon the type and concentration of quantum dots (QDs). The experiments show that the apparent mobility does not change considerably with concentration, but it was found that the samples with CdSe/CdS quantum dots at concentrations from 1015 to 3 · 1015 cm−3 show a decreased photocurrent response. The dependence of the time-integrated transients (corresponding to the full charge value) upon the quantum-dot concentration has been determined. Differences in total photogenerated charge for pure and doped polymer films imply that the quantum dots of that type are the hole traps with capture times much more smaller than the transit time and with emission times a few orders longer than the transit time. CdSe quantum dots without a shell do not seem to exhibit the same properties as core shells and do not produce considerable changes in the charge transfer, even at a density of 1015 cm−3.  相似文献   

6.
The aerosol deposition of detonation nanodiamonds (DNDs) on a silicon substrate is comprehensively studied, and the possibility of subsequent growth of nanocrystalline diamond films and isolated particles on substrates coated with DNDs is demonstrated. It is shown that a change in the deposition time and the weight concentration of DNDs in a suspension in the range 0.001–1% results in a change in the shape of DND agglomerates and their number per unit substrate surface area N s from 108 to 1011 cm−2. Submicron isolated diamond particles are grown on a substrate coated with DND agglomerates at N s ≈ 108 cm−2 using microwave plasma-enhanced chemical vapor deposition. At N s ≈ 1010 cm−2, thin (∼100 nm) nanodiamond films with a root-mean-square surface roughness less than 15 nm are grown.  相似文献   

7.
Experimental performance parameters of Hg implanted Hg1−x Cd x Te photovoltaic detectors are analyzed. At 77K, for 8–14 μm band, a comparison is made between performances and theoretical ultimate diffusion limits in low frequency direct detection. Experimental features are well-explained by a model based on the Auger band-to-band process for carrier recombination. Peak detectivities exceeding 1011 cm Hz1/2W−1, external quantum efficiencies as high as 90%, and zero-bias resistance-area products better than 1 Ω·cm2 have been achieved in devices with 12 μm cutoff wavelengths. In the 3–5 μm band performances are far from the diffusion limit. Notwithstanding, at 77K zero-bias resistance-area products are better than 104Ω·cm2 and detectivities of the order of 1012 cm Hz1/2W−1 were observed at 5 μm. Predominant generation-recombination contribution are present at room temperature in 1–1.3 μm photodiodes whose detectivities, primarily limited by the Johnson noise, at 1.3 μm are higher than 1011 cm Hz1/2W−1 at 300 K. The high frequency response of the photodiodes is also discussed. Response times as low as 0.5 ns are reached despite some limitations arising from the implanted layer sheet resistance. Work supported by CNR-CISE contract No. 73.01435.  相似文献   

8.
The addition reaction Mu+NO+M→MuNO+M and the spin exchange reaction Mu(↑) +MO(↓)→Mu(↓)+NO(↑) have been measured by longitudinal field μSR at room temperature in the presence of up to 58 atm of N2 as inert collider. The pressure dependence of the longitudinal relaxation rate due to the addition reaction (λc) demostrates that the system is still in the low pressure regime in this pressure range. The corresponding termolecular rate constant has been determined ask 0,Mu =(1.10±0.25)×10−32 cm6 molecules−2 s−1, almost 4 times smaller than the corresponding H atom reactionk 0,H=3.90×10−32 cm6 molecules−2 s−1 [I.M. Campbell et al., J. Chem. Soc. Faraday Trans. 1.71 (1975) 2097]. The average value of the spin exchange rate constants in the 2.5–58 atm pressure range,k SE=(3.16±0.06)×10−10 cm3 molecule−1 s−1, is in good agreement with previous values obtained by transverse field μSR [D.G. Fleming et al., J. Chem. Phys. 73 (1980) 2751].  相似文献   

9.
Kinetic heterogeneity of the luminescence decay and oxygen quenching of Pt and Pd octaethylporphyrin/ethyl cellulose (OEP/EC) thin film oxygen sensors has been investigated with respect to (a) concentration of lumophore and (b) addition of plasticiser. The source of kinetic heterogeneity shown by PtOEP films under N2 is a monomer–dimer equilibrium in which the dimer luminescence decays with k = 0.0527×106 s−1 and the monomer luminescence with k = 0.0101×106 s−1 and K D = 790 (±20) mol dm−3. For PdOEP/EC films there is no detectable aggregation and luminescence decays under N2 show good fits to single exponential curve fits at all concentrations studied. The addition of either tripbutyl phosphate or dimethylphthalate as plasticiser does not decrease kinetic heterogeneity for oxygen quenching of luminescence in the films.  相似文献   

10.
The structural evolution of Cu60Zr20Ti20 bulk metallic glass during rolling at different strain rates and cryogenic temperature was investigated by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and high-resolution transmission electron microscopy (HRTEM). It is revealed that the deformation-induced transformation is strongly dependent on the strain rate. At the lowest experimental strain rate of 1.0×10−4 s−1, no phase transformation occurs until the highest deformation degree reaches 95%. In a strain rate range of 5.0×10−4−5.0×10−2 s−1, phase separation occurs in a high deformation degree. As the strain rate reaches 5.0×10−1 s−1, phase separation and nanocrystallization concur. The critical deformation degree for occurrence of phase transformation decreases with the strain rate increasing. Supported by the National Natural Science Foundation of China (Grant No. 50471016)  相似文献   

11.
The Frascati Φ-factory DAΦNE has successfully completed experimental runs for the three main detectors, KLOE, FINUDA and DEAR. The best peak luminosity achieved so far is 1.6 × 1032 cm−2 s−1, while the best daily integrated luminosity is 10 pb−1. At present the DAΦNE team is preparing an upgrade of the collider based on the novel crab waist collision scheme. The upgrade is aimed at pushing the luminosity towards 1033cm−2s−1. In this paper we describe present collider performance and discuss ongoing preparatory work for the upgrade. for DAΦNE Collaboration Team [1] The text was submitted by the author in English.  相似文献   

12.
A Zr-based bulk metallic glass (BMG) with a composition of (Zr75Cu25)78.5Ta4Ni10Al7.5 and a bulk metallic glass matrix composite (BMGC) with a composition of (Zr75Cu25)74.5Ta8Ni10Al7.5 have been prepared by copper-mold casting. The compressive deformation behavior of the BMG and BMGC was investigated in the supercooled region at different temperatures and various strain rates ranging from 8×10−4 s−1 to 8×10−2 s−1. It was found that both the strain rate and test temperature significantly affect the deformation behavior of the two alloys. The deformation follows Newtonian flow at low strain rates but non-Newtonian flow at high strain rates. The deformation mechanism for the two kinds of alloys was discussed in terms of the transition state theory. Supported by the National Natural Science Foundation of China (grant Nos. 50471060 and 50635020)  相似文献   

13.
A new technique for testing long-range order in high-absorption anisotropic crystals has been developed using conversion of an incident p-(s-)wave to an s-(p-)wave due to optical anisotropy. The technique yields time-resolved measurements of parameters related to phase transformations in thin (10−6–10−5 cm) layers with a high resolution (10−12 s). Using picosecond laser pulses and an “Agat” streak camera, the technique has been applied to an experimental investigation of melting and recrystallization kinetics at zinc and graphite surfaces. It was found that the process of melting takes less than 3 ps and the recrystallization time is about 100 ps. Zh. éksp. Teor. Fiz. 113, 2162–2173 (June 1998)  相似文献   

14.
The relative differences δ ns (n=1, 2, 3) of the spindependent conversion coefficients were measured for α-Fe and α=Fe2O3. In contrast to theoretical predictions of δ1s≃−10−5 we found δ1s≃−1.0(4)x10−2 for both α-Fe and α-Fe2O3. As a possible source for this difference we consider a dynamic coupling with the atomic spin during the conversion process.  相似文献   

15.
A near-electrode nonuniform magnetic field crossed with an electric field is found to strongly affect the rate of etching of silicon dioxide on glass substrates in a CF4 + O2 plasma when the Larmor frequency (≈109 s−1) is much higher than the frequency of collisions of an electron with surrounding plasma particles (≈106 s−1) and the frequency of the applied rf electric field (≈107 s−1). The confinement of electrons by the magnetic field in the immediate vicinity of the substrate surface to be treated increases the rate of generation of chemically active particles, which increases the etching rate of silicon dioxide.  相似文献   

16.
We report the development of a method for recording the low-temperature (T=6 K) near-IR inelastic light scattering spectra and the observation of electronic scattering on the transitions 1s 3/28) → 2s 3/28) between the ground and excited states of different shallow acceptor centers in a n-type semi-insulating crystal si-GaAs (n=1.0 × 108 cm−3) and in a doped p-InP crystal (p=3.6×1017 cm−3). Moreover, a new line, associated with the transition 1s 3/28) → 2p 3/28) and due to a dielectric local mode, recorded for the first time in the spectra of narrow-gap semiconductors, was found in the residual-frequency band in the p-InP spectrum between TO(Γ) and LO (Γ) phonons. Pis’ma Zh. éksp. Teor. Fiz. 67, No. 5, 334–339 (10 March 1998)  相似文献   

17.
The low-temperature dc mobility of the two-dimensional electron system localized above the surface of superfluid helium is determined by the slowest stage of the longitudinal momentum transfer to the bulk liquid, namely, by the interaction between the surface and volume excitations of liquid helium, which decreases rapidly with the temperature. Thus, the temperature dependence of the low-frequency mobility is μdc ≈ 8.4 × 10−11 n e T −20/3 cm4 K20/3/(V s), where n e is the surface electron density. The relation T 20/3 E−3 ≪ 2 × 10−7 between the pressing electric field (in kilovolts per centimeter) and temperature (in Kelvins) and the value ω ≲ 108 T 5 K−5 s−1 of the driving-field frequency have been obtained, at which the above effect can be observed. In particular, E ≃ 1 kV/cm corresponds to T ≲ 70 mK and ω/2π ≲ 30 Hz.  相似文献   

18.
SnO2 thin films have been deposited on glass substrates by pulsed Nd:YAG laser at different oxygen pressures, and the effects of oxygen pressure on the physical properties of SnO2 films have been investigated. The films were deposited at substrate temperature of 500°C in oxygen partial pressure between 5.0 and 125 mTorr. The thin films deposited between 5.0 to 50 mTorr showed evidence of diffraction peaks, but increasing the oxygen pressure up to 100 mTorr, three diffraction peaks (110), (101) and (211) were observed containing the SnO2 tetragonal structure. The electrical resistivity was very sensitive to the oxygen pressure. At 100 mTorr the films showed electrical resistivity of 4×10−2 Ω cm, free carrier density of 1.03×1019 cm−3, mobility of 10.26 cm2 V−1 s−1 with average visible transmittance of ∼87%, and optical band gap of 3.6 eV.  相似文献   

19.
Investigations based on neutron monitor data show that two components of relativistic cosmic rays are generated by a solar flare. The so-called prompt component comes from a flare with flight times and is characterized by an exponential spectrum with a parameter of E 0 ≈ 0.5 Gev. Numerical simulation of the conditions in the flare current sheet of the Bastille flare demonstrated that such a spectrum is formed at a magnetic reconnection velocity of ∼107 cm s−1. The delayed component has a power law spectrum and is apparently formed during the diffusion of protons in the plasma of the interplanetary magnetic field.  相似文献   

20.
We discuss the development of a spectrometer based on full energy absorption using liquid scintillator doped with enriched 6Li. Of specific interest, the spectrometer is expected to have good pulse height resolution, estimated to lie in the range 10–15% for 14-MeV neutrons. It should be sensitive to flux rates from 10−6 cm−2 s−1 to 106 cm−2 s−1 above a threshold of 500 keV in an uncorrelated γ background of up to 104 s−1. We have constructed a pilot version of the detector using undoped liquid scintillator, and we report its present status. The detector’s efficiency is determined by the volume of the scintillator (∼1.21) and is estimated to be 0.2–0.5% for 3-MeV neutrons. The good pulse height resolution is achieved by compensation of the nonlinear light yield of the scintillator due to the use of optically separated segments, which collect scintillations from each recoil proton separately. We demonstrate here the response of the detector to neutrons from a Pu-α-Be source, whose energies range up to 10 MeV. Initial testing indicates a low threshold (≈600 keV) and good spectral response after requiring a multiplicity of three segments. Such a spectrometer has applications for low-background experiments in fundamental physics research, characterizations of neutron flux in space, and the health physics community. The text was submitted by the authors in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号